首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo compare dexmedetomidine with acepromazine for premedication combined with methadone in dogs undergoing brachycephalic obstructive airway syndrome (BOAS) surgery.Study designRandomized, blinded clinical study.AnimalsA group of 40 dogs weighing mean (± standard deviation) 10.5 ± 6 kg, aged 2.6 ± 1.9 years.MethodsDogs received either acepromazine 20 μg kg–1 (group A) or dexmedetomidine 2 μg kg–1 (group D) intramuscularly with methadone 0.3 mg kg–1. Anaesthesia was induced with propofol and maintained with sevoflurane. Sedation (0–18), induction (0–6) and recovery (0–5) qualities were scored. Propofol dose, hypotension incidence, mechanical ventilation requirement, extubation time, additional sedation, oxygen supplementation, regurgitation and emergency intubation following premedication or during recovery were recorded. Data were analysed using t tests, Mann-Whitney U or Chi-square tests.ResultsGroup A dogs were less sedated [median (range): 1.5 (0–12)] than group D [5 (1–18)] (p = 0.021) and required more propofol [3.5 (1–7) versus 2.4 (1–8) mg kg–1; p = 0.018]. Induction scores [group A: 5 (4–5); group D 5 (3–5)] (p = 0.989), recovery scores [group A 5 (4–5); group D 5(3–5)](p = 0.738) and anaesthesia duration [group A:93 (50–170); group D 96 (54–263) minutes] (p = 0.758) were similar between groups. Time to extubation was longer in group A 12.5 (3-35) versus group D 5.5 (0–15) minutes; (p = 0.005). During recovery, two dogs required emergency intubation (p > 0.99) and five dogs required additional sedation (p > 0.99). Oxygen supplementation was required in 16 and 12 dogs in group A and D, respectively (p = 0.167); no dogs in group A and one dog in group D regurgitated (p = 0.311).Conclusions and clinical relevanceDexmedetomidine 2 μg kg–1 produces more sedation but similar recovery quality to acepromazine 20 μg kg–1 combined with methadone in dogs undergoing BOAS surgery.  相似文献   

2.
ObjectiveTo evaluate the effects of dexmedetomidine administered perineurally or intramuscularly (IM) on sensory, motor function and postoperative analgesia produced by lidocaine for sciatic and femoral nerve blocks in dogs undergoing unilateral tibial tuberosity advancement surgery.Study designProspective, blinded, clinical study.AnimalsA group of 30 dogs.MethodsDogs were anaesthetized with acepromazine, propofol and isoflurane in oxygen/air. Electrolocation-guided femoral and sciatic nerve blocks were performed: group L, 0.15 mL kg–1 2% lidocaine (n = 10); group LDloc, lidocaine and 0.15 μg kg–1 dexmedetomidine perineurally (n = 10); group LDsys, lidocaine and 0.3 μg kg–1 dexmedetomidine IM (n = 10). After anaesthesia, sensory blockade was evaluated by response to forceps pinch on skin innervated by the saphenous/femoral, common fibular and tibial nerves. Motor blockade was evaluated by observing the ability to walk and proprioception. Analgesia was monitored with Short Form of Glasgow Composite Pain Scale for up to 4 hours after extubation. Methadone IM was administered as rescue analgesia. Data were analysed by linear mixed effect models and Kaplan-Meier test (p < 0.05).ResultsMedian duration of the sensory blockade for all nerves was longer (p < 0.001) for group LDloc than for groups L and LDsys and was longer (p = 0.0011) for group LDsys than for group L. Proprioception returned later (p < 0.001) for group LDloc [285 (221–328) minutes] compared with group L [160 (134–179) minutes] or LDsys [195 (162–257) minutes]. Return of the ability to walk was similar among all groups. Dogs in group LDloc required postoperative rescue analgesia later (p = 0.001) than dogs in groups LDsys and L.Conclusions and clinical relevanceDexmedetomidine administered perineurally with lidocaine prolonged sensory blockade and analgesia during the immediate postoperative period. Systemic dexmedetomidine also prolonged the sensory blockade of perineural lidocaine.  相似文献   

