首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aggregate characterization as compared to soil bulk properties   总被引:2,自引:0,他引:2  
The aim of this paper is to clarify the effect of soil aggregation on the physical and chemical properties of structured soils and as compared with the homogenized material. Aggregation and aggregate strength do not only depend on biological activity and organic exudates, but also on the intensity, number and time of swelling, and drying events. Such aggregates are not only more dense than the structured bulk soil, the intra-aggregate pore distribution consists not only of finer pores, but they are also more tortuous. Thus, water and ion fluxes by mass flow as well as ion transportation by diffusion are delayed, whereby the length of the flow path in such tortuous finer pores further retards chemical exchange processes. Futhermore, the chemical composition of the percolating soil solution differs more from that of the corresponding homogenized material the stronger and denser the aggregates are. From the mechanical point of view, the strength of single aggregates, determined as the angle of internal friction and cohesion, depends on the number of contact points or the forces, which can be transmitted at each single contact point. However, internal soil parameters, like grain size distribution or chemical composition, further affect the strength. The more structured the soils are, the higher is the proportion of the effective stress on total stress, but even in single aggregates neutral stresses can be revealed. This is true because of the relationship to the smaller value of the hydraulic conductivity and higher tortuosity. Finally, some dynamic effects on aggregation and aggregate deterioration are discussed.  相似文献   

2.
On the bulk density of aggregates and its possible impact on the movement of soil solutions The bulk densities of the aggregate fractions 15-18 mm, 10-15 mm, 5-10 mm, and 3-5 mm from a Typic Hapludalf, an Aquic Hapludalf, and a Typic Chromudert, all used as cropland and grassland, and that of aggregates of the 3-5 mm fraction from a Typic Dystrochrept used for a farm manure and crop residue trial, lay between 1.8 and 2.0 g/cm3. Sampling was done down to depths of 85 cm, 70 cm, 55 cm, and 80 cm. respectively. The bulk density values increase in most cases with decreasing aggregate size and indicate the aggregate pore volumes to generally range from 25 to 35% b.v. This means that either soil aggregates often contain only fine pores or that fine and medium pores also act as inter-aggregate pores. As a consequence, movement and exchange of soil water and soil solution between inter- and intra-aggregate pores is severely restricted.  相似文献   

3.
吴呈锋  於修龄  卢升高 《土壤学报》2020,57(6):1422-1429
团聚体内部复杂的孔隙系统及其空间分布决定土壤团聚体的主要功能,以及发生在团聚体内的各种物理、化学和生物学过程。应用同步辐射X射线显微成像技术(SR-mCT),对第四纪红土发育的红壤团聚体内部孔隙形态、连通性、各向异性、大小分布和空间分布进行了研究。结果表明,红壤团聚体内部的孔隙形态、孔隙生长方向、大小分布存在明显差异。稳定性较好的团聚体表现为团聚体孔隙含有较多大孔隙、孔隙形态各异、各向异性、多联通孔隙等特征,团聚体内>30 ?m大孔隙分布比较均匀,中心部位较高,呈中间向圆周减小趋势;反之,稳定性较差的团聚体中,孔隙以小孔隙为主,分布密集,孔隙生长方向均匀,团聚体孔隙空间分布为大孔隙,主要分布在团聚体外围,中心部分分布较少。团聚体内部孔隙的空间分布模式能够很好地解释土壤团聚体结构和稳定性差异的原因。同步辐射显微CT结合图像处理技术能够系统地表征团聚体内孔隙的多样性和空间变异规律,为预测土壤团聚体中各种物理过程提供新途径。  相似文献   

