首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
不同林龄杉木人工林土壤团聚体及其有机碳变化特征   总被引:6,自引:2,他引:4  
土壤团聚体作为土壤结构性状的重要指标,对土壤孔隙、持水、保水等状况都有重要影响;土壤团聚体有机碳除了反映土壤固碳状况外,还与团聚体的稳定性能密切相关,研究森林土壤团聚体及其有机碳状况,旨在为合理利用土壤、提高人工林水源涵养功能提供依据。为此,以福建省洋口国有林场不同林龄杉木人工林(幼龄林、中龄林、成熟林)土壤为研究对象,通过野外调查、采样和室内分析,研究不同林龄杉木人工林土壤团聚体及其有机碳变化特征。结果表明:不同林龄杉木人工林对土壤团聚体及其有机碳具有重要影响,成熟林土壤大团聚体含量、团聚体平均重量直径(MWD)、团聚体有机碳含量及贡献率均分别大于幼龄林、中龄林;不同林龄的土壤水稳性团聚体均以大团聚体(粒径0.25 mm)为主,占59.57%~80.97%,粒径0.053 mm的仅占0.80%;土壤团聚体有机碳贡献率也以大团聚为主,其中以2~0.25 mm粒级贡献率最高,达58.43%;另外,土壤有机碳含量与团聚体MWD呈显著正相关,且具有明显的垂直变化特征,即随土层加深而下降。因此,土壤有机碳对团聚体稳定性具有积极作用,不同林龄土壤团聚体稳定性及有机碳变化规律为成熟林幼龄林中龄林。  相似文献   

2.
黄泛沙地不同林龄杨树人工林土壤团聚体及有机碳特征   总被引:1,自引:0,他引:1  
为明确黄泛沙地不同林龄杨树人工林对土壤团聚体及有机碳的影响,以山东省国有东明林场3 a,5 a,8 a,10 a生杨树人工林土壤为研究对象,采用野外取样、室内试验与湿筛法分析了土壤团聚体组成与稳定性,并分析土壤有机碳含量与储量的变化特征。结果表明:(1)不同林龄杨树人工林团聚体分布均以大团聚体(>0.25 mm)为主,在表层土层(0—20 cm)中,随林龄的增加,大团聚体含量呈先显著降低后增加再略减的趋势; 而在20—40 cm土层中,土壤大团聚体含量为5 a>8 a>3 a>10 a; 在40—60 cm土层无显著差异;(2)在0—20 cm土层中,有机碳含量表现为3 a>5 a>10 a>8 a; 在20—60 cm土层,呈先增后减的趋势,且无显著差异。土壤稳定性与团聚体的形成和有机碳密切相关,有机碳含量与GMD值呈极显著正相关关系;(3)不同林龄杨树人工林有机碳储量均呈现一定程度表聚性,在0—20 cm各林龄碳储量占总碳储量的59.17%~74.26%。在3 a到5 a阶段由于土壤淋溶作用,可能导致有机碳储量发生转移,从表层土层(0—20 cm)向底层土层(20—60 cm)转移,而在8 a到10 a阶段,有机碳储量从底层土层向表层土层发生转移。研究结果为揭示黄泛沙地杨树人工林土壤团聚结构形成与有机碳提升提供了参考。  相似文献   

3.
对黄土丘陵区土壤有机碳在不同粒级团聚体中的分布特征及其对植被恢复的响应进行了研究。结果表明:(1)黄土丘陵区不同植被覆盖条件下,土壤有机碳的分布具有一定的表聚性,0~20 cm土层中有机碳的含量均高于20~40 cm中有机碳的含量,不同植被群落下有机碳的含量大小为:大针茅群落〉长芒草群落〉铁杆蒿群落〉百里香群落;(2)同一深度土壤各粒级团聚体中有机碳的分布特征是:0.5~0.25 mm与1~0.5 mm两个粒级中有机碳的含量最高,〉1 mm的团聚体中有机碳的含量有随粒级增大而减小的趋势;(3)恢复年限对不同粒级土壤团聚体中有机碳的含量影响很大,有机碳的含量随恢复年限的增加总体呈上升趋势。黄土高原沟壑区土壤有机碳的积累与土壤团聚体的粒级和植被恢复的类型、年限等有明显的关系。  相似文献   

