首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of flavor compound chemical structure, including functional group and stereochemistry, and environmental relative humidity (RH) on the binding of volatile flavor compounds to dehydrated soy protein isolates (SPIs) was evaluated by inverse gas chromatography. Binding of selected volatile flavor compounds differed slightly between SPIs of different origins. Results showed that the flavor compound chemical structure greatly determined its binding potential to SPIs. Binding of nonpolar flavor compounds (hydrocarbon) to soy proteins was attributed mainly to nonspecific van der Waals dispersion forces and was not affected by adsorbed water. The more polar flavor compounds (ester, ketone, aldehyde, and alcohol) exhibited both specific (hydrogen bonding, dipole forces) and nonspecific interactions, and their binding with soy proteins was greatly impaired by adsorbed water in the extremely low humidity region (approaching 0% RH). Further water uptake in the 30 to 50% RH region did not significantly affect the binding of polar compounds, although sorption of alcohol compounds (when present at high levels) further increased.  相似文献   

2.
The reliability of databases on the isoflavone composition of foods designed to estimate dietary intakes is contingent on the assumption that soy foods are consistent in their isoflavone content. To validate this, total and individual isoflavone compositions were determined by HPLC for two different soy protein isolates used in the commercial manufacture of soy foods over a 3-year period (n = 30/isolate) and 85 samples of 40 different brands of soy milks. Total isoflavone concentrations differed markedly between the soy protein isolates, varying by 200-300% over 3 years, whereas the protein content varied by only 3%. Total isoflavone content varied by up to 5-fold among different commercial soy milks and was not consistent between repeat purchases. Whole soybean milks had significantly higher isoflavone levels than those made from soy protein isolates (mean +/- SD, 63.6 +/- 21.9 mg/L, n = 43, vs 30.2 +/- 5.8 mg/L, n = 38, respectively, p < 0.0001), although some isolated soy protein-based milks were similar in content to "whole bean" varieties. The ratio of genistein to daidzein isoflavone forms was higher in isolated soy protein-based versus "whole bean" soy milks (2.72 +/- 0.24 vs 1.62 +/- 0.47, respectively, p < 0.0001), and the greatest variability in isoflavone content was observed among brands of whole bean soy milks. These studies illustrate large variability in the isoflavone content of isolated soy proteins used in food manufacture and in commercial soy milks and reinforce the need to accurately determine the isoflavone content of foods used in dietary intervention studies while exposing the limitations of food databases for estimating daily isoflavone intakes.  相似文献   

3.
Because water solubility is the main hydration property of proteins, solubility values of commercial and laboratory soy protein isolates, prepared under different conditions, were comparatively analyzed. In contrast, the surface hydrophobicity manifested by proteins is a physicochemical property that determines, to a great extent, the tendency of protein molecules to aggregate and so to lose solubility. On these grounds, the solubility of isolates was analyzed as a function of the surface hydrophobicity of their proteins, and, as a result, three well-defined groups of laboratory isolates were identified: (A) native, (B) partially or totally denatured with high solubility and surface hydrophobicity, and (C) totally denatured with low solubility and surface hydrophobicity. Commercial isolates could not be included in any of these groups; they were grouped as (A') partially native and (C') totally denatured. Solubility values in these two groups were similar to those of group C, but the surface hydrophobicity levels were much lower. The different processes leading to the groups mentioned above are discussed, along with the way the soy proteins are influenced by the specific preparation conditions, namely, protein concentration, chemical or thermal treatments, presence of salts, drying, and phospholipid addition, among others.  相似文献   

4.
提高大豆蛋白冻融后乳化性改性工艺优化   总被引:4,自引:1,他引:3  
为了制备出经冷冻-融化后仍能保持较高乳化性的大豆蛋白,试验以葡聚糖为糖基化供体,采用湿法糖基化技术改性大豆蛋白。根据单因素试验的结果,建立了Box-Behnken模型对加工工艺进行优化,所得的模型拟合度高,切实可行,可用于实际分析和预测。利用响应面分析法探讨了蛋白浓度、蛋白与糖质量比、反应时间3因素对改性产物冻融前后乳化活性和乳化稳定性的影响,优化的工艺条件为:大豆分离蛋白(soybean protein isolate,SPI)质量浓度40 mg/mL,SPI与葡聚糖的质量比为1∶3,反应时间4 h。在此条件下得到的改性产物冻融稳定性显著(P0.05)高于未改性蛋白,冻融前后的乳化活性(emulsifying activity index,EAI)分别是空白对照样的1.687和1.780倍,乳化稳定性(emulsion stability index,ESI)分别是空白对照样的1.367和1.274倍。傅里叶红外光谱证明葡聚糖通过共价键接到大豆蛋白分子中,研究结果为制备冷冻食品加工专用大豆蛋白的产业化生产提供参考。  相似文献   

