首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo assess and compare the effect of intraoperative stepwise alveolar recruitment manoeuvres (ARMs), followed by individualized positive end-expiratory pressure (PEEP), defined as PEEP at maximal respiratory system compliance + 2 cmH2O (PEEPmaxCrs+2), with that of spontaneous ventilation (SV) and controlled mechanical ventilation (CMV) without ARM or PEEP on early postoperative arterial oxygenation in anaesthetized healthy dogs.Study designProspective, randomized, nonblinded clinical study.AnimalsA total of 32 healthy client-owned dogs undergoing surgery in dorsal recumbency.MethodsDogs were ventilated intraoperatively (inspired oxygen fraction: 0.5) with one of the following strategies: SV, CMV alone, and CMV with PEEPmaxCrs+2 following a single ARM (ARM1) or two ARMs (ARM2, the second ARM at the end of surgery). Arterial blood gas analyses were performed before starting the ventilatory strategy, at the end of surgery, and at 5, 10, 15, 30 and 60 minutes after extubation while breathing room air. Data were analysed using Kruskal-Wallis and Friedman tests (p < 0.050).ResultsAt any time point after extubation, PaO2 was not significantly different between groups. At 5 minutes after extubation, PaO2 was 95.1 (78.1–104.0), 93.8 (88.3–104.0), 96.9 (86.6–115.0) and 89.1 (87.6–102.0) mmHg in the SV, CMV, ARM1 and ARM2 groups, respectively. PaO2 decreased at 30 minutes after extubation in the CMV, ARM1 and ARM2 groups (p < 0.050), but it did not decrease after 30 minutes in the SV group. Moderate hypoxaemia (PaO2, 60–80 mmHg) was observed in one dog in the ARM1 group and two dogs each in the SV and ARM2 groups.Conclusions and clinical relevanceIntraoperative ARMs, followed by PEEPmaxCrs+2, did not improve early postoperative arterial oxygenation compared with SV or CMV alone in healthy anaesthetized dogs. Therefore, this ventilatory strategy might not be clinically advantageous for improving postoperative arterial oxygenation in healthy dogs undergoing surgery when positioned in dorsal recumbency.  相似文献   

2.
ObjectiveTo evaluate arterial oxygenation during the first 4 postoperative hours in dogs administered different fractions of inspired oxygen (FiO2) during general anesthesia with mechanical ventilation.Study designProspective, randomized clinical trial.AnimalsA total of 20 healthy female dogs, weighing >15 kg and body condition scores 3–7/9, admitted for ovariohysterectomy.MethodsDogs were randomized to breathe an FiO2 >0.9 or 0.4 during isoflurane anesthesia with intermittent positive pressure ventilation. The intraoperative PaO2:FiO2 ratio was recorded during closure of the linea alba. Arterial blood was obtained 5, 60 and 240 minutes after extubation for measurement of PaO2 and PaCO2 (FiO2 = 0.21). Demographic characteristics, duration of anesthesia, PaO2:FiO2 ratio and anesthetic agents were compared between groups with Wilcoxon tests. The postoperative PaO2, PaCO2, rectal temperature, a visual sedation score and events of hypoxemia (PaO2 < 80 mmHg) were compared between groups with mixed-effects models or generalized linear mixed models.ResultsGroups were indistinguishable by demographic characteristics, duration of anesthesia, anesthetic agents administered and intraoperative PaO2:FiO2 ratio (all p > 0.08). Postoperative PaO2, PaCO2, rectal temperature or sedation score were not different between groups (all p > 0.07). During the first 4 postoperative hours, hypoxemia occurred in three and seven dogs that breathed FiO2 >0.9 or 0.4 during anesthesia, respectively (p = 0.04).Conclusions and clinical relevanceThe results identified no advantage to decreasing FiO2 to 0.4 during anesthesia with mechanical ventilation with respect to postoperative oxygenation. Moreover, the incidence of hypoxemia in the first 4 hours after anesthesia was higher in these dogs than in dogs breathing FiO2 >0.9.  相似文献   