3.
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

4.
ObjectiveTo measure the effects on microcirculation of medetomidine alone (MED) or combined with vatinoxan (MVX).Study designRandomized, crossover, blinded, experimental study.AnimalsA group of eight healthy purpose-bred Beagle dogs.MethodsEach dog was given 1 mg m–2 MED intramuscularly (IM) or combined with 20 mg m–2 vatinoxan IM (MVX) with a washout period of 7 days. A sidestream dark field (SDF) camera was placed on the buccal mucosa to assess the oral mucosal microcirculation for perfused DeBacker density, proportion of perfused vessels (PPV) (both for all vessels and vessels with a diameter < 20 μm), microvascular flow index (MFI) and heterogeneity index (HI). Videos were recorded at baseline (–5) and 10, 20, 30, 40, 60, 90 and 120 minutes after treatment administration. Linear mixed-effects models were used to assess if microvascular variables were significantly associated with treatment, baseline, and sequence. Results are presented as estimated effect (95% confidence interval), and a p value < 0.05 was considered significant.ResultsThe interquartile range for baseline measurements was 91.49%-98.42% for PPV, 2.75-3 for MFI and 0-0.36 for HI. Significant effects of treatment and baseline were found. The estimated effect of MED against MVX was –1.98% (–3.53% to –0.42%) for PPV, –0.33 (–0.43 to –0.22) for MFI and 0.14 (0.05 to 0.22) for HI. There were no significant changes seen for perfused DeBacker density, perfused DeBacker density < 20 μm and PPV < 20 μm between treatments.Conclusions and clinical relevanceThese results suggest that MVX had significantly fewer effects on buccal mucosal microcirculation than MED. The SDF camera is a useful research tool to assess the microcirculatory status of heavily sedated dogs.  相似文献   

5.
ObjectiveTo evaluate the effects of combined infusions of vatinoxan and dexmedetomidine on inhalant anesthetic requirement and cardiopulmonary function in dogs.Study designProspective experimental study.MethodsA total of six Beagle dogs were anesthetized to determine sevoflurane minimum alveolar concentration (MAC) prior to and after an intravenous (IV) dose (loading, then continuous infusion) of dexmedetomidine (4.5 μg kg–1 hour–1) and after two IV doses of vatinoxan in sequence (90 and 180 μg kg–1 hour–1). Blood was collected for plasma dexmedetomidine and vatinoxan concentrations. During a separate anesthesia, cardiac output (CO) was measured under equivalent MAC conditions of sevoflurane and dexmedetomidine, and then with each added dose of vatinoxan. For each treatment, cardiovascular variables were measured with spontaneous and controlled ventilation. Repeated measures analyses were performed for each response variable; for all analyses, p < 0.05 was considered significant.ResultsDexmedetomidine reduced sevoflurane MAC by 67% (0.64 ± 0.1%), mean ± standard deviation in dogs. The addition of vatinoxan attenuated this to 57% (0.81 ± 0.1%) and 43% (1.1 ± 0.1%) with low and high doses, respectively, and caused a reduction in plasma dexmedetomidine concentrations. Heart rate and CO decreased while systemic vascular resistance increased with dexmedetomidine regardless of ventilation mode. The co-administration of vatinoxan dose-dependently modified these effects such that cardiovascular variables approached baseline.Conclusions and clinical relevanceIV infusions of 90 and 180 μg kg–1 hour–1 of vatinoxan combined with 4.5 μg kg–1 hour–1 dexmedetomidine provide a meaningful reduction in sevoflurane requirement in dogs. Although sevoflurane MAC-sparing properties of dexmedetomidine in dogs are attenuated by vatinoxan, the cardiovascular function is improved. Doses of vatinoxan >180 μg kg–1 hour–1 might improve cardiovascular function further in combination with this dose of dexmedetomidine, but beneficial effects on anesthesia plane and recovery quality may be lost.  相似文献   