4.
土壤理化性质异质性研究及其影响   总被引:2,自引:0,他引:2  
Structured soils are characterized by the presence of inter- and intra-aggregate pore systems and aggregates, which show varying chemical, physical, and biological properties depending on the aggregate type and land use system. How far these aspects also affect the ion exchange processes and to what extent the interaction between the carbon distribution and kind of organic substances affect the internal soil strength as well as hydraulic properties like wettability are still under discussion. Thus, the objective of this research was to clarify the effect of soil aggregation on physical and chemical properties of structured soils at two scales: homogenized material and single aggregates. Data obtained by sequentially peeling off soil aggregates layers revealed gradients in the chemical composition from the aggregate surface to the aggregate core. In aggregates from long term untreated forest soils we found lower amounts of carbon in the external layer, while in arable soils the differentiation was not pronounced. However, soil aggregates originating from these sites exhibited a higher concentration of microbial activity in the outer aggregate layer and declined towards the interior. Furthermore, soil depth and the vegetation type affected the wettability. Aggregate strength depended on water suction and differences in tillage treatments.  相似文献   

5.
Relevance of strength distribution within aggregates to the movement of soil water and soil solution Different transport processes exist not only between the total soil and single aggregates, but also within individual aggregates. To clarify the structure of single aggregates without thin-sectioning, resistance to penetration was repeatedly measured on the same aggregate at a predefined soil water tension. The aggregates were sampled from the Go 2 horizon of a Typic Fluvaquent (Φ 15-25mm) and from the Bg 2 horizon of an Aquic Chromudert (Φ 30-50mm) and equilibrated with water tensions ranging from roughly OhPa to 1000hPa. The strength distributions within individual aggregates were calculated using penetration resistance values of all measurements on one aggregate at a single water tension. These distributions, as exemplified by those at 300hPa and 1000hPa. show that the aggregates are surrounded by a thin, but very strong mineral skin which may be discontinuous, especially for aggregates from the Aquic Chromudert soil. In these aggregates, slickenside-like friction planes were found to penetrate through the skin. The deviation in the skin composition from that of the inner-aggregate described in literature, together with the finding of its strength, suggest that the exchange of water and solutes between the inter-aggregate and intra-aggregate pores is strongly impeded. The weaker parts within the skin, however, must be interpreted as preferred pathways, perhaps resulting in some fingering within aggregates at the prevailing matrix potential. The significance of different pathways within aggregates for the general transport of matter in soils is briefly discussed.  相似文献   

6.
免耕制度下耕作土壤结构演化的数字图像分析   总被引:18,自引:4,他引:18  
利用数字图像方法 ,研究了室内模拟和自然田间免耕下的土壤结构演化状况。图像定性表明随免耕时间的推移土壤中团聚体由小变大 ,土体逐渐趋于紧实。图像定量分析结果表明随着免耕时间的推移 ,小团聚体和小孔隙减少而大团聚体和大孔隙增加。田间土样的结果表明了自然的阶段性降雨对土壤结构可能具有一定的调节作用 ,但从图像与团聚体粒径分布和孔隙孔径分布的变化来看 ,免耕是否有利于土壤性质和农业生产尚很难确定  相似文献   

7.
The migration of colloids in soils can enhance the leaching of strongly sorbing contaminants. We present a model for the simulation of colloid leaching from unsaturated, aggregated soil media under stationary flow. Transport in the intra-aggregate pores is simulated by convection–dispersion, and transport in the interaggregate pores, and a stagnant layer of water surrounding the aggregates, is simulated by diffusion. The model describes the release of colloids from soil aggregates, sorption and desorption processes at the air–water interfaces, and flocculation and subsequent straining from the flowing water. All three processes were simulated as functions of ionic strength. Transport of ions in intra-aggregate pores was simulated by Fickian diffusion. The model was calibrated against experimental results of colloid leaching from columns packed with natural soil aggregates. The aggregates were of two soils differing in organic matter content. On each soil a single calibrated parameter set could describe the experiments with the three ionic strengths. The parameters for release of colloids from the aggregate surface and the sorption properties of the air–water interface were different for the two soils. The key parameters for leaching were the thickness of the stagnant layer of water surrounding the aggregates, the mechanical dispersion, the maximum concentration of colloids at the surface of the aggregates, the sorption capacity and rate coefficient of the colloids at the air–water interface, and the colloid diffusion coefficient. Simulations were also done with two additional irrigation intensities at one ionic strength. Simulated leaching was greater than measured leaching at both irrigation intensities, but the diffusion-controlled release of colloids from the aggregates was simulated correctly.  相似文献   

