首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study documented the effects of barley companion crop seeding rate and cutting stage on alfalfa establishment in a highland area. Alfalfa was established with barley at seeding rates of 0, 60, 120 and 180 kg ha?1 and cut at the milk‐dough and ripe grain stages. In most cases, hay yield and composition of herbage were affected by companion crop seeding rate and cutting stage. Total hay yield increased from 3294 to 5131 kg ha?1 when the companion crop seeding rate was increased from 0 to 180 kg ha?1 at the milk‐dough stage. Legume and weed growth was suppressed by the companion crop during establishment, but using a barley companion crop decreased alfalfa plant losses in the seeding year. Few residual effects of barley were seen on hay yield in the subsequent year, but residual effects of companion crop treatments on weed suppression continued in all clippings of the second year. The results suggest that alfalfa should be sown with a barley companion crop in highland areas with adequate moisture. The seeding rate for barley is about the same as that for barley grown alone, and the companion crop could be harvested for hay or grain in the establishment year.  相似文献   

2.
Weed competition can cause substantial maize (Zea mays L.) yield reductions. Interseeding maize with cover crops or a combination of interrow cultivation and interseeded cover crops are possible alternative methods of weed control. This study was conducted to examine the potential of interrow cultivation plus cover crops to reduce weed density in maize without reducing the grain yield. Field experiments were conducted in 1993 and 1994 at two sites in Québec to determine the effects of planting 12 cover crops with maize on weed control. Fall rye (Secale cereal L.), hairy vetch (Vicia villosa Roth), a mixture of red clover (Trifolium pratense L.) and ryegrass (Lolium multiflorum Lam), a mixture of white clover (Trifolium repens L.) and ryegrass, subterranean clover (Trifolium subterraneum L.), yellow sweet clover (Meliotus officinalis Lam), black medic (Medicago lupulina L.), Persian clover (Trifolium resupinatum L.), strawberry clover (Trifolium fragiferum L.), crimson clover (Trifolium incarnatum L.), alfalfa (Medicago sativa L.), and berseem clover (Trifolium alexandrinum L.) were seeded at two planting dates, 10 and 20 days after maize emergence. Interrow cultivation was carried out weekly until forage seeding, with a final cultivation being conducted just prior to cover crop seeding. Cover crop planting date did not affect maize yields or the ability of interrow tillage plus cover crops to suppress the development of weed populations. Maize yield was less affected by the interseeded cover crops under conditions of adequate rainfall. Corn planted in fields heavily infested with weeds resulted in substantial yield reductions even when rainfall was adequate. Except for 1993 at l'Assomption interrow tillage plus cover crop treatments had consistently lower weed biomass when compared to the weedy control. Most of the weed control was due to the interrow cultivation performed prior to seeding of the cover crops. The lowest weed density occurred in the herbicide treated plots. The ability of interrow tillage plus cover crops to suppress the development of weeds was affected by the level of weed infestation, the growing conditions and location. The cover crops provide additional weed control but the interrrow tillage or some herbicide application may still be necessary.  相似文献   

3.
空间配置是影响间作套种作物生长和产量构成的关键因素之一。本研究固定玉米–大豆套作带宽200 cm,玉米采用宽窄行种植,设置4个玉米窄行行距为20 cm(A1)、40 cm(A2)、60 cm(A3)和80 cm(A4)套作处理,2个玉米和大豆净作对照处理,研究行距配置对套作系统中玉米和大豆生物量、根系及产量的影响。结果表明,套作大豆冠层光合有效辐射和红光/远红光比值均低于净作,且随着玉米窄行的增加而降低。套作系统中大豆地上地下生物量、总根长、根表面积和根体积从第三节龄期(V3)到盛花期(R2)逐渐增加,但随着玉米窄行的增加而降低。套作玉米地上地下生物量从抽雄期到成熟期逐渐增加,根体积却逐渐降低,但这些参数随玉米窄行的变宽而增加。玉米和大豆在带状套作系统中产量均低于净作,且随玉米窄行的变宽,玉米产量逐渐增加,2012和2013两年最大值平均为6181 kg hm–2,而大豆产量逐渐降低,两年最大值平均为1434 kg hm–2,产量变化与有效株数和粒数变化密切相关。此外,玉米–大豆带状套作群体土地当量比(LER)大于1.3,最大值出现在A2处理,分别为1.59(2012年)和1.61(2013年),且最大经济收益也出现在A2处理(2年每公顷平均收益为1.93万元)。因此,合理的行距配置对玉米–大豆带状套作系统中作物的生长、产量构成和群体效益具有重要的作用。  相似文献   

