首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
纤维素降解菌LY16的筛选鉴定和产酶条件研究   总被引:3,自引:0,他引:3  
从腐烂朽木及附近的土壤采样,分离到25株具有纤维素分解能力的菌株,其中LY16菌株的纤维素酶活最高.采用形态学观察及分子生物学方法初步鉴定其为里氏木霉(Trichoderma reesei).通过碳氮源优化等试验进行产酶条件研究,得出该菌株最佳的产酶条件,培养基配方为(g/L):微晶纤维素10,麸皮40,蛋白胨4,尿素12,KH_2PO_42,MgSO_4·7H_2O 1,CaCl_2·2H_2O 1,FeSO_4 0.01,MnSO_4 0.004 5,CoCl_2 0.003 6,ZnSO_4 0.0035,培养温度30℃、装液量50mL,转速200 r/min,培养时间为72 h.优化后在该条件下,CMC酶活为202.6 U/mL,FPA酶活最大53.2 U/mL.  相似文献   

2.
一株木聚糖酶产生菌的筛选及其酶学特性的研究   总被引:1,自引:0,他引:1  
利用水解圈法和摇瓶发酵法进行初筛和复筛,从土壤中筛选出1株产木聚糖酶且酶活力较高的菌株TA8,并初步研究了其粗酶液的酶学特性。结果表明,TA8粗酶液的最适反应温度为50℃,pH值为7.0,反应时间为80min。  相似文献   

3.
蛋白酶产生菌的筛选及酶学性质研究   总被引:9,自引:0,他引:9  
从养牛厂附近的土壤中分离得到一株产蛋白酶性质优良的菌株,初步鉴定为芽孢杆菌,对其最适产酶条件进行了研究。试验表明,最适碳源为玉米粉,最适氮源为玉米浆,300mL摇瓶最适装液量为60mL,最适接种量为2%,起始pH值为4.5和6.5时有2个产酶高峰,并对其进行酶学性质的研究。该酶最适温度为65℃,最适pH值为7.5,该酶在50℃以下保温30min酶活仍较高,在70℃以上酶活全部丧失。在pH值7.0~9.0时比较稳定,而在pH值5.0以下时酶活下降很快。金属离子Pb2+,鳌合剂EDTA能抑制蛋白酶的活性,而Fe2+能激活蛋白酶活性。  相似文献   

4.
采用分光光度法测定莴笋多酚氧化酶(PPO)活性,考察底物特异性、pH值、温度、热稳定性、底物浓度、金属离子及抑制剂对PPO酶活特性的影响,研究莴笋PPO酶学特性。结果表明,莴笋PPO的最适底物为邻苯二酚,最适pH值5.0,最适温度25℃;90℃热处理60 s莴笋PPO酶活基本完全丧失;莴笋PPO最适底物浓度为0.10 mol/L,PPO酶促褐变反应动力学符合米氏方程,相应的动力学参数Km=0.667 mol/L,Vmax=826.4 OD/min;Mg2+、Ca2+、Mn2+、Zn2+对PPO酶活有一定的的抑制作用,Cu2+和Fe3+对PPO酶活有一定的促进作用;五种抑制剂对抑制莴笋PPO酶活力均具有一定的作用,且抑制作用随抑制剂浓度的增大而加强,试验范围内抑制作用由强到弱依次为:抗坏血酸L-半胱氨酸Na HSO3柠檬酸EDTA,抗坏血酸对莴笋PPO酶活的抑制效果最佳。  相似文献   

5.
低温淀粉酶产生菌的筛选及酶学性质研究   总被引:6,自引:0,他引:6  
从新疆高海拔地区采集土样中定向筛选得到1株低温淀粉酶产生菌株LA77,初步鉴定为解淀粉类芽孢杆菌(P.amylolyticus)。摇瓶发酵实验表明,该菌株最适产酶温度为35℃,最佳产酶pH值为6.0,生长高峰出现在第30h,产酶高峰出现在38h,低温淀粉酶的活力达到34.5U/mL,温度超过40℃时此酶极易失活。此菌株生长周期短,产生的淀粉酶在温度高于40℃极易失活,在化工和食品等行业有良好的应用前景。  相似文献   