5.
The mixing properties of soy protein isolate (SPI) were investigated. The electric current of a kitchen food processor was monitored during the mixing of SPIs to produce dough, and an identical mixing curve was obtained for each SPI. The obtained peak time and peak height of the electric current curve were correlated to the physical properties (solubility and gel strength) of each SPI. The peak time negatively correlated with solubility, and the peak height positively correlated with gel strength. Optical microscopic observations showed that the dough microstructure appeared to be related to the peak time. Moreover, some conditions such as the SPI storage conditions and the ionic strength of the mixing buffer affected the mixing properties. This mixing‐recording method is proposed as a practical tool that could simplify the evaluation of SPI characteristics.  相似文献   

6.
《Cereal Chemistry》2017,94(1):89-97
The goal of this research was to investigate the physicochemical and functional properties of protein isolates obtained from several pea cultivars grown at two locations in Canada. The functionalities of the pea protein isolates (PPIs) were then compared with those of commercial food protein ingredients derived from milk, egg, pea, soy, and wheat. Six pea cultivars (Agassiz, CDC Golden, CDC Dakota, CDC Striker, CDC Tetris, and Cooper) were collected from two years over two locations in Saskatchewan (Canada). Samples were evaluated for composition, surface properties, and functional properties. All PPIs had protein levels of ≈91% (db) and isolate and protein yields of ≈18 and ≈72%, respectively. Cultivars exhibited legumin/vicilin ratios from 0.36 (Agassiz) to 0.79 (CDC Golden). Differences among cultivars as well as significant cultivar × environment interactions were found only for maximum intrinsic fluorescence (195–267 arbitrary units), solubility (63–75%), and foaming capacity (167–244%). No differences owing to either cultivar or environment were observed for surface charge (zeta potential = approximately –24 mV), oil holding capacity (≈3.2 g/g), foam stability (≈75%), or emulsion stability (≈96%). Relative to the commercial isolates, PPIs prepared under laboratory conditions behaved most similarly to soy isolates, with the exception of solubility. Whey and egg were superior in solubility and foaming properties, whereas wheat and the commercial pea protein product were significantly lower in nearly all of the functionality tests. Based on their oil holding properties, the laboratory‐prepared PPIs may serve as good meat extenders. The findings also suggest that pea processors may not need to specify either the cultivar or the environment when acquiring raw material, thus creating advantages in their feedstock sourcing.  相似文献   

7.
The objectives of this work were to investigate the nutritional and physicochemical characteristics as well as the functional properties of quinoa protein isolates (QPI) from different varieties, and to determine their potential use of such protein isolates in food products. Proteins were isolated by isoelectric precipitation at pH 5 from quinoa flour, and the QPI had a protein percentage of over 85%. The comparison of the flours and QPI electrophoretic profiles indicated that the extraction method allowed isolating practically all proteins of each variety. All the varieties analyzed had high lysine content, compared with cereals, and the essential amino acid content of Bolivian varieties was higher than varieties from Peru. The pH value affected the solubility and foaming capacity, and the magnitude of effects depended on the variety. Cluster analysis showed a strong influence of variety source and amino acid composition on protein physicochemical and functional properties; samples from Bolivia (cluster 2) were characterized as having the highest thermal stability, oil binding capacity, and water binding capacity at acid pH; samples from Peru (cluster 1) had the highest water binding capacity at basic pH and foaming capacity at pH 5. QPI presented a potential as an alternative vegetable protein for food application, in particular for vegetarian and vegan diets.  相似文献   