4.
Genotypic variation for competitive ability in spring wheat   总被引:1,自引:0,他引:1  
D. G. Huel  P. Hucl 《Plant Breeding》1996,115(5):325-329
Herbicides are the primary method of weed control for crop production in developed countries. For economic and environmental reasons alternative control strategies are being devised. One of these strategies is the development of competitive crop cultivars. The objectives of this research were to establish whether spring wheat (Triticum aestivum L.) genotypes differed in competitive ability and if those differences were related to specific growth characteristics. Sixteen genotypes of spring wheat were grown under simulated weed competition conditions at Saskatoon, Canada over a 3–year period. Four high and four low tillering genotypes from each of two crosses (Neepawa/M1417 and Ingal/M1417) were studied. Weeds consisted of cultivated oat (Avena saliva cv. ‘Waldern’) and oriental mustard (Brassicajuncea cv. ‘Cutlass’) sown at two densities (48 and 96 seeds/m2 per weed species). Seedling establishment, ground cover, and seed yield for the three species were determined, as was wheat tiller number, spike number, maximum height, leaf area index, leaf orientation, and flag leaf length and size. Significant (P = 0.001) weed rate by genotype interactions involving changes in genotype rank were detected for wheat grain yield, indicating that the 16 wheat genotypes differed in competitive ability. Wheat grain yield reductions averaged over the two weed densities ranged from 45% to 59%. The highest-yielding genotypes under weed-free conditions were not necessarily the highest yielding under weedy conditions. Genotypes which suffered smaller yield reductions were more effective in suppressing weed growth. Although competitive genotypes were generally taller than non-competitive genotypes, other traits such as large seedling ground cover and flag leaf length were associated with wheat yield under competitive conditions.  相似文献   

5.
The aim was to study the growth and development of six spring barley (Hordeum vulgare ssp. vulgare L.) cultivars as a response to a model weed population of Sinapis alba L. The development of light interception profiles over time was characterized for each cultivar in weed‐free stands. The cultivars were chosen such that they represent a range of weed‐suppressive abilities based on previously performed trials. One field experiment each was conducted in 1996 and 1997 at a site SE of Uppsala, Sweden. The two cultivars with low competitive ability against weeds, Etna and Blenheim, allowed the highest weed biomass and the lowest crop biomass in competition with the weeds. These two cultivars transmitted more photosynthetic active radiation through the canopy down to 20 and 40 cm height than did the other cultivars. Although the biomass of cv. Etna was low, the grain yield was higher than that of the other cultivars when grown in competition with weeds. In 1997, cv. Svani with good competitive ability against weeds transmitted least light and had greater grain yield than most other cultivars. The absence of a relationship between high grain yield and low weed suppressive ability in the present study indicates that it should be possible for plant breeders to combine high grain yielding capacity with approved weed‐competitive ability.  相似文献   

6.
Intercropping systems influence yield variables of the component crops, such as harvest index, hundred seed weight, number of reproductive organs and number of seeds, within each reproductive unit. Two experiments were carried out at each of two sites during 1993 and 1994. The first experiment investigated the effects of seeding soybean or lupin alone or in combination with one of three forages (annual ryegrass, Lolium multiflorum Lam.; perennial ryegrass, Lolium perenne L.; red clover, Trifolium pratense L.) with corn on the yield components of corn, soybean and lupin. The second experiment examined the effects of seeding date (simultaneous with corn or 3 weeks later) and number of rows of large seeded legumes (one or two) seeded between the corn rows. Corn grain yield was generally not affected by any intercrop treatment, although in 1993 some simultaneously seeded treatments resulted in decreased yields. Soybean grain yield was decreased by most treatments, although some simultaneous seedings produced yields similar to soybean monocrops. Lupin grew poorly as an intercrop component, producing little or no grain. Corn harvest index was not affected by any intercrop treatments. Seeding corn and large-seeded legumes simultaneously resulted in decreases in corn hundred seed weights by as much as 6.6 g compared with the monocropped corn. In 1993 (a year with normal precipitation levels), the hundred seed weight and number of seeds per soybean pod were decreased by intercropping, although the harvest index was not affected. In a high precipitation year (1994), the soybean harvest index was decreased by intercropping, but not the seed components. The underseeded forages, annual ryegrass, perennial ryegrass and red clover, had no effect on yields or yield components of the other intercropped species.  相似文献   

