首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Xihu desert wetland is located in an extremely arid area in Dunhuang,Gansu province of Northwest China.The area is home to an unusual geographic and ecological environment that is considered unique,both in China and the world.Microclimate is not only related to topography,but is also affected by the physical properties of underlying ground surfaces.Microclimate and CO2 flux have different characteristics under different underlying surface conditions.However,until now,few studies have investigated the microclimate characteristics and CO2 flux in this area.The eddy covariance technique(ECT) is a widely used and effective method for studying such factors in different ecosystems.Basing on data from continuous fine days obtained in the Dunhuang Xihu desert wetland between September 2012 and September 2013,this paper discussed and compared the characteristics of daily microclimate variations and CO2 fluxes between the two periods.Results from both years showed that there was a level of turbulent mixing and updraft in the area,and that the turbulent momentum flux was controlled by wind shear under good weather conditions.The horizontal wind velocity,friction wind velocity and vertical wind velocity were commendably consistent with each other.Air temperature in the surface layer followed an initial decreasing trend,followed by an increasing then decreasing trend under similar net radiation conditions.With changes in air temperature,the soil temperature in the surface layer follows a more obvious sinusoidal fluctuation than that in the subsoil.Components of ground surface radiation during the two study periods showed typical diurnal variations.The maximum diurnal absorption of CO2 occurred at around 11:00(Beijing time) in the Xihu desert wetland,and the concentrations of CO2 in both periods gradually decreased with time.This area was therefore considered to act as a carbon sink during the two observation periods.  相似文献   

2.
利用Li- 8100土壤碳通量测量系统对绿洲棉田土壤呼吸进行日变化动态测定,结果表明:土壤呼吸有明显的单峰型日变化特征,棉田(滴灌地、漫灌地)、弃耕地的土壤呼吸速率日均值分别为3.45、3.37、1.63μmol/( m2·s);峰值出现在15:00~20:00,谷值出现在4:00~6:00,6:00后,土壤呼吸速率上...  相似文献   

3.
本试验以裸地为对照,通过对土壤剖面CO2浓度的监测,研究了旱区灌溉棉田土壤呼吸的昼夜变化规律及其与土壤温度的关系。主要结果如下:(1)土壤及根际呼吸均呈"V"型昼夜变化特征,最小值出现在16∶00~17∶00之间,而土壤微生物呼吸昼夜变化趋势与之相反;(2)土壤微生物呼吸产生的CO2通量在土壤升温阶段略高于降温阶段,相对的,根际呼吸在土壤升温阶段产生的CO2通量低于降温阶段,并形成一个明显的逆时针圆圈;(3)棉花根际呼吸对土壤呼吸的平均贡献率为47%。以上结果说明,在建立土壤呼吸与土壤温度相关关系模型的过程中,需要区分根际呼吸和土壤微生物呼吸,充分考虑土壤温度变化对土壤呼吸各组分影响的差异性。  相似文献   

4.
精河入湖口湿地是典型干旱区湖泊湿地艾比湖湿地的重要组成部分。本研究采用空间序列代替时间序列的方法分析了艾比湖精河入湖口退化湿地恢复中土壤呼吸的变化特征。结果表明:(1)随着恢复期的延长,土壤CO2通量的日变化有由单峰型向双峰型转变的趋势;(2)恢复期较短的湿地(1 a),季节变化具有单峰型特点,峰值在秋季,恢复期较长的湿地(3~5 a),季节变化呈现双峰型,且春季高于秋季;(3)退化湿地在植被恢复过程中土壤呼吸速率逐渐增强;(4)在退化湿地的不同恢复阶段,近地面10 cm土壤温度与土壤CO2通量的关系最密切。因此,只要水源充足,精河入湖口退化湿地在恢复过程中土壤呼吸速率随恢复时间延长而逐渐提高,经4~5 a即可恢复到未退化状态。  相似文献   