3.
4.
Objective – To assess the utility of nasotracheal tubes in postoperative oxygen supplementation in dogs following corrective surgery for brachycephalic syndrome. Design – Retrospective study 2003–2007. Setting – University teaching hospital. Animals – Thirty‐six client‐owned dogs that underwent corrective surgery for brachycephalic syndrome. Interventions – None. Measurements and Main Results – Medical records were reviewed for animals that underwent surgical interventions for brachycephalic syndrome including palatoplasty, ventriculectomy, and rhinoplasty. Data collected included signalment, presenting complaints, analgesic and surgical interventions, type of supplemental oxygen therapy, complications and mortality occurring during hospitalization. A nasotracheal tube (NTT) was placed in 20 dogs at the end of surgery; 16 dogs received other forms of oxygen supplementation (8) or no oxygen supplementation (8) during recovery. The total number of postoperative complications was similar in both groups (8/20 dogs with NTTs and 7/16 in those without NTTs). However, respiratory distress was observed in 5 dogs without NTTs but was not observed in any dog while an NTT was in place. One dog in each group died postoperatively. Conclusion – Placement of an NTT was found to be easy and may offer benefit in dogs with brachycephalic syndrome as a noninvasive means of delivering oxygen. The use of NTT may minimize severe postoperative morbidity, in particular by reducing postoperative respiratory distress.  相似文献   

5.
ObjectiveTo compare pain perception between gonadectomized and intact dogs.Study designBlinded, prospective, cohort study.AnimalsA group of 74 client-owned dogs.MethodsDogs were divided into four groups: group 1—female/neutered (F/N), group 2—female/intact (F/I), group 3—male/neutered (M/N) and group 4—male/intact (M/I). Premedication consisted of intramuscularly administered acepromazine (0.05 mg kg−1) and morphine (0.2 mg kg−1), and subcutaneously administered carprofen (4 mg kg−1). Anaesthesia was induced with propofol (1 mg kg−1 intravenously and supplementary doses to effect) and maintained with isoflurane in 100% oxygen. Intraoperative analgesia was achieved with fentanyl infusion (0.1 μg kg−1 minute−1). Pain assessments [using the University of Melbourne Pain Scale (UMPS) and an algometer at the incision site (IS), parallel to the incision site (NIS), and on the contralateral healthy limb] were performed preoperatively, and at 1, 2, 4, 6, 9 and 20 hours after extubation. The time-standardised area under the curve (AUCst) for measurements was calculated and compared by performing a one-way multivariate analysis of variance (manova). Statistical significance was set at p < 0.05.ResultsPostoperatively, F/N exhibited higher pain than F/I, with estimated marginal means (95% confidence intervals) AUCstISGroup1 909 (672–1146) versus AUCstISGroup2 1385 (1094–1675) (p = 0.014), AUCstNISGroup1 1122 (823–1420) versus AUCstNISGroup2 1668 (1302–2033) (p = 0.024) and AUCstUMPSGroup1 5.30 (4.58–6.02) versus AUCstUMPSGroup2 4.1 (3.2–5.0) (p = 0.041). Similarly, M/N showed higher pain than M/I with AUCstISGroup3 686 (384–987) versus AUCstISGroup4 1107 (871–1345) (p = 0.031) and AUCstNISGroup3 856 (476–1235) versus AUCstNISGroup4 1407 (1109–1706) (p = 0.026), and AUCstUMPSGroup3 6.0 (5.1–6.9) versus AUCstUMPSGroup4 4.4 (3.7–5.2) (p = 0.008).Conclusions and clinical relevance:Gonadectomy affects pain sensitivity in dogs undergoing stifle surgery. Neutering status should be taken into consideration when planning individualized anaesthetic/analgesic protocols.  相似文献   