4.
不同植被覆盖对土壤有机碳矿化及团聚体碳分布的影响   总被引:7,自引:4,他引:7  
植被覆盖通过其输入有机物料的差异影响着土壤养分和微生物活性,进而对其土壤的团聚过程和有机碳的矿化产生影响。该文通过对重庆缙云山四种植被类型覆盖(灌草丛、楠竹林、常绿阔叶林、针阔混交林)下土壤团聚体碳分布以及土壤有机碳矿化的分析,探讨了植被覆盖对这两者的影响以及两者的相互联系。植被覆盖影响着土壤有机碳矿化过程和团聚体碳分布。就土壤有机碳矿化累积量(42天)而言,表现为灌草丛常绿阔叶林针阔混交林楠竹林。不同植被覆盖土壤有机碳日均矿化速率在培养前期(前8天)差异较大,之后则趋于一致。除灌草丛土壤外,楠竹林、常绿阔叶林和针阔混交林覆盖土壤团聚体均以0.25~2 mm和0.25 mm团聚体为主,其总量达到65%以上。土壤团聚体平均重量直径表明灌草丛土壤结构稳定性要优于其它植被覆盖土壤,而楠竹林土壤结构稳定性最差。除灌草丛土壤外,0.25 mm团聚体是土壤有机碳的主要载体;其次是0.25~2 mm团聚体。简单相关和多元回归分析,表明土壤有机碳矿化系数与0.25 mm团聚体含量成负相关,与5 mm团聚体有机碳库成正比。因此,土壤团聚体对有机碳保护作用是土壤有机碳分配和矿化分解综合作用的结果。  相似文献   

5.
茶园土壤团聚体分布特征及其对有机碳含量影响的研究   总被引:6,自引:4,他引:6  
通过野外调查与室内分析相结合的方法,对茶园土壤团聚体的分布及其有机碳的含量及分布进行了研究.结果表明:茶园0-20 cm,20-40 cm土层土壤团聚体的分布均以>2.00mm和2~5 mm团聚体为主,分别占总团聚体的比例为56.57%和69.53%.茶园土壤团聚体平均重量直径平均值为1.02 mm,并且随着土壤层次的增加有增加的趋势.茶园0-20 cm土层0.25~0.5 mm粒径土壤团聚体有机碳含量最高,20-40 cm土层<0.25 mm粒径土壤团聚体有机碳含量最高,而2~5 mm粒径土壤团聚体有机碳含量在0-20 cm和20-40 cm土层均最低.茶园0-20 cm土层.各粒径团聚体中的有机碳分配比例均高于20-40 cm土层土壤.  相似文献   

6.
中亚热带四种森林土壤团聚体及其有机碳分布特征   总被引:7,自引:0,他引:7  
周纯亮  吴明 《土壤》2011,43(3):406-410
选择中亚热带地区4种典型森林类型:杉木林、湿地松林、毛竹林和次生林4种森林土壤为研究对象,研究了森林类型对土壤不同发生层水稳性团聚体及其有机碳分布特征的影响。结果表明:不同森林类型对>5 mm和2~5 mm土壤团聚体含量影响显著(p<0.05),表现为次生林>杉木林>毛竹林>湿地松林,而在其他粒径无显著差异。0~30 cm土层内团聚体R0.25和MWD次生林显著高于其他人工林,杉木林次之,湿地松林和毛竹林最低,其他土层无显著差异。各森林类型同土层不同粒径团聚体中有机碳含量随粒径大小变化,团聚体粒径越小,有机碳含量越高。0~10 cm土层同粒径土壤团聚体有机碳含量从大到小依次是次生林、杉木林、湿地松林和毛竹林,而在其他土层各森林类型之间差异不显著。  相似文献   