6.
ObjectiveTo compare a propofol continuous rate infusion (CRI) with a target-controlled infusion (TCI) in dogs.Study designRandomized prospective double-blinded clinical study.AnimalsA total of 38 healthy client-owned dogs.MethodsDogs premedicated intramuscularly with acepromazine (0.03 mg kg–1) and an opioid (pethidine 3 mg kg–1, morphine 0.2 mg kg–1 or methadone 0.2 mg kg–1) were allocated to P-CRI group (propofol 4 mg kg–1 intravenously followed by CRI at 0.2 mg kg–1 minute–1), or P-TCI group [propofol predicted plasma concentration (Cp) of 3.5 μg mL–1 for induction and maintenance of anaesthesia via TCI]. Plane of anaesthesia, heart rate, respiratory rate, invasive blood pressure, oxygen haemoglobin saturation, end-tidal carbon dioxide and body temperature were monitored by an anaesthetist blinded to the group. Numerical data were analysed by unpaired t test or Mann–Whitney U test, one-way analysis of variance and Dunnett’s post hoc test. Categorical data were analysed with Fisher’s exact test. Significance was set for p < 0.005.ResultsOverall, propofol induced a significant incidence of relative hypotension (mean arterial pressure 20% below baseline, 45%), apnoea (71%) and haemoglobin desaturation (65%) at induction of anaesthesia, with a higher incidence of hypotension and apnoea in the P-CRI than P-TCI group (68% versus 21%, p = 0.008; 84% versus 58%, p = 0.0151, respectively). Propofol Cp was significantly higher at intubation in the P-CRI than P-TCI group (4.83 versus 3.5 μg mL–1, p < 0.0001), but decreased during infusion, while Cp remained steady in the P-TCI group. Total propofol administered was similar between groups.Conclusions and clinical relevanceBoth techniques provided a smooth induction of anaesthesia but caused a high incidence of side effects. Titration of anaesthesia with TCI caused fewer fluctuations in Cp and lower risk of hypotension compared with CRI.  相似文献   

7.
ObjectiveTo investigate motor and cardiovascular responses to dexmedetomidine or fentanyl in isoflurane-anaesthetized pigs.Study designExperimental, balanced, block randomized, two-group design.AnimalsA group of 16 crossbred pigs, 55 ± 8 days (mean ± standard deviation) old.MethodsDeltoid electromyography (EMG) was recorded during isoflurane anaesthesia. Electrical stimulation using 5, 10, 20 and 40 mA of the distal right thoracic limb elicited a nociceptive withdrawal reflex (NWR), quantified by the area under the curve (AUC) for the simulation intensity versus EMG amplitude response curve. Latency to movement evoked by clamping a claw for maximum 60 seconds was noted. Arterial blood pressure and pulse rate were recorded. Data were sampled at baseline and during dexmedetomidine 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0 μg kg–1 hour–1 or fentanyl 5, 10, 20, 40, 80 and 160 μg kg–1 hour–1 infusions. The influence of infusion rate on NWR AUC and spontaneous EMG was analysed using a mixed model, with p < 5%.ResultsNWR AUC increased at fentanyl 5 μg kg–1 hour–1 but decreased at fentanyl 40, 80 and 160 μg kg–1 hour–1 and dexmedetomidine 4.0 and 8.0 μg kg–1 hour–1. All pigs at fentanyl 80 μg kg–1 hour–1, and three pigs at dexmedetomidine 8.0 μg kg–1 hour–1 had mechanical latencies greater than 60 seconds. Spontaneous EMG activity increased accompanied by visually evident ‘shivering’ at fentanyl 5, 10 and 20 μg kg–1 hour–1 but decreased at dexmedetomidine 2, 4 and 8 μg kg–1 hour–1. Clinically relevant effects of increasing infusion rates on blood pressure or pulse rate were not observed.Conclusion and clinical relevanceIf anaesthetic plane or antinociception is evaluated in pigs, response to claw clamping and NWR will not necessarily give uniform results when comparing drugs. If only one method is used, results should be interpreted cautiously.  相似文献   

8.
ObjectiveTo assess cardiopulmonary function in sedated and anesthetized dogs administered intravenous (IV) dexmedetomidine and subsequently administered IV lidocaine to treat dexmedetomidine-induced bradycardia.Study designProspective, randomized, crossover experimental trial.AnimalsA total of six purpose-bred female Beagle dogs, weighing 9.1 ± 0.6 kg (mean ± standard deviation).MethodsDogs were randomly assigned to one of three treatments: dexmedetomidine (10 μg kg–1 IV) administered to conscious (treatments SED1 and SED2) or isoflurane-anesthetized dogs (end-tidal isoflurane concentration 1.19 ± 0.04%; treatment ISO). After 30 minutes, a lidocaine bolus (2 mg kg–1) IV was administered in treatments SED1 and ISO, followed 20 minutes later by a second bolus (2 mg kg–1) and a 30 minute lidocaine constant rate infusion (L-CRI) at 50 (SED1) or 100 μg kg–1 minute–1 (ISO). In SED2, lidocaine bolus and L-CRI (50 μg kg–1 minute–1) were administered 5 minutes after dexmedetomidine. Cardiopulmonary measurements were obtained after dexmedetomidine, after lidocaine bolus, during L-CRI and 30 minutes after discontinuing L-CRI. A mixed linear model was used for comparisons within treatments (p < 0.05).ResultsWhen administered after a bolus of dexmedetomidine, lidocaine bolus and L-CRI significantly increased heart rate and cardiac index, decreased mean blood pressure, systemic vascular resistance index and oxygen extraction ratio, and did not affect stroke volume index in all treatments.Conclusion and clinical relevanceLidocaine was an effective treatment for dexmedetomidine-induced bradycardia in healthy research dogs.  相似文献   