8.
The study evaluated the effects of soil intra-aggregate pore distributions on movement and fate of E. coli (a global indicator of fecal pollution) within soil aggregates. The first objective was to characterize pore structure of intact soil aggregates (4–6 mm in size) using X-ray computed microtomography and to quantify the differences in pore structures of the aggregates from the same soil type but under >18 year contrasting land use and management settings. The studied settings were (i) conventionally plowed row crop (CT), (ii) no-till row crop (NT), and (iii) native succession vegetation (NS) treatments from Long Term Ecological Research site, W.K. Kellogg Biological Station, southwest Michigan. The second objective was to examine spatial distribution of E. coli introduced into the aggregates and the relationships between E. coli distributions and intra-aggregate pores. The results indicated that E. coli distribution in the aggregates was driven by specific configurations of the intra-aggregate pores. When the aggregates’ initial water contents were relatively low, presence of large (>100 μm) pores in the aggregate interiors limited water and thus E. coli entry. Such centrally located large pores were more abundant in the aggregates from NT and NS treatments as compared to CT aggregates. Medium-sized pores (30–60 μm) were more abundant in the aggregates from CT soil and such pores were relatively homogeneously distributed through entire bodies of CT aggregates. Thus, upon entering the aggregate, E. coli became more uniformly distributed through the CT aggregates, while in NT and NS aggregates it more commonly remained in the aggregate exterior parts without reaching the interiors. Implications of these distributional patterns for E. coli survival and re-entering water flow in soil under different land use need to be addressed in further studies.  相似文献   

9.
通过测定两种土壤和一种玻璃珠的两相热导率随气压的变化,分析变压条件下气体分子碰撞平均自由程和多孔介质孔隙结构间的关系.研究计算了表征土壤平均孔隙结构的孔隙特征长度(d),同时依据静态几何学方法计算获取了颗粒平均间距(D).结果表明,基于热传输方法获取的d值是从气体分子碰撞传热的动态观点获取的孔隙结构表征,标识着土壤颗粒...  相似文献   

10.
Soil aggregate stability is an important measure for assessing soil structural quality. Here we compare stable and unstable soil aggregates from organically and conventionally managed soils that have similar organic matter contents to determine the role of management in aggregate stability. Aggregate stability was determined by slaking, which proved to be an accurate estimator of the rate of aggregate turnover. The results indicate that, in soil aggregates released by slaking, the organic matter is held in aggregates > 0.3 mm diameter. A relatively short aggregate turnover rate will prohibit the production of stable micro-aggregates within macro-aggregates and thus gradually reduce aggregate stability, as was observed in soils under conventional management. Data obtained by X-ray μCT suggested that intra-aggregate porosity did not significantly affect stability. We observed cracks and elongated pores connected to the surface of stable soil aggregates that can provide an escape route for entrapped air, thus reducing pressure build-up and potentially reducing slaking. Our results show that organic management has the potential to develop more stable aggregates compared with conventionally managed soils for the soil type studied. Thus, conventional soils require particular attention to management practices that increase the rate of aggregate turnover in order to reduce the production of unstable aggregates that can contribute to crusting, erosion and runoff.  相似文献   

11.
The role of structure for nutrient sorptivity of soils The influence of the aggregation in 2 differently textured and structured soils (Haplumbrept and Chromudert) on the cation exchange capacity CEC was investigated. The results clearly demonstrated, that from the total soil (< 2 mm), natural and disturbed aggregates (Ø 5–8 mm) and the separated outer and inner part of those aggregates, the undisturbed aggregates had the lowest CEC. Furthermore, the aggregate skin was more chargeable than the inner part, due to a higher amount of silt and clay in that part. Because of higher bulk densities of the aggregates and theoretically increased tortuosity, the solution of elements in percolating water, especially in clay soils, is limited to the interaggregate pores. Thus, measured differences between the element distribution in different compartments can be explained.  相似文献   