7.
The investigations were based on biennial field trials carried out at two locations comprising the factors location/previous crop, winter cereal genotype (rye cv. ‘Farino’,triticale cv. ‘Modus’, wheat cv. ‘Batis’) and production intensity level. One agronomical focus was to replace the mineral N‐supply due to its energetic relevance, by either the residues of legumes, or stillage, a processing residue containing organic N. The measurement included the crop yield ha?1, the bioethanol exploitation dt?1 and the bioethanol yield ha?1. The last was closely correlated to the grain yield and thus dominated by intensity level. Highest bioethanol yields with an average peak at 4022 l ha?1, always occurred at the highest intensity level. Bioethanol exploitation however, was mainly determined by the genotype. The cultivars showed significant exploitation and yield differences. An adequate bioethanol exploitation was observed with the wheat cv. Batis in contrast to diminished grain and bioethanol yields. Considering bioethanol exploitation and bioethanol yield, the triticale cv. Modus was the outstanding genotype. Despite high grain yields, the bioethanol yields of the rye cv. Farino stayed mean, because of a genotypic lowered bioethanol exploitation. Comparing the approaches of mineral nitrogen substitution, legume N was successful, whereas stillage fertilizing, according to the examined conditions, resulted in ample decreased grain and bioethanol yields ha?1.  相似文献   

8.
Intensive tillage by means of mouldboard ploughing can be highly effective for weed control in organic farming, but it also carries an elevated risk for rapid humus decomposition and soil erosion. To develop organic systems that are less dependent on tillage, a two-year study at Reinhardtsgrimma and Köllitsch, Germany was conducted to determine whether certain legume cover crops could be equally successfully grown in a no-till compared with a reduced tillage system. The summer annual legumes faba bean (Vicia faba L.), normal leafed field pea (Pisum sativum L.), narrow-leafed lupin (Lupinus angustifolius L.), grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) were examined with and without sunflower (Helianthus annuus L.) as a companion crop for biomass and nitrogen accumulation, symbiotic nitrogen fixation (N2 fixation) and weed suppression. Total cover crop biomass, shoot N accumulation and N2 fixation differed with year, location, tillage system and species due to variations in weather, inorganic soil N resources and weed competition. Biomass production reached up to 1.65 and 2.19 Mg ha−1 (both intercropped field peas), and N2 fixation up to 53.7 and 60.5 kg ha−1 (both common vetches) in the no-till and reduced tillage system, respectively. In the no-till system consistently low sunflower performance compared with the legumes prevented significant intercropping effects. Under central European conditions no-till cover cropping appears to be practicable if weed density is low at seeding. The interactions between year, location, tillage system and species demonstrate the difficulties in cover crop species selection for organic conservation tillage systems.  相似文献   

9.
Growth and yield of wheat are affected by environmental conditions and can be regulated by sowing time and seeding rate. In this study, three sowing times [winter sowing (first week of September), freezing sowing (last week of October) and spring sowing (last week of April)] at seven seeding rates (325, 375, 425, 475, 525, 575 and 625 seeds m?2) were investigated during the 2002–03 and 2003–04 seasons, in Erzurum (Turkey) dryland conditions, using Kirik facultative wheat. A split‐plot design was used, with sowing times as main plots and seeding rates randomized as subplots. There was a significant year × sowing time interaction for grain yield and kernels per spike. Winter‐sown wheat produced a significantly higher leaf area index, leaf area duration, spikes per square metre, kernel weight and grain yield than freezing‐ and spring‐sown wheat. The optimum time of sowing was winter for the facultative cv. Kirik. Grain yields at freezing and spring sowing were low, which was largely the result of hastened crop development and high temperatures during and after anthesis. Increasing seeding rate up to 525 seeds m?2 increased the spikes per square metre at harvest, resulting in increased grain yield. Seeding rate, however, was not as important as sowing time in maximizing grain yield. Changes in spikes per square metre were the major contributors to the grain‐yield differences observed among sowing times and seeding rates. Yield increases from higher seeding rates were greater at freezing and spring sowing. We recommended that a seeding rate of 525 seeds m?2 be chosen for winter sowing, and 575 seeds m?2 for freezing and spring sowing.  相似文献   