7.
为探明林分类型差异对土壤水稳性团聚体分布格局及其稳定性、有机碳组分的影响,测定分析了四川盆地西南缘巨桉人工林、杉木人工林、马尾松次生林土壤水稳性团聚体的分布格局、团聚体平均质量直径、团聚体破坏率、大团聚体比重及有机碳组分含量。结果表明:(1)3种林分土壤水稳性团聚体含量均以大团聚体(0.25mm)为主。不同林分对水稳性团聚体分布格局存在差异,巨桉人工林集中在0—20cm土层的5,0.5~0.25mm和20—40cm的≤0.25mm粒径;杉木人工林集中在0—20cm土层的5,0.5~0.25mm和20—40cm土层的1~0.5,0.5~0.25mm粒径;马尾松次生林集中在0—20cm的≤0.25mm和20—40cm土层的5mm粒径。20—40cm土层不同林分土壤团聚体稳定性差异显著,马尾松林的MWD、R0.25、PAD最高,根据Bissonnais及国际土壤团聚体稳定性分级标准,3种林分土壤水稳性团聚体均处于不稳定水平(0.4≤MWD0.8)。(2)HUC含量马尾松显著高于巨桉,0—20cm土层马尾松的土壤腐殖化程度最高,20—40cm土层杉木最高。(3)不同林分团聚体稳定性与SOC组分的关系因林分类型的差异不同,总体上表现为MWD与SOC、FAC、HUC存在显著相关关系,土壤SOC含量能够促进土壤团聚过程及其稳定性,FAC、HUC含量的作用较大。总之,巨桉人工林、杉木人工林、马尾松次生林土壤团聚体稳定性、SOC组分含量及两者之间的关系存在显著差异,不同林分其影响机制不同。研究结果为准确评价该区域不同林分所发挥的生态系统功能提供重要依据。  相似文献   

8.
采集喀斯特地区灰质白云岩发育的乔木林下土壤,全部湿筛分为>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级团聚体,再将5个粒级团聚体进行碳水化合物提取后后再次分别湿筛,收集>5mm,5~2mm,2~1mm,1~0.5mm,0.5~0.25mm共5个粒级的团聚体样品.对两次湿筛中5个粒级的土壤分别进行团聚体含量、土壤有机碳、土壤可氧化态有机碳测定,分析土壤团聚体稳定性与土壤有机碳、土壤可氧化态有机碳的关系.结果表明:灰质白云岩乔木林下土壤在经过提取碳水化合物的第二次湿筛后,大粒级团聚体(>5mm,5~2mm)向小粒级(2~1mm,1~0.5mm,0.5~0.25mm)转移;有机碳主要存在于较大粒级团聚体中,但各粒级团聚体有机碳并不随之转移;各粒径团聚体可氧化态碳含量均减少,但较大粒级(>5mm,5~2mm)可氧化态有机碳含量多,较小粒级(2~1mm,1~0.5mm,0.5~0.25mm)可氧化态有机碳含量少,故推测较大粒级团聚体(>2mm)保护土壤活性有机碳能力比较小粒级团聚体(<2mm)强.  相似文献   

9.
对黄土高原地区不同生长年限紫花苜蓿(Medicago sativa L.)草地土壤团聚体0~40 cm土层的分布及其有机碳含量特征进行研究。结果表明:土壤总有机碳随着生长年限的增加而呈先增加后减小的趋势,各年限0~10 cm土壤有机碳含量均最高,呈表聚现象。不同生长年限紫花苜蓿湿筛处理下土壤团聚体均以0.106 mm粒级团聚体为主,约为40%~90%,随土层深度增加而减小;0.25 mm粒级团聚体在4年时含量最高,并随生长年限的增加呈先增加后减小的趋势。不同年限紫花苜蓿土壤团聚体有机碳以0.106 mm粒级团聚体含量最高,随粒级的减小而增加;不同年限紫花苜蓿土壤20~40 cm团聚体有机碳含量高于0~20 cm土层,并随生长年限增加呈先增加后减小的趋势。  相似文献   

10.
黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究   总被引:5,自引:0,他引:5  
以黄土高原延河流域森林区3种典型植物群落为研究对象,研究了3种植物群落土壤团聚体中有机碳的含量、组分及土壤酶活性,分析了有机碳与酶活性的关系。结果表明:(1)3种植物群落,土壤团聚体各种形态有机碳和酶活性均表现为0~10 cm土层含量高于10~20 cm土层,辽东栎群落0~10 cm土层土壤多酚氧化酶活性却低于10~20 cm土层。(2)土壤团聚体有机碳含量在植物群落间表现为:辽东栎群落人工刺槐群落狼牙刺群落,酶活性在植被群落间的高低表现则不一致。土壤有机碳含量和酶活性在团聚体间均表现为随团聚体粒级的增大而增大,或先增大再减小的趋势。(3)蔗糖酶、纤维素酶以及β-D葡糖苷酶活性与各种形态有机碳均呈显著的正相关关系,多酚氧化酶和过氧化物酶与有机碳含量相关性不显著。(4)辽东栎群落和狼牙刺群落土壤团聚体蔗糖酶、纤维素酶、以及β-D葡糖苷酶活性在团聚体中表现为:|0.25 mm团聚体||2~0.25 mm团聚体||5~2 mm团聚体||5 mm团聚体|,其多酚氧化酶和过氧化物酶以及人工刺槐群落各种土壤酶活性均表现为2~0.25 mm粒级团聚体中最大。(5)β-D葡糖苷酶活性增大,能促进土壤各种有机碳含量增加;土壤蔗糖酶活性和β-D葡糖苷酶活性的提高有助于土壤活性有机碳含量增加;土壤多酚氧化酶活性的增大,有利于土壤腐殖质碳的积累。  相似文献   