12.
湿润速度和累积降雨对土壤表面结皮发育的影响   总被引:5,自引:2,他引:5  
土壤表面强度和微结构显微照片是研究表土结皮的重要指标和直接表征。以两种典型的土壤(垆土和黑土)为研究对象,采用2mmh-1(慢速)和50mmh-1(快速)两种速度湿润后进行雨强为60mmh-1的降雨,研究不同湿润速度和累积降雨对结皮发育的影响。结果表明:湿润速度对垆土结皮发育过程的影响不明显,土壤表面强度主要由累积降雨打击夯实引起;快速湿润对黑土结皮发育有显著的影响,慢速湿润后黑土在60min降雨过程中没有明显的结皮,累积降雨的打击起次要作用;湿润速度和累积降雨的对结皮发育的影响取决于土壤团聚体稳定性。  相似文献   

13.
Aggregate size distribution and pore structure affect many soil functions and root growth. The aggregate structure is associated with soil genesis and management practices applied. In this study the effects of various size ranges of aggregates (<0.25, 0.25–0.5, 0.5–1, 1–3, 3–5, and 5–10 mm) and undisturbed soil from the plough layer (0–15 cm) of two types of soils (Haplic Phaeozem and Eutric Fluvisol) of the same silty loam textural group on water retention curves (WRC) and pore size distribution (PSD) were assessed. A greater bulk density and lower humus content characterized the Eutric Fluvisol as compared to the Haplic Phaeozem. The WRC was determined using standard Richards chambers in drying process and expressed as the degree of saturation. Equivalent PSD was derived from the WRC. Resin impregnated sections from the layer of 0–8 cm showed that the Eutric Fluvisol, compared with the Haplic Phaeozem, had coarser pores and aggregates. The degree of saturation in beds of aggregates <0.25, 0.25–0.5 and 0.5–1 mm compared to beds of aggregates 1–3, 3–5 and 5–10 mm was greater at higher values of pressure head for both soils, and for undisturbed soil it was greater for the Haplic Phaeozem than for the Eutric Fluvisol at lower values of pressure head. The inverse relationship was true at higher values of pressure head. The derivative curves of PSD showed that the beds of aggregates and undisturbed soils exhibited multi-peak PSD. The pore radius peaks within the textural (primary) pore system were more defined in beds of aggregates <0.25 mm than in beds of coarser aggregates, whereas in the case of the structural and macropore peaks it was often the reverse. Greater magnitude and narrower shape of the peaks in the undisturbed Haplic Phaeozem compared to the Eutric Fluvisol indicated a more heterogeneous nature of the pore system in the former. The PSD data are discussed in relation to aggregate size distribution and stability of the soil aggregates. The results of this study can be helpful in predicting storage and transmission functions of surface aggregated soils.  相似文献   

14.
Different positions within soil macroaggregates, and macroaggregates of different sizes, have different chemical and physical properties which could affect microbial growth and interactions among taxa. The hypothesis that these soil aggregate fractions contain different eubacterial communities was tested using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal gene. Communities were characterized from two field experiments, located at the Kellogg Biological Station (KBS), MI, USA and the Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, USA. Three soil management regimes at each site were sampled and management was found to significantly affect T-RFLP profiles. The soil aggregate erosion (SAE) method was used to isolate aggregate regions (external and internal regions). Differences between eubacterial T-RFLP profiles of aggregate exteriors and interiors were marginally significant at KBS (accounting for 12.5% of total profile variance), and not significant at OARDC. There were no significant differences among macroaggregate size classes at either site. These results are in general agreement with previous studies using molecular methods to examine microbial communities among different soil macroaggregate size fractions, although further study of communities within different aggregate regions is warranted. Analysis of individual macroaggregates revealed large inter-aggregate variability in community structure. Hence the tertiary components of soil structure, e.g. arrangement of aggregates in relation to shoot residue, roots, macropores, etc., may be more important than aggregate size or intra-aggregate regions in the determination of the types of microbial communities present in aggregates. Direct microscopic counts were also used to examine the bacterial population size in aggregate regions at KBS. The proportion of bacterial cells with biovolumes >0.18 μm3 was higher in aggregate interiors than in exteriors, indicating potentially higher activity in that environment. This proportion was significantly related to percent C of the samples, while total bacterial cell counts were not.  相似文献   