6.
从云南松毛虫肠道中分离筛选得到28株产纤维素酶的菌株。经生理生化试验观察和16S rRNA序列比对分析,初步鉴定这些产酶菌株属于肠杆菌属、芽孢杆菌属、克雷伯氏杆菌属和约克氏菌属。同时筛选出一株产酶能力较高的菌株DK4,鉴定为蜡状芽孢杆菌,并构建系统发育树。对该菌株产酶特性进行了初步研究,其酶反应的最适温度是35℃,最适pH值7.0,连续发酵70 h左右时纤维素酶活达到最高值19.24 U/mL。  相似文献   

7.
多酚氧化酶(PPO)是酶促褐变的关键酶,与果蔬加工制品的色泽、抗氧化能力密切相关。以蜜梨果实为原料,邻苯二酚为底物,采用分光光度法研究蜜梨多酚氧化酶的酶学特性。结果表明:pH和温度对蜜梨PPO活性有明显的影响,其最适pH为4.5,最适温度为34℃。在加工过程中,可通过调节pH和温度来降低蜜梨PPO活性,减少褐变的发生:蜜梨PPO催化底物邻苯二酚的酶促反应动力学与米氏方程高度符合,R^2-0.9972,其动力学方程为专1/V=0.17371/[S]+0.4775,最大反应速率Vmax=2.09U·min^-1,米氏常数Km=0.36mol·L^-1;蜜梨PPO具有一定的热稳定性,随着温度的提高。完全抑制PPO活性所需要的时间逐渐减少。采用短时高温(90℃,1min)的热处理,不仅可有效降低蜜梨加工过程中的酶促褐变.而且可减少蜜梨汁营养成分的损失.较好地保持其固有色泽。  相似文献   

8.
通过纤维素刚果红选择培养基筛选出纤维素降解菌木霉菌S2,在液体发酵培养基中进行发酵培养,通过设置不同的初始pH值和培养温度,对降解酶活力的条件进行优化。试验表明,木霉菌S2在初始pH值为6的发酵培养基中和33℃培养温度条件下酶活力最高,对纤维素具有最优的降解效果。  相似文献   

9.
为了筛选获得产纤维素酶细菌,为新型饲料添加剂的开发提供材料基础。本研究以玉米田土壤为样品,使用刚果红平板法筛选产纤维素酶细菌并分析其所产酶的特性。通过试验,筛选获得产纤维素酶菌株,经形态学和分子生物学法将其鉴定为巨大芽孢杆菌(Bacillus megaterium)。对巨大芽孢杆菌XT2所产纤维素酶进行酶学特性分析,发现其最适反应条件为50℃,pH 6.0,具有一定的热稳定性,K+对纤维素酶具有激活作用,Mg2+、Ca2+和Mn2+对酶活具有抑制作用。该菌生长至20 h时,所产纤维素酶活力最高,达到0.774 U/mL。该产纤维素酶芽孢杆菌的成功分离获取为饲料新资源的开发以及新型饲料添加剂的研制提供了菌种材料。  相似文献   

10.
为了解析菠菜乙醇酸氧化酶(Sp GLO)的酶学特性及同工酶谱。首先提取菠菜的RNA并反转录成c DNA,通过NCBI数据库中提供的菠菜GLO基因mRNA序列信息,设计特异性引物,扩增目标序列并连接到p MD19-T载体上进行测序鉴定;随后再次设计引物并在上游引物加入His标签,克隆Sp GLO基因构建到p YES2载体上,将该载体转入酿酒酵母中进行表达并通过His-tag亲和柱纯化,然后在不同诱导时间点取样测定Sp GLO酶活。结果显示,转化后的酿酒酵母菌株在诱导发酵20 h后能得到最高的GLO活性。以乙醇酸为底物测定Sp GLO在不同p H、不同温度条件下的催化活性,其最适p H值为8. 0,最适温度为39℃。然后分别以乙醇酸、乙醛酸、甘油酸为反应底物,系统分析了Sp GLO的酶学特性,数据显示,Sp GLO对乙醇酸的亲和力最高,其Km为0. 41 mmol/L,Vm为45. 92μmol/(min·mg)。以乙醇酸、乙醛酸为底物,使用草酸抑制其催化活性,其Ki分别为4. 61,2. 09 mmol/L,表明以乙醛酸为底物时Sp GLO的催化活性更易被草酸抑制。同时将纯化后的Sp GLO通过Caps-氨水电泳体系进行同工酶电泳,经过染色后出现2条同工酶带,表明菠菜叶片中可能存在2种GLO同工酶。为将来深入研究植物GLO同工酶之间的生化特性差异并分析其不同生理功能奠定良好的基础。  相似文献   