11.
通过野外调查与室内分析相结合的方法,对耕地、园地、林地和撂荒地土壤团聚体及其有机碳的分布特点进行了研究.结果表明,不同土地利用方式下土壤闭聚体的分布均以>2.00 mm团聚体为主,其它依次为0.5~1,1~2,<0.25和0.25~0.5 mm粒径的团聚体.林地和撂荒地土壤有机碳含量随粒径的减小呈递增的变化趋势;耕地在0.25~0.5 mm和<0.25 mm团聚体中有机碳含量较高,园地则以0.25~0.5mm粒径团聚体中有机碳含量最高.4种土地利用方式下,以>5 mm团聚体中土壤有机碳含量差异最大,随着团聚体粒径的增加,它们之间的差异逐渐减小;各土地利用方式下表层土壤中,分布在<0.25 mm和0.25~0.5mm团聚体粒径中有机碳占有机碳总量比例低于2~5,>5和0.5~1 mm的团聚体.  相似文献   

12.
依据吉林省德惠市田间定位试验(始于2001年),对玉米-大豆轮作和玉米连作模式下秋翻(MP)、垄作(RT)和免耕(NT)3种耕作方式的机械稳定性团聚体和水稳性团聚体粒级分布、水稳性团聚体有机碳含量及团聚体稳定性进行了研究。结果表明,3种耕作方式下,〉0.25 mm机械稳定性团聚体含量均在70%以上,最高可达93.29%,各粒级含量在两个土层中表现规律性不强。水稳性团聚体含量均在20%以上,最高可达35.5%,且表层高于底层。与干筛法测定的团聚体相比,〉0.25 mm团聚体含量明显减少,最大减少幅度为58.76%。两个土层中玉米-大豆轮作和玉米连作下的机械稳定性团聚体与水稳性团聚体对耕作处理的响应表现出一定的相似性,即RT〉NT〉MP。水稳性团聚体有机碳含量随粒径的减小而增大,3种耕作方式下有机碳含量表现为NT〉RT〉MP,表层高于底层,且玉米-大豆轮作高于玉米连作。比较3种耕作方式,垄作更有利于团聚体的形成和稳定,且玉米-大豆轮作好于玉米连作。  相似文献   

13.
阿尔泰山冷杉林下土壤有机碳矿化特征   总被引:1,自引:1,他引:1  
[目的]探讨阿尔泰山天然冷杉混交林不同海拔梯度下土壤有机碳矿化特征,为天然冷杉林土壤有机碳的分解转化过程研究提供理论依据。[方法]以新疆布尔津县境内阿尔泰山1 300~1 500,1 500~1 700,1 700~1 900m这3个海拔梯度的冷杉(Abies nephrolepis)混交林下土壤为研究对象,在研究了土壤有机碳含量特征的基础上,进一步利用双指数模型对有机碳矿化特点进行了探讨。[结果](1)3个海拔梯度的土壤有机碳含量均表现出随土层加深而降低的趋势,表层富集现象明显,且该趋势不随海拔梯度的变化而变化;(2)3个海拔梯度的各土层有机碳矿化趋势相似。即矿化初期CO2-C累积量增幅较大,而到了中、后期矿化曲线逐渐趋于平缓,CO2-C累积量增幅减小;(3)双指数方程可以很好地拟合出冷杉林土壤有机碳的矿化趋势;(4)土壤有机碳矿化过程进行到100d时各海拔梯度的各土层活性碳均未被完全分解;(5)矿化碳与土壤有机碳总量和活性碳含量均达到极显著相关水平。[结论]土壤有机碳矿化过程表现出明显随海拔变化的特征。土壤活性碳含量是影响矿化作用的直接因素。  相似文献   