8.
不同工艺生产大豆分离蛋白的成膜性能   总被引:5,自引:1,他引:4  
为了制作出具有良好机械性和阻隔性的大豆分离蛋白可食性膜,优选出成膜性能优良的大豆分离蛋白,该文研究了7种不同生产工艺下的大豆分离蛋白,分别以7种蛋白为材料制膜,测定其机械性能、水溶性、水蒸气透过性、O2透过性、脂质渗透性等性能,进行模糊综合评价,并用扫描电镜观察膜的表面结构。结果表明:GS5000型普通型未经造粒的大豆分离蛋白综合评价分数最高,表明其成膜性能优于其他6种大豆分离蛋白,并且电镜扫描照片也显示用其制出的膜结构更加致密,因此,GS5000型大豆分离蛋白比较适合制作可食性膜。该研究为进一步开发优质大豆分离蛋白膜进行了初步的探索。  相似文献   

9.
Glycinin-rich and beta-conglycinin-rich products are prepared by soy protein fractionation. Physicochemical characteristics of these proteins affect their unique, important functionality in food systems and industrial applications. Soybean isoflavones and saponins are phytochemicals with potential health benefits. Objectives of this protein fractionation research were to (1) improve protein and phytochemical extraction from defatted soy flakes and recovery in product fractions and (2) evaluate phytochemical partitioning and profile changes during fractionation. Extraction environments (pH, ethanol concentration, temperature, and water-to-flake ratio) were each varied during bench-scale optimization. Optimized conditions of 45 degrees C and 10:1 water-to-flake ratio were compared with previous conditions of 20 degrees C and 15:1 water-to-flake ratio and a soy protein isolate process at pilot scale. Optimized conditions yielded more beta-conglycinin with higher isoflavone and saponin concentrations, but fraction purity was diminished by glycinin contamination. Bench-scale data demonstrated that increased phytochemical extraction did not translate into increased concentrations in product fractions.  相似文献   

10.
The reaction mechanism of the coagulation of soy protein isolates (SPIs) induced by subtilisin Carlsberg was investigated. Formation of the coagula was monitored by measuring the turbidity (OD660) of the SPI solution, which decreased at the initial stage (phase 1 or digestion phase) of the reaction, and then increased (phase 2 or coagulation phase) and finally reached the plateau level. The velocity of the coagulation increased with increasing enzyme concentration. The coagulation was inhibited dramatically by adding a serine protease inhibitor (phenylmethanesulfonyl fluoride, PMSF) when the turbidity reached the minimum value. This indicates that the SPI digests participating in the coagulation are produced mainly in phase 2; in other words, production of the coagulating fragments and their coagulation occur simultaneously in phase 2. Structural changes of SPI during proteolysis were measured by observing fluorescence changes of aromatic amino acids of SPI and an externally added hydrophobic probe. It was suggested that the hydrophilic surface areas of SPIs might be cleaved preferentially in phase 1, and that the hydrophobic inner areas might be cleaved in phase 2 with extensive decomposition of the 3-D structure of SPI proteins. The fragments formed in phase 2 are considered to coagulate through hydrophobic interactions.  相似文献   

11.
Nutritional and health benefits of soy proteins   总被引:24,自引:0,他引:24  
Soy protein is a major component of the diet of food-producing animals and is increasingly important in the human diet. However, soy protein is not an ideal protein because it is deficient in the essential amino acid methionine. Methionine supplementation benefits soy infant formulas, but apparently not food intended for adults with an adequate nitrogen intake. Soy protein content of another essential amino acid, lysine, although higher than that of wheat proteins, is still lower than that of the milk protein casein. Adverse nutritional and other effects following consumption of raw soybean meal have been attributed to the presence of endogenous inhibitors of digestive enzymes and lectins and to poor digestibility. To improve the nutritional quality of soy foods, inhibitors and lectins are generally inactivated by heat treatment or eliminated by fractionation during food processing. Although lectins are heat-labile, the inhibitors are more heat-stable than the lectins. Most commercially heated meals retain up to 20% of the Bowman-Birk (BBI) inhibitor of chymotrypsin and trypsin and the Kunitz inhibitor of trypsin (KTI). To enhance the value of soybeans in human nutrition and health, a better understanding is needed of the factors that impact the nutrition and health-promoting aspects of soy proteins. This paper discusses the composition in relation to properties of soy proteins. Also described are possible beneficial and adverse effects of soy-containing diets. The former include soy-induced lowering of cholesterol, anticarcinogenic effects of BBI, and protective effects against obesity, diabetes, irritants of the digestive tract, bone, and kidney diseases, whereas the latter include poor digestibility and allergy to soy proteins. Approaches to reduce the concentration of soybean inhibitors by rearrangement of protein disulfide bonds, immunoassays of inhibitors in processed soy foods and soybean germplasm, the roles of phytoestrogenic isoflavones and lectins, and research needs in all of these areas are also discussed. This integrated overview of the widely scattered literature emphasizes general concepts based on our own studies as well as recent studies by others. It is intended to stimulate interest in further research to optimize beneficial effects of soy proteins. The payoff will be healthier humans and improved animal feeds.  相似文献   