5.
A field experiment was carried out to investigate the effects of different emitter discharge rates under drip irrigation on soil salinity distribution and cotton yield in an extreme arid region of Tarim River catchment in Northwest China.Four treatments of emitter discharge rates,i.e.1.8,2.2,2.6 and 3.2 L/h,were designed under drip irrigation with plastic mulch in this paper.The salt distribution in the range of 70-cm horizontal distance and 100-cm vertical distance from the emitter was measured and analyzed during the cotton growing season.The soil salinity is expressed in terms of electrical conductivity(dS/m) of the saturated soil extract(EC e),which was measured using Time Domain Reflector(TDR) 20 times a year,including 5 irrigation events and 4 measured times before/after an irrigation event.All the treatments were repeated 3 times.The groundwater depth was observed by SEBA MDS Dipper 3 automatically at three experimental sites.The results showed that the order of reduction in averaged soil salinity was 2.6 L/h > 2.2 L/h > 1.8 L/h > 3.2 L/h after the completion of irrigation for the 3-year cotton growing season.Therefore,the choice of emitter discharge rate is considerably important in arid silt loam.Usually,the ideal emitter discharge rate is 2.4-3.0 L/h for soil desalinization with plastic mulch,which is advisable mainly because of the favorable salt leaching of silt loam and the climatic conditions in the studied arid area.Maximum cotton yield was achieved at the emitter discharge rate of 2.6 L/h under drip irrigation with plastic mulch in silty soil at the study site.Hence,the emitter discharge rate of 2.6 L/h is recommended for drip irrigation with plastic mulch applied in silty soil in arid regions.  相似文献   

6.
A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon(SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control(CK) and six different combinations of phosphorus(P), potassium(K), nitrogen(N), straw(S) and animal manure(M). The balanced fertilization treatments had significantly(P0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate(NPK) and 1/3 N from farmyard manure(NPKM) had a higher average yield than the other treatments. The average yields(over the 23 years) in the treatments of NPK, and urea, calcium superphosphate(NP) did not differ significantly(P0.05) but were higher than that in the treatment with urea and potassium sulfate(NK; P0.05). The results also show that the highest increases in SOC(P0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm~2·a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm~2·a) for NPKS(9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration.  相似文献   

7.
干旱地区棉田连作对土壤氮素含量及氮转化速率的影响   总被引:1,自引:0,他引:1  
为研究干旱地区棉田不同连作年限对土壤氮素含量和氮转化速率的影响,选取新疆艾比湖流域内精河县托托乡和农五师91团0、1、5、10、20 a和30 a棉田为研究对象,以棉田连作下土壤理化性质变化为基础,结合土壤氮素含量和氮转化速率,定量研究了连作棉田土壤氮转化速率变化规律及生态驱动因素。结果表明:(1)旱区连作棉田土壤硝态氮为无机氮主要组成,不同连作年限中土壤硝化作用均能将铵态氮转化为硝态氮,年限间差异不显著且硝态氮总量普遍偏低(平均为5.56±0.28 mg·kg-1);土壤碱解氮含量均显著低于未开垦土壤,仅为对照样地的16.37%~28.40%(P<0.05),土壤铵态氮和亚硝态氮含量随着连作年限的增加逐渐达到动态平衡。(2)连作初期会降低土壤硝化和反硝化速率,连作10 a旱区棉田土壤硝化率和反硝化率均降到最低(分别为23.62±1.45 μg·kg-1·h-1和5.673±4.632 μg·kg-1·h-1),至连作后期显著增加。(3)土壤pH值对土壤硝化速率和反硝化速率的影响最大(总效应分别为0.5310和0.6516),土壤硝化率和反硝化率分别在土壤pH值达到阈值范围(8.37和8.01)时达到最大值(91.333 μg·kg-1·h-1)和最小值(19.271 μg·kg-1·h-1);土壤水分是影响反硝化作用的第二重要因子。  相似文献   