6.
OBJECTIVE: To evaluate the effect of positive end-expiratory pressure (PEEP) on oxygen delivery (DO(2)) with 1-lung ventilation during thoracoscopy in normal anesthetized dogs. STUDY DESIGN: Prospective, controlled experimental study. ANIMALS: Eight, adult, intact Walker Hound dogs weighing 25.6-29.2 kg. METHODS: Anesthetized dogs had 1-lung ventilation during an open-chest condition. A Swan-Ganz catheter was used to measure pulmonary hemodynamic variables and to obtain mixed venous blood samples for blood gas analysis. A dorsal pedal catheter was used for measurement of systemic arterial pressure and to obtain arterial blood samples for blood gas analysis. Oxygen delivery was calculated and used to assess the effect of 0, 2.5, and 5 cm H(2)O PEEP during 1-lung ventilation on cardiopulmonary function. Each dog was its own control at 0 cm H(2)O PEEP. A randomized block ANOVA for repeated measures was used to evaluate the effect of the treatment on hemodynamic and pulmonary variables. RESULTS: Use of 5 cm H(2)O PEEP induced a significant augmentation in the arterial partial pressure of oxygen (PaO(2)). Shunt fraction (Q(s)/Q(t)), physiologic dead space (V(D)/V(T)), and the alveolar-arterial oxygen difference (P(A-a)O(2)) decreased significantly after 5 cm H(2)O PEEP, compared with 1-lung ventilation without PEEP. Use of 2.5 cm H(2)O PEEP had no significant effect on cardiopulmonary variables. Use of PEEP had no significant effect on arterial oxygen saturation (SaO(2)), DO(2), and hemodynamic variables in normal dogs. CONCLUSIONS: PEEP had no effect on DO(2) in normal dogs undergoing open-chest 1-lung ventilation because it had no adverse effect on hemodynamic variables. CLINICAL RELEVANCE: PEEP in normal dogs during open-chest 1-lung ventilation for thoracoscopy is not detrimental to cardiac output and can be recommended in clinical patients.  相似文献   

7.

Objective

To examine the intrapulmonary gas distribution of low and high tidal volumes (VT) and to investigate whether this is altered by an alveolar recruitment maneuver (ARM) and 5 cmH2O positive end-expiratory pressure (PEEP) during anesthesia.

Study design

Prospective randomized clinical study.

Animals

Fourteen client-owned bitches weighing 26 ± 7 kg undergoing elective ovariohysterectomy.

Methods

Isoflurane-anesthetized dogs in dorsal recumbency were ventilated with 0 cmH2O PEEP and pressure-controlled ventilation by adjusting the peak inspiratory pressure (PIP) to achieve a low (7 mL kg?1; n = 7) or a high (12 mL kg?1; n = 7) VT. Ninety minutes after induction (T90), an ARM (PIP 20 cmH2O for 10 seconds, twice with a 10 second interval) was performed followed by the application of 5 cmH2O PEEP for 35 minutes (RM35). The vertical (ventral=0%; dorsal=100%) and horizontal (right=0%; left=100%) center of ventilation (CoV), four regions of interest (ROI) (ventral, central-ventral, central-dorsal, dorsal) identified in electrical impedance tomography images, and cardiopulmonary data were analyzed using two-way repeated measures anova.

Results

The low VT was centered in more ventral (nondependent) areas compared with high VT at T90 (CoV: 38.8 ± 2.5% versus 44.6 ± 7.2%; p = 0.0325). The ARM and PEEP shifted the CoV towards dorsal (dependent) areas only during high VT (50.5 ± 7.9% versus 41.1 ± 2.8% during low VT, p = 0.0108), which was more distributed to the central-dorsal ROI compared with low VT (p = 0.0046). The horizontal CoV was centrally distributed and cardiovascular variables remained unchanged throughout regardless of the VT, ARM, and PEEP.

Conclusions and clinical relevance

Both low and high VT were poorly distributed to dorsal dependent regions, where ventilation was improved following the current ARM and PEEP only during high VT. Studies on the role of high VT on pulmonary complications are required.  相似文献   

8.

Objective

To evaluate the effects of an alveolar recruitment maneuver (ARM) followed by 5 cmH2O positive end-expiratory pressure (PEEP) in dogs undergoing laparoscopy.

Study design

Prospective, randomized clinical study.

Animals

A group of 20 dogs undergoing laparoscopic ovariectomy.

Methods

Dogs were sedated with acepromazine and methadone intramuscularly; anesthesia was induced with propofol intravenously and maintained with inhaled isoflurane. The following baseline ventilatory setting (BVS) was administered: tidal volume of 12 mL kg–1, inspiratory to expiratory ratio of 1:2, inspiratory pause 25% of inspiratory time, no PEEP and a respiratory rate to maintain end-tidal carbon dioxide tension between 5.3 and 7.3 kPa. Then, 10 minutes after the pneumoperitoneum, 10 dogs (RM) underwent a sustained inflation ARM followed by BVS plus 5 cmH2O PEEP, while 10 dogs (NO-RM) were left with BVS throughout the procedure. Gas exchange and respiratory system mechanics were evaluated before the pneumoperitoneum (PPpre), before ARM (PP10), 30 minutes later (PP30) and 20 minutes after pneumoperitoneum discontinuation (PPpost20). Data were analyzed using anova (p < 0.05).