12.
The functional properties of proteins from Tarom and Shiroodi cultivars were determined and compared with technological aspects of food and nutraceutical applications. Shiroodi has higher protein content than Tarom, and the yields of protein obtained were 72.88 and 66.36%, respectively. Nitrogen solubilities of rice bran protein of Tarom were more than Shiroodi at all pH levels. In addition, higher solubility was found in acidic or alkaline conditions. Although the rice bran proteins had lower emulsifying properties than bovine serum albumin, they had similar foaming properties in comparison with egg white. Tarom isolates had a significantly higher solubility, emulsifying property, and foaming stability and greater surface properties than Shiroodi isolates. The results showed the surface hydrophobicities of rice bran protein were greater than casein and ovalbumin and lower than other proteins such as bovine serum albumin. Water and oil absorption capacities were 1.03 and 1.66 for Tarom and 87.3 and 75.3 for Shiroodi, respectively. The bulk densities of Tarom and Shiroodi were also 0.55 and 0.53 g/mL, which make them suitable for weaning food and other industrial applications. As a result, these rice bran proteins showed higher hydrophobicity than that of other rice bran protein varieties as well as more functionality. Thus, they have good potential in the food and pharmaceutical industries.  相似文献   

13.
Isoflavones in soy protein foods are thought to contribute to the cholesterol-lowering effect observed when these products are fed to humans. The group B saponins are another ethanol-soluble phytochemical fraction associated with soy proteins and isoflavones and have also been associated with cholesterol-lowering abilities. We measured the group B soyasaponin concentrations in a variety of soy foods and ingredients in the U.S. Department of AgricultureIowa State University Isoflavone Database. We compared the isoflavone and soy saponin concentrations and distributions in intact soybeans, soy ingredients, and retail soy foods. Group B saponins occur in six predominant forms. There appears to be no correlation between saponin and isoflavone concentrations in intact soybeans ranging from 5 to 11 mumol isoflavones/g soybean and from 2 to 6 mumol saponin/g soybean. Depending upon the type of processing, soy ingredients have quite different saponins/isoflavones as compared to mature soybeans. In soy foods, the saponin:isoflavone ration ranges from 1:1 to 2:5, whereas in soy protein isolates, the ratio is approximately 5:3. Ethanol-washed ingredients have very low saponins and isoflavones. These very different distributions of saponins and isoflavones in soy products may affect how we view the outcome of feeding trials examining a variety of protective effects associated with soy consumption.  相似文献   

14.
葵花粕中分离蛋白的成分及特性   总被引:8,自引:0,他引:8  
该文以水酶法提取葵花籽油后的葵花粕为原料,通过盐提酸沉法提取其中的分离蛋白,并对其进行组分分析、氨基酸成分分析、电泳图谱分析和凝胶色谱分析,同时对其溶解性、吸水性、吸油性、乳化性和起泡性等功能特性进行研究。结果显示葵花籽分离蛋白的氨基酸组成与FAO必须氨基酸需要量模式相比赖氨酸含量较低,功能特性好于或接近大豆分离蛋白。葵花分离蛋白含有3个主要组分,其分子量分别为380×103,100×103和27×103,绿原酸与分离蛋白紧密结合。  相似文献   