15.
Soil organic matter, air encapsulation and water-stable aggregation   总被引:1,自引:0,他引:1  
A re-interpretation of published data shows: firstly, that the hydrophobic properties of soil organic matter can increase the amount of air encapsulation within soil materials during water uptake; and secondly, that this increased air encapsulation can reduce water uptake rates sufficiently to prevent slaking. This aggregate stabilizing mechanism suggests novel approaches to soil management, based on the production of non-uniformly distributed hydrophobic organic matter within intra-aggregate pores, that could be used to improve soils whose aggregates fail when wetted rapidly.  相似文献   

16.
李保国  周虎  王钢  刘刚  高伟达  朱堃  陈冲 《土壤学报》2023,60(5):1221-1230
土壤是地球表面由固、液、气三相组成的疏松多孔介质体,土壤物理、化学和生物学等过程主要发生在液相和气相填充的土壤孔隙中及其与固相的交界面。随着无损探测土壤孔隙结构、土壤生物化学原位分析和计算机模拟等技术的快速发展和计算能力的提升,从土壤孔隙的形态、结构和功能的角度,原位、直观、精确地研究土壤中动态发生的各种过程成为可能,推动了对真实土壤中各种微观过程与机制的研究。基于前期的研究进展,本文提出,研究透明土壤体的物理学—土壤孔隙学(Soilporelogy)的时代已经启航。土壤孔隙学主要针对土壤孔隙空间,研究其动态变化与土壤物理、土壤化学和土壤生物(生态)互作过程及其效应。以土壤孔隙学为主线,本文首先介绍了获取土壤孔隙方法的进步,进而论述了基于土壤孔隙的流体运动、生物化学过程、根系和生物活动以及土壤微观生态学等的试验和模拟研究。最后,本文对土壤孔隙学的研究方法和理论发展方向进行了展望,相信基于土壤孔隙的研究会推动土壤学研究新的发展。  相似文献   

17.
Clayey soils have the potential to swell and to shrink depending on their hydraulic and hydrological status. Thus bulk density values vary in a range of 1.0 to 2.0 g cm?3 in the case of a gleyic Vertisol, by which also other soil physical properties e.g. the pore size distribution of the bulk soil as well as of the soil aggregates are affected. Intraaggregate airfilled porosities are reduced by shrinkage and are relatively low. Thus it appeared to be difficult to determine the airfilled porosity of the aggregates below pF 1.5. For that reason and because of the influence of pore forms we were not able to get a clear relation of diffusion constant K with airfilled porosity. Regarding soil aeration status, the existence of anoxic microsites in the interior of unsaturated soil aggregates has been proved by microelectrode measurements of oxygen partial pressure and redox potential distribution in single soil aggregates. We verified restrained oxygen supply to the aggregate center as well as reduced redox potentials only for aggregates of the A horizon. There the microbial activity, measured as soil respiration as well as the source for C and N was by a factor 2 to 4 higher than in the subsurface horizons.  相似文献   

18.
A soil with double porosity is modelled as a collection of aggregated particles, in which a single aggregate is made up of discrete particles bonded together. Separate fractal distributions for pore sizes around and within aggregates are defined. The particle size distribution of the double porosity soil is also modelled using a fractal distribution, which may have a fractal dimension very different to those defining the pore sizes. The surface areas of the particles and the pores within the aggregates are assumed to be equal, enabling an expression linking two fractal dimensions to be defined. It is necessary to introduce ratios between maximum and minimum particle and pore sizes into the expression. A theoretical soil‐water characteristic curve is then derived for a double porosity soil. The curve, and the underlying assumptions regarding the distributions of pore and particle sizes, showed good agreement with experimental data for a range of soils having double porosity. A discontinuity is observed in the soil‐water characteristic curve at a second air entry value related to the maximum pore size within the aggregates, a feature also observed in experimentally obtained soil‐water characteristic curves for double porosity soils.  相似文献   