14.
以福建省福鼎市白琳镇(BL)、点头镇(DT)、磻溪镇(PX)、管阳镇(GY)和太姥山镇(TMS)的茶园土壤为研究对象,研究其团聚体组成及稳定性,各粒级团聚体有机碳含量、固碳贡献率及有机碳红外光谱,旨在从团聚体尺度揭示茶园土壤有机碳分布及其分子结构特征。结果表明:(1)不同采样地土壤团聚体组成存在差别,但随土层加深,大团聚体(0.25~2 mm)和微团聚体(0.053~0.25 mm)含量均减少,而粉-黏粒团聚体(<0.053 mm)含量增大;(2)随土层加深,所有采样地平均重量直径(MWD)和几何平均直径(GMD)减小,分形维数(D)增大,团聚体结构稳定性降低;(3)各粒级团聚体有机碳含量随土层加深而减小,固碳贡献率主要受团聚体含量的影响,大团聚体固碳贡献率相对更大;(4)各粒级团聚体有机碳均主要来源于多糖碳或脂肪碳,0-15 cm土层土壤粉-黏粒团聚体比大团聚体和微团聚体有机碳更稳定,15-30 cm土层各级团聚体均比0-15 cm土层对应粒级团聚体有机碳更稳定。研究成果可为茶园土壤有机碳的科学管理提供理论参考。  相似文献   

15.
汤松波  习丹  任文丹  旷远文 《土壤》2018,50(1):122-130
不同植被类型下土壤有机碳(SOC)储量和动态变化是全球变化研究的热点之一。对南亚热带鹤山6种不同植被类型(灌草、马尾松林、桉树林、乡土树林、马占相思林、季风常绿阔叶林)SOC干湿季、空间(0~10,10~20,20~40 cm)变化特征、土壤惰性指数及其与土壤有效氮(TAN)的关系研究表明:(1)6种植被中,干季SOC含量显著高于湿季,SOC含量随土层深度降低,马占相思林SOC含量最高,马尾松林和灌草最低;(2)6种植被SOC储量在0~10 cm土层所占比例最高,占0~40 cm土层SOC含量40%以上;(3)土壤惰性指数随土壤深度增加而下降,常绿阔叶林、乡土树林和马占相思林烷基碳和ROC惰性指数高于桉树林和马尾松林,揭示这3种植被SOC具有更高稳定性;(4)SOC与土壤TAN含量呈显著正相关。结果揭示,在植被恢复过程中,选择豆科植物,辅以乡土树种营造常绿阔叶林,有利于提高森林潜在碳汇功能。  相似文献   

16.
长白山森林土壤有机碳库大小及周转研究   总被引:3,自引:0,他引:3  
主要分析不同森林植被下有机碳的分解动态和土壤碳库各组分大小、周转时间。结果表明:土壤样品培养90天,CO2累计释放量表层大致为1723~5065mg/kg、下层大致为178~642mg/kg。分解速率总的趋势是前期快,后期慢,表层明显大于下层。大小顺序为:冷杉林〉针阔混交林和阔叶林〉针叶林。在不同植被下的表层和下层土壤中,活性碳占总有机碳的0.54%~1.67%,0.45%~5.48%.平均驻留时间为11~56天、60~88天;缓效性碳占总有机碳的23.0%~63.3%,33.2%~72.2%,平均驻留时间为4~70年、24~161年;惰效性碳占总有机碳的35.5%~75.5%.26.0%~65.%。表层土壤的总有机碳、活性碳、缓效性碳和惰效性碳含量都明显大于下层。凋落物的化学组成主要决定活性碳库、缓效性碳库含量,土壤的粘粒含量等性质主要决定惰效性碳库含量。  相似文献   

17.
[目的]分析土壤活性碳含量变化以及土壤有机碳的矿化特征,为今后深入了解掌握丝栗栲林下土壤有机碳的分解转化过程及其固碳潜力提供理论依据。[方法]基于野外取样调查以及室内分析得出的有机碳数据,利用双指数模型法,在Origin 8.6软件支持下拟合出活性碳含量以及有机碳矿化过程及强度的时空变化特征。[结果]土壤有机碳含量和活性碳含量均呈现明显的表层富集现象以及4月较低,8月最高,之后逐月降低的时间变化特点。土壤有机碳矿化强度虽然表现出与土壤有机碳和活性碳含量相同的垂直剖面特征和时间变化趋势,但其时间变化特征与土壤活性碳含量变化更为一致,只有0—20cm表层土壤表现出显著性变化。[结论]土壤有机碳矿化强度与微生物、温度和活性碳含量均达到极显著相关水平,但其时间变化特征与土壤活性碳含量变化更为一致,二者的关系更密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号