15.
Functional properties related to water protein interactions of soy protein isolates depend on the structural and aggregation characteristics of their major components (storage globulins 7S and 11S) that could be modified by the preparation procedure, thermal and/or chemical treatments, and drying methods. Commercial and laboratory isolates with different functionalities resulting from their structural modifications were compared. Isolates with high solubility or excessive thermally induced insolubilization or compact calcium-induced aggregates caused low water-imbibing capacity (WIC) values. The highest WIC results from the balance between intermediate solubility and the formation of aggregates with good hydration properties. The apparent viscosity of dispersions of commercial (spray dried) and laboratory (lyophilized) isolates depends on the WIC, the morphology and size of the particles, and the interaction of the hydrated particles. The hydration properties and viscosity of protein isolate suspensions were strongly determined by the amount and properties of the insoluble fraction.  相似文献   

16.
不同种类大豆蛋白粉对面包加工特性的影响   总被引:8,自引:2,他引:6  
为探索大豆蛋白作为营养补充剂在面包中应用时,对面团物理特性和焙烤特性产生的影响,该文考察了不同种类的大豆蛋白制品,包括大豆分离蛋白、灭酶全脂粉、活性全脂粉、活性脱脂粉、灭酶脱脂粉对面团粉质特性、拉伸特性和焙烤特性的影响。结果表明,面粉的吸水率与大豆蛋白粉氮溶解指数显著相关,面团的抗拉阻力受大豆蛋白添加量的影响明显。大豆蛋白粉的加入,对面包比体积产生不利影响,下降趋势与大豆蛋白粉对面团拉伸特性的影响显著相关。大豆蛋白粉有软化面包质地的作用,活性全脂粉表现最为明显。大豆蛋白粉的加入量占面粉质量分数的3%时,对面包口感影响不明显,当加入量超过面粉质量分数的7%时,容易出现发粘和豆腥味等现象。  相似文献   

17.
微波对大豆蛋白氧化聚集体结构及功能特性的影响   总被引:2,自引:2,他引:0  
为了探究不同时间微波处理对大豆蛋白氧化聚集体的结构和功能性质的影响,由偶氮二异丁脒盐酸盐(2,2'-azobis (2-amidinopropane) dihydrochloride,AAPH)诱导构建大豆蛋白氧化反应体系,采用功率为350 W的微波对其照射不同时间(0、10、20、30、40、50、60、70 s),探究微波处理对氧化聚集大豆蛋白的结构特性和加工特性的影响。结果表明,氧化可诱导形成粒径、分子量更大,结构更致密的蛋白质聚集体,同时对加工特性造成损害。适当时间(<30 s)的微波处理会导致氧化聚集体的分子结构打开、粒径降低和浊度降低,无序结构减少,进而改善了起泡性、乳化性和持水、持油性。长处理时间(>30 s)的微波处理导致已解聚的大豆蛋白分子重新形成更大的分子聚集体,降低功能性质。这表明微波物理场可以通过改变大豆蛋白氧化聚集体的结构和聚集行为调节其功能性质,为大豆蛋白功能性质的改善及微波在大豆蛋白氧化聚集体行为调控的应用方面提供参考。  相似文献   

18.
Topoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system. The inhibitory activity of these peptides from soy isolates toward topoisomerase II was confirmed using three synthetic peptides, FEITPEKNPQ, IETWNPNNKP,and VFDGEL, which have IC 50 values of 2.4, 4.0, and 7.9 mM, respectively. The molecular interactions of these peptides evaluated by molecular docking revealed interaction energies with the topoisomerase II C-terminal domain (CTD) (-186 to -398 kcal/mol) that were smaller than for the ATPase domain (-169 to -357 kcal/mol) and that correlated well with our experimental IC 50 values ( R (2) = 0.99). In conclusion, three peptides released from in vitro gastrointestinal enzyme digestion of soy proteins inhibited human topoisomerase II activity through binding to the active site of the CTD domain.  相似文献   

19.
The beta-conglycinin and glycinin fractions of soy protein were isolated from Macon, Ohio FG1, Enrei, and IL2 genotypes that were grown under the same environmental conditions. The soy protein fractions were evaluated to determine whether chemical composition and gel-forming properties were related. Amino acid analyses suggested that the hydrophobic residues may be the primary cause of differences in soy protein gel characteristics as the storage moduli increased with higher percentages of hydrophobic residues. Reversed-phase high-performance liquid chromatography profiles revealed variations in the composition of each fraction that corresponded to differences observed among the storage moduli. The gel-forming properties may be related to more than just protein content, such as the amount and type of amino acid in the fraction.  相似文献   

20.
Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号