Results

The Fshunt at PP30 and PPpost20 was lower (p < 0.001) in the RM (2.3 ± 2.2 and 4.7 ± 3.7%) than in the NO-RM (5.2 ± 2.1 and 11.1 ± 5.2%), and PaO2 at PP30 and PPpost20 was higher (p < 0.001) in the RM (67.3 ± 4.2 and 60.1 ± 9.4 kPa) than in the NO-RM (50.2 ± 7.4 and 45.5 ± 11.1 kPa). Static compliance of the respiratory system at PP30 and PPpost20 was greater (p < 0.001) in the RM (2.4 ± 0.2 and 2.1 ± 0.4 mL cmH2O?1 kg–1) than in the NO-RM (0.9 ± 0.4 and 1.2 ± 0.2 mL cmH2O?1 kg–1).

Conclusions and clinical relevance

In dogs undergoing laparoscopy, ARM followed by 5 cmH2O PEEP improves gas exchange and respiratory system mechanics.  相似文献   

9.
The influence of 2 different levels of the inspired oxygen fraction (FiO2) on blood gas variables was evaluated in dogs with high intracranial pressure (ICP) during propofol anesthesia (induction followed by a continuous rate infusion [CRI] of 0.6 mg/kg/min) and intermittent positive pressure ventilation (IPPV). Eight adult mongrel dogs were anesthetized on 2 occasions, 21 d apart, and received oxygen at an FiO2 of 1.0 (G100) or 0.6 (G60) in a randomized crossover fashion. A fiberoptic catheter was implanted on the surface of the right cerebral cortex for assessment of the ICP. An increase in the ICP was induced by temporary ligation of the jugular vein 50 min after induction of anesthesia and immediately after baseline measurement of the ICP. Blood gas measurements were taken 20 min later and then at 15-min intervals for 1 h. Numerical data were submitted to Morrison’s multivariate statistical methods. The ICP, the cerebral perfusion pressure and the mean arterial pressure did not differ significantly between FiO2 levels or measurement times after jugular ligation. The only blood gas values that differed significantly (P < 0.05) were the arterial oxygen partial pressure, which was greater with G100 than with G60 throughout the procedure, and the venous haemoglobin saturation, that was greater with G100 than with G60 at M0. There were no significant differences between FiO2 levels or measurement times in the following blood gas variables: arterial carbon dioxide partial pressure, arterial hemoglobin saturation, base deficit, bicarbonate concentration, pH, venous oxygen partial pressure, venous carbon dioxide partial pressure and the arterial-to-end-tidal carbon dioxide difference.  相似文献   

10.

Objective

To compare static compliance (Cst) and alveolar–arterial oxygen tension difference [P(a–a)O2] between positive end-expiratory pressures (PEEP) of 7, 12 and 17 cmH2O applied after an alveolar recruitment maneuver (RM) in isoflurane-anesthetized horses.

Study design

Prospective, randomized, clinical study.

Animals

A group of 30 healthy adult horses undergoing arthroscopic surgery.

Methods

Animals in dorsal recumbency and mechanically ventilated with a tidal volume of 14 mL kg?1 and 7 cmH2O PEEP (control; n = 6) were subjected to an RM by increasing PEEP from 7 to 22 cmH2O in 5 cmH2O increments at 5 minute intervals, and then decreased similarly to PEEP of 17 (RM17; n = 8), 12 (RM12; n = 8) or 7 cmH2O (RM7; n = 8). Cst and P(a–a)O2 were assessed prior to (baseline) and after the RM at 5, 10, 15, 20, 40, 60 and 80 minutes after achieving each target PEEP, and during recovery from anesthesia.