9.
ObjectiveTo determine if general anaesthesia influences the intravenous (IV) pharmacokinetics (PK) of acetaminophen in dogs.Study designProspective, crossover, randomized experimental study.AnimalsA group of nine healthy Beagle dogs.MethodsAcetaminophen PK were determined in conscious and anaesthetized dogs on two separate occasions. Blood samples were collected before, and at 5, 10, 15, 30, 45, 60 and 90 minutes and 2, 3, 4, 6, 8, 12 and 24 hours after 20 mg kg–1 IV acetaminophen administration. Haematocrit, total proteins, albumin, alanine aminotransferase, aspartate aminotransferase, urea and creatinine were determined at baseline and 24 hours after acetaminophen. The anaesthetized group underwent general anaesthesia (90 minutes) for dental cleaning. After the administration of dexmedetomidine (3 μg kg–1) intramuscularly, anaesthesia was induced with propofol (2–3 mg kg–1) IV, followed by acetaminophen administration. Anaesthesia was maintained with isoflurane in 50% oxygen (Fe′Iso 1.3–1.5%). Dogs were mechanically ventilated. Plasma concentrations were analysed with high-performance liquid chromatography. PK analysis was undertaken using compartmental modelling. A Wilcoxon test was used to compare PK data between groups, and clinical laboratory values between groups, and before versus 24 hours after acetaminophen administration. Data are presented as median and range (p < 0.05).ResultsA two-compartmental model best described time–concentration profiles of acetaminophen. No significant differences were found for volume of distribution values 1.41 (0.94–3.65) and 1.72 (0.89–2.60) L kg–1, clearance values 1.52 (0.71–2.30) and 1.60 (0.91–1.78) L kg–1 hour–1 or terminal elimination half-life values 2.45 (1.45–8.71) and 3.57 (1.96–6.35) hours between conscious and anaesthetized dogs, respectively. Clinical laboratory variables were within normal range. No adverse effects were recorded.Conclusions and clinical relevanceIV acetaminophen PK in healthy Beagle dogs were unaffected by general anaesthesia under the study conditions. Further studies are necessary to evaluate the PK in different clinical contexts.  相似文献   

10.
ObjectiveTo assess the effects of intravenous (IV) fentanyl on cough reflex and quality of endotracheal intubation (ETI) in cats.Study designRandomized, blinded, negative controlled clinical trial.AnimalsA total of 30 client-owned cats undergoing general anaesthesia for diagnostic or surgical procedures.MethodsCats were sedated with dexmedetomidine (2 μg kg–1 IV), and 5 minutes later either fentanyl (3 μg kg–1, group F) or saline (group C) was administered IV. After alfaxalone (1.5 mg kg–1 IV) administration and 2% lidocaine application to the larynx, ETI was attempted. If unsuccessful, alfaxalone (1 mg kg–1 IV) was administered and ETI re-attempted. This process was repeated until successful ETI. Sedation scores, total number of ETI attempts, cough reflex, laryngeal response and quality of ETI were scored. Postinduction apnoea was recorded. Heart rate (HR) was continuously recorded and oscillometric arterial blood pressure (ABP) was measured every minute. Changes (Δ) in HR and ABP between pre-intubation and intubation were calculated. Groups were compared using univariate analysis. Statistical significance was set as p < 0.05.ResultsThe median and 95% confidence interval of alfaxalone dose was 1.5 (1.5–1.5) and 2.5 (1.5–2.5) mg kg–1 in groups F and C, respectively (p = 0.001). The cough reflex was 2.10 (1.10–4.41) times more likely to occur in group C. The overall quality of ETI was superior in group F (p = 0.001), with lower laryngeal response to ETI (p < 0.0001) and ETI attempts (p = 0.045). No differences in HR, ABP and postinduction apnoea were found.Conclusions and clinical relevanceIn cats sedated with dexmedetomidine, fentanyl could be considered to reduce the alfaxalone induction dose, cough reflex and laryngeal response to ETI and to improve the overall quality of ETI.  相似文献   