8.
以干旱区绿洲土壤为供试土壤,采用盆栽试验研究外源Ni污染对芹菜生长的影响及在芹菜中的富集迁移。结果表明:外源Ni的添加在低质量分数下能够促进芹菜的生长,达到一定临界值后,则出现明显的毒害作用;随着土壤中Ni的添加质量分数的增加,芹菜体内的Ni含量也随之增加。统计分析表明对芹菜根部和地上部吸收累积Ni贡献最大的均为铁锰氧...  相似文献   

9.
根据石羊河流域两个气象站的历史数据,选取7种基于气温的潜在蒸散发量估算方法,以FAO56-PM法计算的ET作为参考值,对其进行比较分析,最后再用实测蒸发皿蒸发量对这些方法在西北干旱地区的适用性进行评价。结果表明:在两个站使用7种方法的初始参数时,多数产生较大误差。校正参数后两个站所有方法在估算逐月ET和月平均ET时都得到明显改进。改进的Romanenko法在两个站所有月份以及全年误差都最小,其次是Hargreaves和Linacre法。用实测小型蒸发皿蒸发量进行验证时,改进的Romanenko法与其相关系数最高,为0.97,其次是Linacre和Hargreaves法。就气温法而言,校正参数后的Romanenko,Hargreav-es和Linacre法可在此研究区域用于估算ET,并建议优先选择Romanenko法,与小型蒸发皿的折算系数适宜选取0.60。  相似文献   

10.
Jun WU 《干旱区科学》2019,11(4):567-578
Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practices affect the soil aggregates and soil organic carbon (SOC) and total nitrogen (TN) contents in the aggregate fractions based on a long-term (approximately 15 years) field experimentin the semi-arid western Loess Plateau, northwestern China. The experiment included four soil treatments, i.e., conventional tillage with straw removed (T), conventional tillage with straw incorporated (TS), no tillage with straw removed (NT) and no tillage with straw retention (NTS), which were arranged in a complete randomized block design. The wet-sieving method was used to separate four size fractions of aggregates, namely, large macroaggregates (LA, >2000 μm), small macroaggregates (SA, 250-2000 μm), microaggregates (MA, 53-250 μm), and silt and clay (SC, <53 μm). Compared to the conventional tillage practices (including T and TS treatments), the percentages of the macroaggregate fractions (LA and SA) under the conservation tillage practices (including NT and NTS treatments) were increased by 41.2%-56.6%, with the NTS treatment having the greatest effect. For soil layers of 0-5, 5-10 and 10-30 cm, values of the mean weight diameter (MWD) under the TS and NTS treatments were 10.68%, 13.83% and 17.65%, respectively. They were 18.45%, 19.15% and 14.12% higher than those under the T treatment, respectively. The maximum contents of the aggregate-associated SOC and TN were detected in the SA fraction, with the greatest effect being observed for the NTS treatment. The SOC and TN contents were significantly higher under the NTS and TS treatments than under the T treatment. Also, the increases in SOC and TN levels were much higher in the straw-retention plots than in the straw-removed plots. The macroaggregates (including LA and SA fractions) were the major pools for SOC and TN, regardless of tillage practices, storing 3.25-6.81 g C/kg soil and 0.34-0.62 g N/kg soil. Based on the above results, we recommend the NTS treatment as the best option to boost soil aggregates and to reinforce carbon and nitrogen sequestration in soils in the semi-arid western Loess Plateau of northwestern China.  相似文献   

11.
为探明降解膜在极端干旱区滴灌棉花的应用效果,设置4种不同类型的降解膜(黑色氧化—生物双降解膜M1、白色氧化—生物双降解膜M2、黑色全生物降解膜M3及白色全生物降解膜M4),以普通塑料地膜为对照(CK)开展试验,分析降解膜的降解情况、棉田耗水规律、株高、茎粗、叶面积指数、单株干物质累积量,籽棉产量及水分利用效率.结果表明...  相似文献   