10.
High weed infestation is a major constraint to widespread adoption of direct seeding of rice (Oryza sativa L.) The experiments were conducted in 1998 wet and 1999 dry seasons in the Philippines to examine the effects of seeding methods and rates on suppressing weeds in direct-seeded lowland rice. Treatments consisted of four seeding methods: conventional and modified broadcast seeding, drill seeding with east–west and north–south row orientations; three seeding rates: 40, 80 and 160 kg seed ha−1 as well as two weed control levels: weed control with herbicide and no weed control. Among the seeding methods drill seeding with east–west row orientation had the lowest rice grain yield loss caused by weeds (38 % in the wet and 20 % in the dry season), whereas the highest losses because of weeds were observed with conventional broadcast seeding (59 % in the wet and 27 % in the dry season). Seeding rate was inversely correlated to weed interference. Severe rice yield reduction (71 %) caused by weeds was found at a seeding rate of 40 kg seed ha−1 in the wet season. Using seeding rates of 80 and 160 kg seed ha−1, respectively, lowered yield loss to 47 and 26 % in the wet season, 32 and 18 % in the dry season. Therefore suitable method and/or rate of seeding can significantly suppress weeds in direct-seeded lowland rice.  相似文献   

11.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

12.
A relay cropping system of cereals, whereby winter wheat (Triticum aestivum L.) was undersown in two‐row spring barley (Hordeum distichum L.), was established in a field trial in central Sweden in 1999 and continued until 2000. The purpose of the study was to examine crop and weed responses to different plant densities of the undersown winter crop. Winter wheat was sown at four seed rates (187, 94, 47 and 0 kg ha?1) immediately after the sowing of barley. Barley was harvested in the first autumn after sowing and winter wheat in the second autumn. The grain yield of barley was not affected by the seed rate of wheat, and averaged 4580 kg ha?1. Winter wheat did not vernalize during the first growing season but remained at the vegetative stage. The grain yield of wheat was 1990 kg ha?1 for the lowest and 5610 kg ha?1 for the highest seed rate of wheat. Whilst the undersowing process itself stimulated weed emergence in this experiment, increasing the undersowing seed rate reduced the population of perennial weeds by 40–70 %. In the second growing season, the total biomass of weeds was 66 % higher at the highest seed rate compared with the lowest seed rate.  相似文献   

13.
To gain information about the possible use of legume cover crops as an alternative and sustainable weed-control strategy for winter wheat (Triticum aestivum L.), an experiment was conducted at two sites in the Swiss Midlands in 2001/2002. Under organic farming conditions winter wheat was direct-drilled into living mulches established with four different legume genotypes or into control plots without cover crops. Compared to NAT (control plots without cover crops but with a naturally establishing weed community), white clover (Trifolium repens L.), subclover (Trifolium subterraneum L.), and birdsfoot trefoil (Lotus corniculatus L.) reduced the density of monocotyledonous, dicotyledonous, spring-germinating, and annual weeds by the time of wheat anthesis. Strong-spined medick (Medicago truncatula Gaertner) was less efficient in this regard. While the grain yield was reduced by 60% or more for all legumes when compared to NOWEED (control plots kept weed-free), a significant negative correlation between the dry matter of the cover crop and weeds as well as between the cover crop and the winter wheat was observed by the time of wheat anthesis. The effect of manuring (60 m3 ha−1 liquid farmyard manure) was marginal for weeds and cover crops but the additional nutrients significantly increased total winter wheat dry matter and grain yields. The suppression achieved by some legumes clearly demonstrates their potential for the control of weeds in such cropping systems. However, before living legume cover crops can be considered a viable alternative for integrated weed management under organic farming conditions, management strategies need to be identified which maximise the positive effect in terms of weed control at the same time as they minimise the negative impact on growth and yield of winter wheat.  相似文献   

14.
Productivity of maize ( Zea mays L.) legume intercrops is determined by soil, management, and environment. Planting sequence and time and N fertilization are easily controlled management factors but their effects on intercrop yields are not well understood. Maize grown in monoculture or intercropped with polebean ( Phaseolus vulgaris L.) or cowpea ( Vigna unguiculata [L.] Warp.) was studied for two growing seasons at Morgantown, WV. Crops were seeded in the following sequences: maize before legume, both at the same time, and legume before maize. Planting times were early May or mid June. Nitrogen was applied at 0 or 160 kg ha−1. Maize grain and forage, legume grain and forage, and total forage production were determined on a dry matter basis. Intercropping (average of all treatments) reduced maize grain and forage yields compared to maize in monoculture but had no effect on total forage production. However, total forage production was greatest when the seeding sequence was maize intercropped at the same time or before cowpea. Cowpea never produced grain, but forage production was almost double that of polebean. Maize produced most forage when seeded before the legumes, and the legumes produced most forage when seeded before maize. Early planting increased maize production and decreased legume production. Nitrogen increased maize grain, maize forage, and total forage yields but had not effect on legume forage production. It is concluded that maize/legume intercrops show promise for increasing forage production in temperate areas and more research on planting times and densities, weed control, harvesting and management is needed.  相似文献   