11.
ObjectiveTo evaluate the anesthetic effects of two drug combinations with local anesthesia, with or without postoperative antagonists, for orchiectomy in cats.Study designProspective, randomized blinded clinical study.AnimalsA total of 64 healthy cats.MethodsCats were assigned to four equal groups: ketamine (5 mg kg–1) and dexmedetomidine (10 μg kg–1) were administered intramuscularly (IM), followed postoperatively with intravenous (IV) saline (5 mL; group KDS) or atipamezole (50 μg kg–1; group KDA); and ketamine (14 mg kg–1) with midazolam (0.5 mg kg–1) and acepromazine (0.1 mg kg–1) IM, with postoperative IV saline (5 mL; group KMAS) or flumazenil (0.1 mg kg–1; group KMAF). Lidocaine (2 mg kg–1) was divided between subcutaneous and intratesticular injection. Physiologic variables were recorded at time points during anesthesia. Ketamine rescue dose was recorded. The degree of sedation and the quality of recovery were evaluated postoperatively.ResultsTime to loss of pedal reflex was longer in groups KMAS and KMAF than in groups KDS and KDA (p = 0.010). Total rescue dose of ketamine was higher in KMAS and KMAF than in KDS and KDA (p = 0.003). Heart rate (HR) during anesthesia was higher in KMAS and KMAF than in KDS and KDA (p = 0.001). Times to head up (p = 0.0005) and to sternal recumbency (p = 0.0003) were shorter in KDA than in KDS, KMAS and KMAF. Lower sedation scores were assigned sooner to KDA than KDS, KMAS and KMAF (p < 0.001). Recovery quality scores were good in all groups.Conclusions and clinical relevanceBoth anesthetic protocols allowed the performance of orchiectomy. Groups KMAS and KMAF required higher rescue doses of ketamine before injecting lidocaine. HR and oscillometric systolic pressure were minimally changed in groups KD and tachycardia was recorded in groups KMA. Only atipamezole shortened the anesthetic recovery.  相似文献   

12.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

13.
ObjectiveTo evaluate the sedative and analgesic effects of intramuscular buprenorphine with either dexmedetomidine or acepromazine, administered as premedication to cats and dogs undergoing elective surgery.Study designProspective, randomized, blinded clinical study.AnimalsForty dogs and 48 cats.MethodsAnimals were assigned to one of four groups, according to anaesthetic premedication and induction agent: buprenorphine 20 μg kg?1 with either dexmedetomidine (dex) 250 μg m?2 or acepromazine (acp) 0.03 mg kg?1, followed by alfaxalone (ALF) or propofol (PRO). Meloxicam was administered preoperatively to all animals and anaesthesia was always maintained using isoflurane. Physiological measures and assessments of pain, sedation and mechanical nociceptive threshold (MNT) were made before and after premedication, intraoperatively, and for up to 24 hours after premedication. Data were analyzed with one-way, two-way and mixed between-within subjects anova, Kruskall–Wallis analyses and Chi squared tests. Results were deemed significant if p ≤ 0.05, except where multiple comparisons were performed (p ≤ 0.005).ResultsCats premedicated with dex were more sedated than cats premedicated with acp (p < 0.001) and ALF doses were lower in dex cats (1.2 ± 1.0 mg kg?1) than acp cats (2.5 ± 1.9 mg kg?1) (p = 0.041). There were no differences in sedation in dogs however PRO doses were lower in dex dogs (1.5 ± 0.8 mg kg?1) compared to acp dogs (3.3 ± 1.1 mg kg?1) (p < 0.001). There were no differences between groups with respect to pain scores or MNT for cats or dogs.ConclusionChoice of dex or acp, when given with buprenorphine, caused minor, clinically detectable, differences in various characteristics of anaesthesia, but not in the level of analgesia.Clinical relevanceA combination of buprenorphine with either acp or dex, followed by either PRO or ALF, and then isoflurane, accompanied by an NSAID, was suitable for anaesthesia in dogs and cats undergoing elective surgery. Choice of sedative agent may influence dose of anaesthetic induction agent.  相似文献   