12.
在甘肃省安定区凤翔镇的旱川地上通过大田试验研究了不同秸秆还田量对玉米关键生育期土壤水分、生物性状及产量的影响。试验设计为三个秸秆还田量水平,分别为100%玉米秸秆(10 500 kg·hm-2)粉碎还田、75%玉米秸秆(7 875 kg·hm-2)粉碎还田、50%玉米秸秆(5 250 kg·hm-2)粉碎还田,对照为秸秆不还田。每个处理设3次重复,随机区组排列,玉米秸秆粉碎后均匀翻埋至0~25 cm的土层。结果表明:播前各还田处理0~200 cm土层土壤含水量均较CK有所提高,秸秆还田量由高到低,土壤含水量平均分别提高2.0%、2.8%和1.9%,但不同还田量之间差异不显著;玉米株高、茎粗和叶面积较对照显著增加(P0.05);100%、75%和50%等三个不同秸秆还田量处理的玉米产量较对照分别提高10.3%、5.7%和3.7%,玉米水分利用效率(WUE)较对照分别提高9.2%、4.9%和3.1%。秸秆还田措施可提高土壤的保墒贮水能力,促进作物生长,增加产量,提高水分利用效率。  相似文献   

13.
干旱区绿洲土壤外源Cd、Pb的形态分布及再分配   总被引:1,自引:1,他引:1  
以干旱区绿洲土壤为研究对象,采用Tessier连续提取技术对外源Cd和Pb的形态分布与再分配进行了研究。结果表明:在盆栽试验完成后,Cd和Pb主要以碳酸盐结合态和铁锰氧化态存在。Cd的全量是影响其可交换态、碳酸盐结合态和铁锰氧化态含量的主要因素,而有机物结合态和残渣态受其它因素的影响也较大。Pb的全量是其各种形态含量的主要影响因素。随着Cd和Pb添加量的增加,其土壤总的再分配系数呈增加趋势,结合强度系数则相反,表明Cd和Pb各形态间的稳定性下降。随着时间的推移,二者各形态会继续发生变化,但这一过程缓慢。因此,土壤重金属污染具有长期性。  相似文献   

14.
Wheat growth in response to soil water deficit play an important role in yield stability. A field experiment was conducted for winter wheat (Triticum aestivum L.) during the period of 2002-2005 to evaluate the effects of limited irrigation on winter wheat growth. 80%, 70%, 60%, 50% and 40% of field capacity was applied at different stages of crop growth. Photosynthetic characteristics of winter wheat, such as photosynthesis rate, transpiration rate, stomatal conductance, photosynthetically active radiation, and soil water content, root and shoot dry mass accumulation were measured, and the root water uptake and water balance in different layer were calculated. Based on the theory of unsaturated dynamic, a one-dimensional numerical model was developed to simulate the effect of soil water movement on winter wheat growth using Hydrus-1 D. The soil water content of stratified soil in the experimental plot was calculated under deficit irrigation. The results showed that, in different growing periods, evapotranspiration, grain yield, biomass, root water up- take, water use efficiency, and photosynthetic characteristics depended on the controlled ranges of soil water content. Grain yield response to irrigation varied considerably due to differences in soil moisture contents and irrigation scheduling between seasons. Evapotranspiration was largest in the high soil moisture treatment, and so was the biomass, but this treatment did not produce the highest grain yield and root water uptake was relatively low. Maximum depth of root water uptake is from the upper 80 cm in soil profile in jointing stage and dropped rapidly upper 40 cm after heading stage, and the velocity of root water uptake in latter stage was less than that in middle stage. The effect of limited irrigation treatment on photosynthesis was complex owing to microclimate. But root water uptake increased linearly with harvest yield and improvement in the latter gave better root water uptake under limited irrigation conditions. Appropriately controlled soil wate  相似文献   