11.
摘要:从杏鲍菇子实体中提取漆酶,用分光光度法测定漆酶活力。实验结果表明,杏鲍菇漆酶的最适pH为3.0;最适温度为45℃;热稳定性和贮存稳定性较高;Ca2+ 、Mn2+ 、Fe2+、Ag+对酶的活性有抑制作用,Na+、 k+、、Mg2+ 、Cu2+ 、Pb2+ 、Zn2+对酶的活性有促进作用。  相似文献   

12.
青霉菌、放线菌株和石灰水对尖饱镰刀菌抑制作用的研究   总被引:1,自引:1,他引:1  
王芳  李静  张欢 《中国农学通报》2013,29(12):185-189
本研究旨在开发对土壤病原菌尖孢镰刀具有拮抗作用的各种微生物,以期对其生防制剂的研制提供理论依据。利用PDA平板对峙法和制备发酵菌原液,以青霉菌、放线菌株和石灰水对尖饱镰刀菌孢子萌发、营养竞争、菌丝生长和重寄生作用进行了研究。结果表明:青霉菌、放线菌株和饱和石灰水对尖孢镰刀菌的菌丝生长有不同程度的抑制作用,拮抗距离分别达到27.35、25.70、16.83 mm,菌丝生长抑制率分别为78.36%、75.97%、47.84%,孢子萌发抑制率分别为71.97%、58.23%、21.49%。在青霉菌、放线菌株与尖饱镰刀菌的交接处没有发现明显的重寄生现象,青霉菌孢子大量繁殖,占据了大部分的生存空间。青霉菌对尖孢镰刀菌在营养竞争、抗生作用方面均有较明显的作用,具有较好的抑制作用,可作为拮抗菌进一步研究。  相似文献   

13.
以甘蔗渣提取的天然纤维素为原料,酶法制备微晶纤维素,考察了pH、加酶量、水解温度对微晶纤维素得率的影响。通过单因素和响应面试验确定优化工艺条件,并对制备的甘蔗渣微晶纤维素的理化性质进行分析。结果表明,酶法制备甘蔗渣微晶纤维的最佳工艺条件为:pH 4.5,加酶量0.4%,水解温度45℃,在该工艺条件下制得的微晶纤维素的得率为94.9%,其持水力和膨胀力分别为(7.48±0.28)g·g-1、(5.61±0.17)m L·g-1。与市场上标准的微晶纤维素相比,该产品粒度更小;但与化学方法制备的甘蔗渣微晶纤维素相比,两者粒度基本相近。  相似文献   

14.
产菊糖酶菌株的选育及特性研究   总被引:1,自引:0,他引:1  
从发霉的菊芋中分离得到菌种,用平板透明圈法筛选出2株产菊糖酶活力较高的菌株H10和Q12。经菌种形态学观察和鉴定,确定菌株H10为黑曲霉,Q12为青霉,并对其进行了发酵条件的研究。两菌株产酶的环境条件有一定差异,黑曲霉以基质含2%菊糖,初始pH值7.0,装量50mL(250mL的三角瓶中),温度28℃,转速240r/min为摇瓶发酵最适条件;青霉以基质含3%菊糖,初始pH值6.0,装量50mL(250mL的三角瓶中),温度30℃,转速240r/min为摇瓶发酵最适条件。黑曲霉和青霉产酶分别在120h和96h时达到高峰。  相似文献   