14.
ObjectiveTo investigate the intraperitoneal (IP) administration of ropivacaine or ropivacaine–dexmedetomidine for postoperative analgesia in cats undergoing ovariohysterectomy.Study designProspective, randomized, blinded, positively controlled clinical study.AnimalsA total of 45 client-owned cats were enrolled.MethodsThe cats were administered intramuscular (IM) meperidine (6 mg kg−1) and acepromazine (0.05 mg kg−1). Anesthesia was induced with propofol and maintained with isoflurane. Meloxicam (0.2 mg kg−1) was administered subcutaneously in all cats after intubation. After the abdominal incision, the cats were administered one of three treatments (15 cats in each treatment): IP instillation of 0.9% saline solution (group Control), 0.25% ropivacaine (1 mg kg−1, group ROP) or ropivacaine and dexmedetomidine (4 μg kg−1, group ROP–DEX). During anesthesia, heart rate (HR), electrocardiography, noninvasive systolic arterial pressure (SAP) and respiratory variables were monitored. Sedation and pain were assessed preoperatively and at various time points up to 24 hours after extubation using sedation scoring, an interactive visual analog scale, the UNESP-Botucatu multidimensional composite pain scale (MCPS) and mechanical nociceptive thresholds (MNT; von Frey anesthesiometer). Rescue analgesia (morphine, 0.1 mg kg−1) IM was administered if the MCPS ≥6. Data were analyzed using the chi-square test, Tukey test, Kruskal–Wallis test and Friedman test (p < 0.05).ResultsHR was significantly lower in ROP–DEX compared with Control (p = 0.002). The pain scores, MNT, sedation scores and the postoperative rescue analgesia did not differ statistically among groups.Conclusions and clinical relevanceAs part of a multimodal pain therapy, IP ropivacaine–dexmedetomidine was associated with decreased HR intraoperatively; however, SAP remained within normal limits. Using the stated anesthetic protocol, neither IP ropivacaine nor ropivacaine–dexmedetomidine significantly improved analgesia compared with IP saline in cats undergoing ovariohysterectomy.  相似文献   

15.
ObjectiveTo determine the effects of intravenous (IV) premedication with acepromazine, butorphanol or their combination, on the propofol anesthetic induction dosage in dogs.Study designProspective, blinded, Latin square design.AnimalsA total of three male and three female, healthy Beagle dogs, aged 3.79 ± 0.02 years, weighing 10.6 ± 1.1 kg, mean ± standard deviation.MethodsEach dog was assigned to one of six IV treatments weekly: 0.9% saline (treatment SAL), low-dose acepromazine (0.02 mg kg–1; treatment LDA), high-dose acepromazine (0.04 mg kg–1; treatment HDA), low-dose butorphanol (0.2 mg kg–1; treatment LDB), high-dose butorphanol (0.4 mg kg–1; treatment HDB); and a combination of acepromazine (0.02 mg kg–1) with butorphanol (0.2 mg kg–1; treatment ABC). Physiologic variables and sedation scores were collected at baseline and 10 minutes after premedication. Then propofol was administered at 1 mg kg–1 IV over 15 seconds, followed by boluses (0.5 mg kg–1 over 5 seconds) every 15 seconds until intubation. Propofol dose, physiologic variables, recovery time, recovery score and adverse effects were monitored and recorded. Data were analyzed using mixed-effects anova (p < 0.05).ResultsPropofol dosage was lower in all treatments than in treatment SAL (4.4 ± 0.5 mg kg–1); the largest decrease was recorded in treatment ABC (1.7 ± 0.3 mg kg–1). Post induction mean arterial pressures (MAPs) were lower than baseline values of treatments LDA, HDA and ABC. Apnea and hypotension (MAP < 60 mmHg) developed in some dogs in all treatments with the greatest incidence of hypotension in treatment ABC (4/6 dogs).Conclusions and clinical relevanceAlthough the largest decrease in propofol dosage required for intubation was after IV premedication with acepromazine and butorphanol, hypotension and apnea still occurred.  相似文献   