Results

Post-RM improvements on P(a–a)O2 were maintained (baseline versus 80 minutes) in RM12 [216 ± 77 mmHg (28.8 ± 10.3 kPa) versus 194 ± 39 mmHg (25.9 ± 5.2 kPa)] and RM17 [180 ± 86 mmHg (24.0 ± 11.6 kPa) versus 136 ± 75 mmHg [18.2 ± 10.0 kPa]). The improvements on Cst were maintained only in RM12 (0.80 ± 0.13 versus 0.98 ± 0.13 mL cmH2O?1 kg?1). No such improvements were observed in RM7 and control. No significant differences were observed between groups during recovery from anesthesia.

Conclusions

and clinical relevance The 12 and 17 cmH2O PEEP can be used to maintain the improvements on P(a–a)O2 obtained after an RM. Only 12 cmH2O PEEP maintained the post-RM increase on Cst. Such variables were not influenced by the 7 cmH2O PEEP.  相似文献   

11.
12.
ObjectivesTo compare pulmonary gas exchange, tissue oxygenation and cardiovascular effects of four levels of end-expiratory pressure: no positive end-expiratory pressure (ZEEP), positive end-expiratory pressure (PEEP) of maximal respiratory system compliance (PEEPmaxCrs), PEEPmaxCrs + 2 cmH2O (PEEPmaxCrs+2), PEEPmaxCrs + 4 cmH2O (PEEPmaxCrs+4), in isoflurane-anesthetized dogs.Study designProspective randomized crossover study.AnimalsA total of seven healthy male Beagle dogs, aged 1 year and weighing 10.2 ± 0.7 kg (mean ± standard deviation).MethodsThe dogs were administered acepromazine and anesthesia was induced with propofol and maintained with isoflurane. Ventilation was controlled for 4 hours with ZEEP, PEEPmaxCrs, PEEPmaxCrs+2 or PEEPmaxCrs+4. Cardiovascular, pulmonary gas exchange and tissue oxygenation data were evaluated at 5, 60, 120, 180 and 240 minutes of ventilation and compared using a mixed-model anova followed by Bonferroni test. p < 0.05 was considered significant.ResultsCardiac index (CI) and mean arterial pressure (MAP) were lower in all PEEP treatments at 5 minutes when compared with ZEEP. CI persisted lower throughout the 4 hours only in PEEPmaxCrs+4 with the lowest CI at 5 minutes (2.15 ± 0.70 versus 3.45 ± 0.94 L minute–1 m–2). At 180 and 240 minutes, MAP was lower in PEEPmaxCrs+4 than in PEEPmaxCrs, with the lowest value at 180 minutes (58 ± 7 versus 67 ± 7 mmHg). Oxygen delivery index (DO2I) was lower in PEEPmaxCrs+4 than in ZEEP at 5, 60, 120 and 180 minutes. Venous admixture was not different among treatments.Conclusion and clinical relevanceThe use of PEEP caused a transient decrease in MAP and CI in lung-healthy dogs anesthetized with isoflurane, which improved after 60 minutes of ventilation in all levels of PEEP except PEEPmaxCrs+4. A clinically significant improvement in arterial oxygenation and DO2I was not observed with PEEPmaxCrs and PEEPmaxCrs+2 in comparison with ZEEP, whereas PEEPmaxCrs+4 decreased DO2I.  相似文献   

13.
Objective To study the course of intraocular pressure (IOP) after cataract surgery in 50 dogs. Design Prospective study. Animals Fifty dogs without preoperative ocular hypertension were selected for cataract surgery. Methods All dogs underwent cataract surgery: 25 by manual extracapsular extraction and 25 by phacoemulsification. For each dog, intraocular pressure was measured before surgery, and 1, 3, 5, 18 h, 1 week and 1 month post surgery. Results No significant difference of mean intraocular pressure between the two surgical methods was observed for each time measurement. Nine dogs had postoperative hypertension (IOP > 25 mmHg) during the first 5 hours post surgery. Incidence of postoperative hypertension was not significantly different with manual extracapsular extraction (16%) vs. phacoemulsification (20%). A decrease of mean IOP was observed 1 h after surgery (8.49 mmHg vs. 10.91 mmHg), then an increase 3 and 5 h post surgery (12.3 and 13.32 mmHg, respectively). At 18 h, 1 week and 1 month post surgery, mean IOP decreased. Mean IOP was 10.38, 10.38 and 8.84 mmHg, respectively. Conclusion In this study incidence of POH is not high. However, a follow‐up of IOP in the first hours after cataract surgery is required to avoid complications of the retina and optic nerve and to administer hypotensive treatment if necessary.  相似文献   