15.
采用离体抑菌试验研究观察H_2O_2-Ag~+复方消毒剂对柑橘青霉病菌(Penicillium italicum)和绿霉病菌(Penicillium digitatum)生长的直接抑制效果,并以年橘为试材,分别活体接种P.italicum和P.digitatum,研究H_2O_2-Ag~+复方消毒剂处理对青霉病和绿霉病的抑制作用,同时分析果实在贮藏过程中的品质变化。离体抑菌试验表明:培养基中添加H_2O_2-Ag~+显著抑制了P.italicum和P.digitatum的菌丝生长(P0.05),并表现出明显的浓度效应,浓度为1%H_2O_2-20 mg/L Ag~+的复方消毒剂对两种病菌的抑制率达100%;活体接种试验表明:3%H_2O_2-60 mg/L Ag~+浓度的复方消毒剂可显著抑制病原菌诱导的病斑扩展,降低果实发病率,而对果实的品质及果面色差值没有明显影响。本研究表明,H_2O_2-Ag~+复方消毒剂不仅对柑橘青、绿霉菌有直接的杀灭作用,还能有效控制果实的腐烂率,可作为一种新型、安全、环保的保鲜防腐剂,应用于柑橘果实采后病害的控制。  相似文献   

16.
本实验从黑木耳液体发酵液中提取漆酶,对其酶学性质进行研究,为该漆酶的应用提供有价值的理论数据。对漆酶发酵液进行硫酸铵分级沉淀和透析,制得粗酶液。采用分光光度法,以ABTS[2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]为底物测定漆酶活力。结果表明:黑木耳漆酶在55℃以下保温,漆酶活力和热稳定性良好。最适温度为45℃。温度超过65℃,出现明显的抑制作用。黑木耳漆酶最适pH为4.0,pH高于6.5,出现明显的抑制作用。金属离子对酶活表现出促进或抑制的作用。  相似文献   

17.
以糖化酶为研究对象,壳聚糖为固定化材料,采用戊二醛作为交联剂对糖化酶进行固定化,研究了戊二醛浓度、糖化酶浓度和固定化时间对固定化效果的影响,并对比了糖化酶固定化前后其酶学性质的变化。结果表明,当戊二醛浓度1%,酶添加浓度6.0 g·L-1,固定化时间12 h时,糖化酶的固定化效果最好,其催化可溶性淀粉的酶活性为7 125.3 U’;糖化酶经过0.04 g·mL-1壳聚糖固定化后其酶学性质如催化最适温度、pH和米氏常数Km都发生了改变,分别为温度75 ℃、pH 5.4和Km值8 mg·mL-1;固定化酶连续使用4次后,其酶活性仍保持有最初固定化时酶活性的49.82%,说明其具有一定的重复使用性。  相似文献   

18.
对能够降解有机磷农药的草酸青霉ZHJ6进行固定化研究,了解固定化后菌丝是否提高降解有机磷农药的能力和对高浓度农药的耐受能力。用包埋法和载体结合法固定化菌丝,并对固定化以后菌丝降解甲胺磷的影响因素进行试验。结果表明聚酯无纺布结合法固定化菌丝对甲胺磷的降解率要高于游离菌丝,在同样的温度、pH或者初始甲胺磷浓度条件下甲胺磷的降解率都得到了提高,最佳条件为pH为5.0,温度为25℃。而且固定化后对氧化乐果、草甘膦、辛硫磷以及用河水和土壤模拟的甲胺磷农药的降解能力都比游离菌丝的高。  相似文献   

19.
大米蛋白的双酶法水解条件研究   总被引:2,自引:0,他引:2  
为研究大米蛋白的酶法水解条件,提高大米蛋白的溶解、乳化和发泡性能。通过酶催化反应进程确定酶的加入方式;通过均匀设计实验和Mathematica数学软件确定酶的反应条件。结果表明碱性蛋白酶和复合蛋白酶的共同水解效果高于单一酶制剂;酶催化反应过程中,大米蛋白的溶解性、乳化性和发泡性等指标变化趋势不同,水解度与上述指标之间也没有对应关系。得出的结论是双酶法水解更适于改善大米蛋白的溶解性能;两种酶之间有一定的协同作用,适当控制反应条件可以分别得到溶解、乳化或发泡性能显著的大米蛋白水解物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号