16.
ObjectiveTo investigate the relationship between urine specific gravity (USG) and the risk of arterial hypotension during general anaesthesia (GA) in healthy dogs premedicated with dexmedetomidine and methadone.Study designProspective clinical cohort study.AnimalsA total of 75 healthy client-owned dogs undergoing GA for elective tibial plateau levelling osteotomy.MethodsAfter placing an intravenous catheter, dogs were premedicated with dexmedetomidine (5 μg kg–1) and methadone (0.3 mg kg–1) intravenously. After induction of GA with alfaxalone to effect, the bladder was expressed and USG measured. An arterial catheter was placed, and residual blood was used to measure packed cell volume (PCV) and total protein (TP). GA was maintained with isoflurane vaporised in oxygen and a femoral and sciatic nerve block were performed. Arterial blood pressure < 60 mmHg was defined as hypotension and recorded by the anaesthetist. Treatment for hypotension was performed in a stepwise manner following a flow chart. Frequency of hypotension, treatment and response to treatment were recorded. Logistic regression modelling was used to assess the association between USG, TP and PCV and incidence of perioperative hypotension; p < 0.05.ResultsData from 14 dogs were excluded. Of the 61 dogs, 16 (26%) were hypotensive during GA, 15 dogs needed treatment of which 12 were responsive to a decrease in inhalant vaporiser setting. The logistic regression model was not statistically significant (p = 0.8). There was no significant association between USG (p = 0.6), TP (p = 0.4), PCV (p = 0.8) and arterial hypotension during GA.Conclusions and clinical relevanceIn healthy dogs premedicated with dexmedetomidine and methadone and maintained under GA with isoflurane and a femoral and sciatic nerve block, there was no relationship between the specific gravity of urine collected after premedication and intraoperative arterial hypotension.  相似文献   

17.
ObjectiveTo compare dexmedetomidine and fentanyl constant rate infusions in anesthetic protocols for septic dogs with pyometra, using microcirculatory, hemodynamic and metabolic variables.Study designRandomized clinical study.AnimalsA total of 33 dogs with pyometra with two or more systemic inflammatory response syndrome variables undergoing ovariohysterectomy.MethodsDogs were randomized into two groups: group DG, dexmedetomidine (3 μg kg–1 hour–1; 17 dogs) and group FG, fentanyl (5 μg kg–1 hour–1; 16 dogs) infused during isoflurane anesthesia and mechanical ventilation. Microcirculation flow index (MFI), total vessel density and De Backer score were assessed using orthogonal polarization spectral imaging at the sublingual site. Heart rate, invasive blood pressure, temperature, arterial blood gas analysis and lactate concentration were obtained at various time points. Variables were recorded at baseline (BL), immediately before (T0), 30 (T30) and 60 (T60) minutes after infusion, and 60 minutes after surgery. Data were analyzed using the Shapiro-Wilk test. To compare variables between groups, the unpaired Student t test was used. Comparison between evaluation time points was performed with two-way anova for repeated measures. Where statistical significance was detected, the Bonferroni post hoc test was used.ResultsMFI was significantly higher in group FG at T30. Mean arterial pressure at T30 was higher in group DG (89 ± 15 mmHg) than in group FG (72 ± 13 mmHg). Lactate concentrations were not significantly different between groups at each time point. Both groups had similar clinical outcomes (mortality, extubation time and occurrence of hypotension and bradyarrhythmias).Conclusions and clinical relevanceDexmedetomidine (3 μg kg–1 hour–1) without a loading dose can be included in the maintenance of anesthesia in dogs with pyometra and sepsis without compromising microcirculation and hemodynamic values when compared with fentanyl (5 μg kg–1 hour–1).  相似文献   