14.
Nineteen dogs were assigned randomly to one of three groups. Animals in Group 1 were pre-medicated with acepromazine, 50 μg/kg bodyweight (bwt) intramuscularly (im) and received 10 ml of 0.9 per cent saline intravenously (iv) at the time of skin incision. Dogs in Group 2 were pre-medicated with acepromazine, 50 μg/kg bwt im, and received fentanyl 2 μg/kg bwt iv at skin incision. Dogs in Group 3 were pre-medicated with acepromazine, 50 μg/kg bwt and atropine, 30 to 40 μg/kg bwt, im and received fentanyl, 2 μg/kg bwt iv at skin incision. Pulse rate, mean arterial blood pressure, respiratory rate and end tidal carbon dioxide were measured before and after fentanyl or saline injection. Fentanyl caused a short-lived fall in arterial blood pressure that was significant in dogs premedicated with acepromazine, but not in dogs pre-medicated with acepromazine and atropine. A significant bradycardia was evident for 5 mins in both fentanyl treated groups. The effect on respiratory rate was most pronounced in Group 3, in which four of seven dogs required intermittent positive pressure ventilation (IPPV) for up to 14 mins. Two of six dogs in Group 2 required IPPV, whereas respiratory rate remained unaltered in the saline controls. The quality of anaesthesia was excellent in the fentanyl treated groups; however, caution is urged with the use of even low doses of fentanyl in spontaneously breathing dogs under halothane-nitrous oxide anaesthesia.  相似文献   

15.
ObjectiveTo determine if a 15° reverse Trendelenburg position decreases the incidence of gastroesophageal reflux (GER) compared with a horizontal position in dogs anesthetized for stifle surgery.Study designProspective, randomized parallel-arm study.AnimalsA total of 44 healthy client-owned dogs were enrolled and data from 36 dogs were analyzed.MethodsDogs requiring preoperative radiographs under anesthesia, or with a history of gastrointestinal signs or administered gastroprotectant therapy within 1 month of surgery were excluded. Anesthesia protocol was standardized to include hydromorphone, dexmedetomidine, ketamine, propofol and isoflurane. Dogs were randomly assigned at enrollment to be positioned in a 15° reverse Trendelenburg or a horizontal position for surgery. Continuous pH monitoring was documented throughout the procedure with a 6.4 Fr (2.13 mm) esophageal pH probe positioned in the distal esophagus via the oral cavity. GER was defined as pH < 4.0 (acidic) or > 7.5 (alkaline) for more than 30 seconds. The proportions of dogs developing GER were compared between groups using Fisher’s exact test. Time to reflux was compared using survival curves and the Gehan–Breslow–Wilcoxon test. Statistical significance was set as p < 0.05.ResultsAn episode of GER occurred in 11/36 (30%) dogs. Reflux was alkaline in two dogs and acidic in nine dogs. The proportion of dogs with GER was 5/18 (28%) and 6/18 (33%) for dogs in the reverse Trendelenburg position and horizontal position, respectively, and was not statistically significant (p > 0.99). Median (range) time until reflux was 44 (23–135) and 44.5 (9–56) minutes when dogs were positioned in reverse Trendelenburg position and horizontal position, respectively (p = 0.66; two-tailed Mann–Whitney U test).Conclusions and clinical relevancePositioning the surgery table in a 15° rostral elevation for dogs anesthetized for elective stifle surgical procedures did not decrease the incidence of GER.  相似文献   