15.
荒漠灌区不同种植年限苜蓿地土壤酶活性的变化研究   总被引:1,自引:0,他引:1  
在干旱荒漠绿洲区大田试验条件下,研究了不同种植年限(0,3,4,5,7,10 a)苜蓿地土壤脲酶、碱性磷酸酶、蔗糖酶、淀粉酶、纤维素酶及过氧化氢酶活性的季节性动态变化,旨在探讨种植不同年限苜蓿对土壤生物化学性状的影响,为粮草合理轮作周期的制订提供科学依据。结果表明:种植苜蓿与撂荒地相比,土壤酶活性得到不同程度的提高,且各年限间土壤酶活性差异显著。其中土壤脲酶、蔗糖酶及纤维素酶活性均随生长年限增加呈先增高后降低再增加的变化趋势,而淀粉酶、碱性磷酸酶及过氧化氢酶活性均随种植年限增加呈先升高后降低的变化趋势,种植苜蓿5a土壤酶活性增加最明显,0~60 cm土层依次较CK分别增加了80.56%、69.91%、46.75%、533.33%、110.71%、11.81%;土壤6种酶的活性均随着土层深度的增加而减小,在表层0~20 cm土层,土壤酶活性最强。脲酶和淀粉酶活性在夏季最高,蔗糖酶、纤维素酶、过氧化氢酶及碱性磷酸酶活性均在春季达到最高。对6种酶之间的相关性进行分析,研究发现除蔗糖酶外,其余5种酶间呈显著或极显著相关。  相似文献   

16.
不同覆盖方式对旱地棉田土壤环境及棉花产量的影响   总被引:10,自引:1,他引:10  
分析普通地膜覆盖、小麦秸秆覆盖、地膜 秸秆覆盖3种覆盖物对旱地棉田土壤环境、棉花产量构成因素的影响,结果表明:覆盖栽培能改善土壤环境,降低土壤容重,提高土壤水分利用率,调节土壤温、湿度,协调水热资源利用的同步性;秸秆覆盖能增加土壤养分含量,特别是速效钾含量;在棉花生长后期,提高叶面积指数,延长叶片功能期,提高棉株的光合能力从而防止棉花早衰,增加铃重,提高棉花产量。  相似文献   

17.
甘肃省中部干旱区植被恢复对土壤养分变化的影响研究   总被引:3,自引:0,他引:3  
通过对甘肃省中部干旱区植被恢复过程中不同退耕年限(0年、3年、6年和10年)的土壤养分及各养分间的相关性进行了分析,研究结果表明:1)不同退耕年限对安定区土壤养分除全钾外对有机质和其它氮磷钾养分均有极显著或显著影响。2)植被恢复过程中养分在土壤剖面的分布具有明显的层次性,各养分具有明显的表聚性。3)土壤有机质的变化与全氮、速效氮呈现出显著的相关性,与钾素和磷素的相关性较低。全磷与速效钾和氮养分相互间显著相关,与速效磷相关性较小。全钾与速效钾相关性也未达到显著水平。  相似文献   

18.
基于静态箱法和气井法,测定棉花秸秆还田对绿洲棉田土壤CO_2浓度和通量时空分布的影响。结果表明:棉花秸秆还田后土壤CO_2浓度与通量具有明显的时间变化特征,均表现为7月份出现峰值,10月出现低值;与NS(对照组)相比,秸秆还田处理下的土壤CO_2浓度与通量在5月也出现峰值。土壤CO_2浓度随着土壤深度的增加而增加,但秸秆还田对土壤CO_2浓度的垂直分布影响不大。观测期内,NS、HS(半量)、TS(全量)和DS(加倍)处理下的土壤CO_2浓度均值分别为5 946.2、6 837.3、7 717.3 mg·kg~(-1)和10 437.6 mg·kg~(-1),土壤CO_2通量均值分别为110.22、136.84、140.75 mg·m~(-2)·h~(-1)和169.47 mg·m~(-2)·h~(-1),即棉花秸秆还田增加了土壤CO_2浓度和通量;其中,DS处理下的土壤CO_2浓度和通量均显著高于其他处理(P0.05)。此外,NS、HS、TS和DS处理下土壤CO_2浓度与通量之间的相关系数分别为0.30~0.60、0.68~0.72、0.72~0.77和0.85~0.88,相关系数随秸秆还田量增大而增大,即土壤CO_2通量强烈依赖于土壤CO_2浓度。在当前的农业生产水平下,综合评价不同秸秆量还田的效应,应采用全量秸秆还田。  相似文献   