18.
ObjectiveTo evaluate the effects of detomidine or romifidine on cardiovascular function, isoflurane requirements and recovery quality in horses undergoing isoflurane anaesthesia.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 63 healthy horses undergoing elective surgery during general anaesthesia.MethodsHorses were randomly allocated to three groups of 21 animals each. In group R, horses were given romifidine intravenously (IV) for premedication (80 μg kg–1), maintenance (40 μg kg–1 hour–1) and before recovery (20 μg kg–1). In group D2.5, horses were given detomidine IV for premedication (15 μg kg–1), maintenance (5 μg kg–1 hour–1) and before recovery (2.5 μg kg–1). In group D5, horses were given the same doses of detomidine IV for premedication and maintenance but 5 μg kg–1 prior to recovery. Premedication was combined with morphine IV (0.1 mg kg–1) in all groups. Cardiovascular and blood gas variables, expired fraction of isoflurane (Fe′Iso), dobutamine or ketamine requirements, recovery times, recovery events scores (from sternal to standing position) and visual analogue scale (VAS) were compared between groups using either anova followed by Tukey, Kruskal-Wallis followed by Bonferroni or chi-square tests, as appropriate (p < 0.05).ResultsNo significant differences were observed between groups for Fe′Iso, dobutamine or ketamine requirements and recovery times. Cardiovascular and blood gas measurements remained within physiological ranges for all groups. Group D5 horses had significantly worse scores for balance and coordination (p = 0.002), overall impression (p = 0.021) and final score (p = 0.008) than group R horses and significantly worse mean scores for VAS than the other groups (p = 0.002).Conclusions and clinical relevanceDetomidine or romifidine constant rate infusion provided similar conditions for maintenance of anaesthesia. Higher doses of detomidine at the end of anaesthesia might decrease the recovery quality.  相似文献   

19.
ObjectiveTo evaluate the cardiopulmonary effects of anaesthesia induced and maintained with propofol in acepromazine pre-medicated donkeys.Study designProspective experimental study.AnimalsSix healthy male donkeys weighing 78–144 kg.MethodsDonkeys were pre-medicated with intravenous (IV) acepromazine (0.04 mg kg−1). Ten minutes later, anaesthesia was induced with IV propofol (2 mg kg−1) and anaesthesia maintained by continuous IV infusion of the propofol (0.2 mg kg−1 minute−1) for 30 minutes. Baseline measurements of physiological parameters, and arterial blood samples were taken before the acepromazine administration, then 5, 15, 30, 45, and 60 minutes after the induction of anaesthesia. Changes from baseline were analysed by anova for repeated measures.ResultsWhen compared with baseline (standing) values, during anaesthesia heart rate increased throughout: significant at 5 (p = 0.001) and 15 (p = 0.015) minutes. Mean arterial blood pressure increased significantly only at 15 minutes (p < 0.001). Respiratory rate and arterial pH did not change significantly. PaO2 was lower throughout anaethesia, but this only reached significance at 15 minutes (p = 0.041). PaCO2 was statistically (but not clinically) significantly reduced at the times of 30 (p = 0.02), 45 (p = 0.01) and 60 (p = 0.04). Rectal temperature decreased significantly at all times of the study.Conclusions and clinical relevanceAdministration of propofol by the continuous infusion rate for the maintenance of anaesthesia resulted in stable cardiopulmonary effects and could prove to be clinically useful in donkeys.  相似文献   

20.

Objective

To compare intraocular pressure (IOP) and pupillary diameter (PD) following intravenous (IV) administration of dexmedetomidine and acepromazine in dogs.

Study design

Prospective, randomized experimental trial.

Animals

A group of 16 healthy adult dogs aged (mean ± standard deviation) 4.9 ± 3.3 years and weighing 15.7 ± 9.6 kg, without pre-existing ophthalmic disease.

Methods

IV dexmedetomidine hydrochloride (0.002 mg kg–1; DEX) or acepromazine maleate (0.015 mg kg–1; ACE) was administered randomly to 16 dogs (eight per group). The IOP and PD, measured using applanation tonometry and Schirmer's strips mm scale, respectively, and the heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures and respiratory rate (fR) were recorded at baseline, at time of injection, and then 5, 10, 15, 20 and 25 minutes after injection. A single ophthalmologist, unaware of treatment, performed all measurements under consistent light conditions. Values were compared with baseline and among treatments using a multivariate mixed-effects model (p ≤ 0.05).

Results

The IOP was significantly lower in the DEX group compared with the ACE group at 10 (p < 0.01) and 15 minutes (p < 0.01) after drug injection. PD was significantly smaller compared to baseline for the entire duration of the study (p < 0.01) in both groups. Dogs in the DEX group had significant lower HR (p < 0.01) and fR (p < 0.01), higher SAP (p < 0.01) and DAP (p < 0.01) at all time points, and higher MAP (p < 0.01) during the first 15 minutes following drug injection in comparison with the ACE group.

Conclusions and clinical relevance

Our results suggest that premedication with IV dexmedetomidine temporarily decreases IOP when compared with IV acepromazine. Both drugs cause miosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号