16.
17.
Objective To compare, ventilation using intermittent positive pressure ventilation (IPPV) with constant positive end‐expiratory pressure (PEEP) and alveolar recruitment manoeuvres (RM) to classical IPPV without PEEP on gas exchange during anaesthesia and early recovery. Study design Prospective randomized study. Animals Twenty‐four warm‐blood horses, weight mean 548 ± SD 49 kg undergoing surgery for colic. Methods Premedication, induction and maintenance (isoflurane in oxygen) were identical in all horses. Group C (n = 12) was ventilated using conventional IPPV, inspiratory pressure (PIP) 35–45 cmH2O; group RM (n = 12) using similar IPPV with constant PEEP (10 cmH2O) and intermittent RMs (three consecutive breaths PIP 60, 80 then 60 cmH2O, held for 10–12 seconds). RMs were applied as required to maintain arterial oxygen tension (PaO2) at >400 mmHg (53.3 kPa). Physiological parameters were recorded intraoperatively. Arterial blood gases were measured intra‐ and postoperatively. Recovery times and quality of recovery were measured or scored. Results Statistically significant findings were that horses in group RM had an overall higher PaO2 (432 ± 101 mmHg) than those in group C (187 ± 112 mmHg) at all time points including during the early recovery period. Recovery time to standing position was significantly shorter in group RM (49.6 ± 20.7 minutes) than group C (70.7 ± 24.9). Other measured parameters did not differ significantly. The median (range) of number of RMs required to maintain PaO2 above 400 mmHg per anaesthetic was 3 (1–8). Conclusion Ventilation using IPPV with constant PEEP and RM improved arterial oxygenation lasting into the early recovery period in conjunction with faster recovery of similar quality. However this ventilation mode was not able to open up the lung completely and to keep it open without repeated recruitment. Clinical relevance This mode of ventilation may provide a clinically practicable method of improving oxygenation in anaesthetized horses.  相似文献   

18.
Objective – To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO2, PaCO2), and the efficiency of pulmonary oxygen uptake as estimated by alveolar‐arterial oxygen difference (A‐a difference). Design – Prospective, randomized, crossover study. Setting – University teaching hospital, intensive care unit. Animals – Twenty‐one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Interventions – Patients were placed randomly into lateral or sternal recumbency. PaO2 and PaCO2 were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Measurements and Main Results – Results presented as median (interquartile range). PaO2 was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0–96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9–90.9 mm Hg). The median change was 5.4 mm Hg (1.1–17.9 mm Hg). All 7 dogs with a PaO2<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8–29.7 mm Hg. PaCO2 levels when patients were in sternal recumbency, 30.5 mm Hg (27.3–32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3–36.0 mm Hg) (P=0.07). The median change was ?1.9 mm Hg (?3.6–0.77 mm Hg). A‐a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3–27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4–36.3 mm Hg). The median change was ?3.1 mm Hg (?14.6–0.9 mm Hg). Conclusions – PaO2 was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A‐a difference) rather than increased alveolar ventilation (decreased PaCO2). Patients with hypoxemia (defined as PaO2<80 mm Hg) in lateral recumbency may benefit from being placed in sternal recumbency. Sternal recumbency is recommended to improve oxygenation in hypoxemic patients.  相似文献   

19.
Objective To compare the efficacy of epidural buprenorphine with epidural morphine for post‐operative pain relief in dogs undergoing cranial cruciate ligament rupture repair. Study design A randomized, double blind clinical trial. Animals Twenty client‐owned dogs with cranial cruciate ligament rupture. Methods Dogs were randomly assigned to receive either epidural buprenorphine (4 µg kg?1) or epidural morphine (0.1 mg kg?1) in a total volume of 0.2 mL kg?1. Epidural injections were performed immediately after induction of anesthesia. End‐tidal halothane and CO2 were recorded every 15 minutes from the time of epidural administration of drug to extubation. A numerical rating pain score system was used by a blinded observer to evaluate analgesia beginning at extubation and continuing at specific intervals for 24 hours after surgery. Heart rate, respiratory rate, and blood pressure were recorded noninvasively at the same times. If pain score indicated moderate discomfort, rescue morphine at 1.0 mg kg?1 was administered intramuscularly. Results There were no significant differences between groups with respect to pain score, heart rate, respiratory rate, indirect blood pressure, end‐tidal halothane or end‐tidal CO2 at any time point. Fifty percent of dogs in the buprenorphine group and 50% of dogs in the morphine group required rescue analgesic medication. Time of systemic rescue morphine administration did not differ significantly between the two groups. There were no clinically observable side‐effects from epidural administration of either drug in any of the dogs of this study. Conclusions Epidural buprenorphine is as effective as epidural morphine for the relief of postoperative hindlimb orthopedic pain in dogs. Clinical relevance Buprenorphine appears to be an effective opioid for epidural use in healthy dogs. Buprenorphine may offer certain advantages over morphine for epidural use, such as lower abuse potential and, in some clinics, reduced cost and less wastage of drug.  相似文献   

20.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号