15.
Annual Medicago species (medics) have characteristics that may make them a valuable addition to agricultural systems in the Upper Midwest, USA, but few genotypes have been evaluated. The objective of this research was to identify medic germplasm exhibiting traits that are desirable for cultivars intended for multiple uses in the region. Australian annual medic cultivars and plant introductions (PI) representing seven species were evaluated for Phytophthora root rot (Phytophthora medicaginis Hansen et Maxwell) resistance, shade tolerance, growth habit, dry matter accumulation, maturity after 9–10 weeks of growth, and potato leafhopper (Empoasca fabae Harris) yellowing. Medicago polymorpha L. plant introductions PI 197346, PI 459135, and PI 283653 were resistant to Phytophthora root rot. Kelson [Medicago scutellata (L.) Mill.] and PI 419241 [Medicago tornata (L.) Mill.] were tolerant of shade, while M. polymorpha entries Santiago and SA 9032 were intolerant. In growth habit comparisons, PI 419241 and PI 368939 (M. polymorpha) grew less than 11 cm tall, while Kelson and SA 5762 (M. polymorpha) grew at least 27 cm tall. Dry matter production 10–12 weeks after emergence was greatest for PI 197339 (M. polymorpha) and Kelson. At that time, the earliest maturing entries, PI 226517 (M. polymorpha) and Sava (M. scutellata), had begun to senesce, while the latest maturing entry (PI 419241) was still vegetative. Paraponto (Medicago rugosa Desr.) was highly resistant to potato leafhopper yellowing. None of the medic entries evaluated combined all of the desirable traits for Upper Midwest cultivars, but the traits were all present within available germplasms. Plant breeders could develop adapted cultivars by combining favourable traits from several medic genotypes.  相似文献   

16.
Unknown compounds in crop plants are inhibitory to seed germination and early seedling growth of weed plants. A Petri dish assay showed that barley (Hordeum vulgare L.), oats (Avena sativa L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) extracts significantly reduced root growth of alfalfa (Medicago sativa L.), barnyard grass (Echinochloa crus‐galli, Beauv. var. oryzicola Ohwi.) and eclipta (Eclipta prostrata L.). As the concentration of crop extracts increased, root growth of the test plants were significantly reduced. A high‐performance liquid chromatography analysis with nine standard phenolic compounds showed that the concentrations and compositions of allelopathic compounds depend on the extracted plant extracts. Caffeic acid, hydro‐cinnamic acid, ferulic acid, m‐coumaric acid, p‐coumaric acid and coumarin were present in all the crop plant species, and hydro‐cinnamic acid were detected as the highest amount. Coumarin at 10?3 m significantly inhibited root growth of alfalfa and barnyard grass more than that of eclipta. The research suggests that extracts of barley, oats, rice and wheat have an allelopathic effect on alfalfa, barnyard grass and eclipta and that the findings of bioassay were considerably correlated with the type and amount of causative allelochemicals, indicating that the allelopathic effects on three test plants were ranked in order of wheat (highest), barley, rice and oats (lowest). The results may have value in enabling weed control based on natural plant extracts or crop residues in the fields.  相似文献   