19.
Jie BAI 《干旱区科学》2015,7(2):272-284
 Xinjiang is the largest semi-arid and arid region in China, and drip irrigation under plastic mulch is widely used in this water-limited area. Quantifying carbon and water fluxes as well as investigating their environmental drivers over cotton fields is critical for understanding regional carbon and water budgets in Xinjiang, the largest cotton production basin of China. In this study, an eddy covariance (EC) technique was used to measure the carbon and water fluxes of cotton field under drip irrigation with plastic mulch in the growing seasons of 2009, 2010, 2012 and 2013 at Wulanwusu Agrometeorological Experiment Station, a representative oasis cropland in northern Xinjiang. The diurnal patterns of gross primary production (GPP), net ecosystem exchange (NEE) and evapotranspiration (ET) showed obviously sinusoidal variations from June to September, while the diurnal ecosystem respiration (Res) was stable between daytime and nighttime. The daytime hourly GPP and ET dis-played asymptotic relationships with net solar radiation (Rnet), while showed concave patterns with raising vapor pressure deficit (VPD) and air temperature (Ta). The increases in hourly GPP and ET towards the maximum occurred over half ranges of VPD and Ta. The seasonal variations of GPP, NEE and ET were close to the cotton phenology, which almost reached the peak value in July. The cumulative GPP averaged 816.2±55.0 g C/m2 in the growing season (from April to October), and more than half of GPP was partitioned into NEE (mean value of –478.6±41.4 g C/m2). The mean seasonal ET was 501.3±13.9 mm, and the mean water use efficiency (WUE) was 1.0±0.1 (mg C/g H2O)/d. The agro-ecosystem behaved as a carbon sink from squaring to harvest period, while it acted as a carbon source before the squaring time as well as after the harvest time.  相似文献   

20.
The effect of variation in water supply on woody seedling growth in arid environments remain poorly known.The subshrub Alhagi sparsifolia Shap.(Leguminosae),distributed in the southern fringe of the Taklimakan Desert,Xinjiang,northwestern China,has evolved deep roots and is exclusively dependent on groundwater,and performs a crucial role for the local ecological safety.In the Cele oasis,we studied the responses of A.sparsifolia seedling roots to water supplement at 10 and 14 weeks under three irrigation treatments(none water supply of 0 m3/m2(NW),middle water supply of 0.1 m3/m2(MW),and high water supply of 0.2 m3/m2(HW)).The results showed that the variations of soil water content(SWC) significantly influenced the root growth of A.sparsifolia seedlings.The leaf area,basal diameter and crown diameter were significantly higher in the HW treatment than in the other treatments.The biomass,root surface area(RSA),root depth and relative growth rate(RGR) of A.sparsifolia roots were all significantly higher in the NW treatment than in the HW and MW treatments at 10 weeks.However,these root parameters were significantly lower in the NW treatment than in the other treatments at 14 weeks.When SWC continued to decline as the experiment went on(until less than 8% gravimetric SWC),the seedlings still showed drought tolerance through morphological and physiological responses,but root growth suffered serious water stress compared to better water supply treatments.According to our study,keeping a minimum gravimetric SWC of 8% might be important for the growth and establishment of A.sparsifolia during the early growth stage.These results will not only enrich our knowledge of the responses of woody seedlings to various water availabilities,but also provide a new insight to successfully establish and manage A.sparsifolia in arid environments,further supporting the sustainable development of oases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号