19.
以棕壤肥料长期定位试验(29 a)形成的高、低两种肥力水平棕壤为研究对象,采用不同部位玉米残体为试验试材,分别向两种土壤中加入玉米根茬和茎叶,进行田间原位培养试验,试验设置6个处理:低肥力土壤添加玉米根茬(LF+R)、低肥力土壤添加玉米茎叶(LF+S)、高肥力土壤添加玉米根茬(HF+R)、高肥力土壤添加玉米茎叶(HF+S)和未添加玉米残体的对照处理(LF,HF)。本研究旨在探明玉米根茬、茎叶添加后不同肥力土壤团聚体组成及有机碳分布的变化规律,为构建合理的秸秆还田与施肥措施,减少土壤侵蚀提供理论依据。结果表明:1)添加玉米残体后低肥力棕壤团聚体稳定性、较大级别团聚体(2 mm和1~2 mm)有机碳贡献率的提升幅度比高肥力棕壤大,说明低肥力土壤对外源有机质的响应更敏感,向大团聚体转化的速率更快。2)培养结束时,高肥力棕壤添加茎叶处理团聚体稳定性显著高于添加根茬处理,而添加根茬处理各粒级团聚体有机碳含量显著高于添加茎叶处理;低肥力棕壤中根茬和茎叶添加处理团聚体稳定性及有机碳含量之间差异不明显。3)在田间原位培养过程中,棕壤2 mm和1~2 mm团聚体所占比例和团聚体稳定性呈现出前期(0~360 d)快速增加,后期(360~720 d)趋于稳定的趋势。可以看出,玉米残体对土壤团聚体团聚化过程的作用强度逐渐减弱。以上结果表明,作物残体输入对棕壤团聚体组成及有机碳分布的影响与棕壤肥力水平和不同残体部位间的差异关系密切。  相似文献   

20.
不同肥力红壤水稻土根际团聚体组成和碳氮分布动态   总被引:7,自引:0,他引:7  
江春玉  刘萍  刘明  吴萌  李忠佩 《土壤学报》2017,54(1):138-149
研究水稻种植期间表层土壤团聚体数量及其有机碳、全氮含量的变化,对揭示人为耕作的影响、认知土壤肥力的演变规律具有重要意义。选择两种不同肥力的红壤性水稻土进行田间根袋试验,分别于水稻插秧前、分蘖期、孕穗期和成熟期采样,分析了水稻生长过程中根际和非根际土壤团聚体组成、稳定性以及有机碳、全氮分布的动态变化。结果表明,低肥力土壤团聚体以0.25 mm大团聚体为主(56.2%~64.0%),0.25~1 mm粒级团聚体含量最高;除1~2 mm粒级外,水稻生育期内根际土壤各粒级团聚体含量均有显著变化;取样时期、根际作用与取样时期的交互效应对0.25~1 mm和0.053~0.25 mm粒级含量有显著影响。高肥力土壤中以0.25 mm微团聚体为主(59.8%~72.0%),0.053~0.25 mm粒级团聚体比例最高,取样时期显著影响0.25 mm大团聚体含量,根际作用与取样时期的交互效应对2 mm粒级含量有极显著影响。与非根际相比,根际土壤大团聚体的破坏率较低,平均重量直径(MWD)较高,种植水稻有助于提高根际土壤的稳定性。两种肥力土壤团聚体中有机碳和全氮含量均表现为1~2 mm粒级最高,0.053~0.25 mm粒级最低,大团聚体中显著高于微团聚体。根际土壤中,水稻成熟期各粒级团聚体有机碳含量与插秧前无显著差异,而分蘖期和孕穗期有明显波动;水稻的生长降低了大团聚体中的全氮含量,对高肥力土壤的影响更为显著。总体而言,低肥力土壤中,根际作用主要影响团聚体组成和稳定性,取样时期影响团聚体碳氮含量;高肥力土壤中,团聚体组成和碳氮分布受根际作用和取样时期的共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号