17.
In order to better understand how mixed crop cultures mitigate stressful conditions, this study aims to highlight the beneficial effect of the intercropping legume-cereal in enhancing soil phosphorus (P) availability for plant growth and productivity in a P-deficient soil of a northern Algerian agroecosystem. To address this question, common bean (Phaseolus vulgaris L. cv. El Djadida) and maize (Zea mays L. cv. Filou), were grown as sole- and inter-crops in two experimental sites; S1 (P-deficient) and S2 (P-sufficient) during two growing seasons (2011 and 2012). Growth, nodulation and grain yield were assessed and correlated with the rhizosphere soil P availability. Results showed that P availability significantly increased in the rhizosphere of both species, especially in intercropping under the P-deficient soil conditions. This increase was associated with high efficiency in use of the rhizobial symbiosis (high correlation between plant biomass and nodulation), plant growth and resource (nitrogen (N) and P) use efficiency as indicated by higher land equivalent ratio (LER > 1) and N nutrition index (for maize) in intercropping over sole cropping treatments. Moreover, the rhizosphere P availability and nodule biomass were positively correlated (r2 = 0.71, p < 0.01 and r2 = 0.62, p < 0.01) in the intercropped common bean grown in the P-deficient soil during 2011 and 2012. The increased P availability presumably improved biomass and grain yield in intercropping, though it mainly enhanced grain yield in intercropped maize. Our findings suggest that modification in the intercropped common bean rhizosphere-induced parameters facilitated P uptake, plant biomass and grain yield for the intercropped maize under P-deficiency conditions.  相似文献   

18.
《Soil Technology》1994,7(3):197-208
The long growing season of the southeastern Coastal Plains allows planting of a second crop after spring-planted maize (Zea mays L.). Second crops have been shown to reduce erosion and prevent leaching of nutrients and pesticides. Maize grown with a second annual crop might also have a yield advantage over mono-cultured maize. Seven tillage/cropping systems were compared. They included disking for weed control, disking for seedbed preparation, or no disking. Double-cropped treatments included sunflower (Helianthus annuus L.), soybean (Glycine max. L.), a cover crop [crimson clover (Trifolium incarnatum L.)] or no double crop. Double-cropped soybean yields did not respond to irrigation. They averaged 0.63 Mg/ha over 4 years. This is less than half of the local non-double-cropped yields. Sunflower yields averaged 0.89 Mg/ha, also less than non-double-cropped yields (1.0–2.5 Mg/ha). The best continous maize yields (7–8 Mg/ha) were from treatments with disking in some phase of the operation. Treatments with lower maize yields generally had higher plant nutrient contents. Double-cropped maize yields significantly (P<0.10) outyielded mono-cropped maize yields in two of the three years. In 1984, a dry year, the minimum tillage treatment had lower tensiometer readings than the conventionally tilled treatment.  相似文献   

19.
In order to obtain information about the impact of legume cover crops on the weed community in organic farming, winter wheat (Triticum aestivum L.) was directly drilled in rows 0.1875 and 0.3750 m apart in living mulches that consisted of Trifolium repens L. (TRFRE), T. subterraneum L. (TRFSU), Medicago truncatula Gaertner (MEDTR), and Lotus corniculatus L. (LOTCO). A control treatment without cover crops (NAT, the site‐specific weed community) was also established. The vegetation between the wide rows was either mulched or left undisturbed. The effect of liquid farmyard manure (60 m3 ha−1) was also tested. TRFRE, TRFSU, and LOTCO effectively suppressed Poa annua L. and Matricaria recutita L. at site 1 and P. annua, Capsella bursa‐pastoris (L.) Med., and Stellaria media (L.) Vill. at site 2 when compared with NAT. MEDTR, which died during the winter, provided little weed suppression. Mulching significantly suppressed dicotyledonous weed species, but favoured Poa trivialis L. No manure effect was observed. Winter hardy legume cover crops contribute to weed suppression in winter wheat. However, careful evaluation of cover crop × weed × management interactions is necessary to understand the risk for the establishment of problematic weeds.  相似文献   

20.
Preplant‐applied, urea‐based fertilizer management in high‐residue, no‐till (NT) corn (Zea mays L.) is challenging because of potential N loss due to cool, wet conditions in the spring and dry conditions during the summer months. Field research evaluated the effects of polymer‐coated urea (PCU) application timing, placement and cropping system on urea release for corn and determined corn yield response to PCU on claypan soils following wheat (Triticum aestivum L.) cropping systems [reduced‐till corn following wheat, no‐till corn following wheat with double‐cropped (DC) soybean [Glycine max (L.) Merr.] and no‐till corn following wheat with a frost‐seeded red clover (FSC) (Trifolium pratense L.) cover crop]. Urea release from PCU was <35 % from fall through winter (November–January) and <20 % for early preplant (February–March) applications until 1 April. By 1 August, less urea was released in some instances from surface applications of PCU following FSC or DC soybean, but release was generally greater than in the absence of soil. No‐till corn following DC soybean or FSC had yields that were 1.01–1.32 Mg ha?1 greater when grown with PCU compared to urea at 168 kg N ha?1. Grain yields were similar within no‐till cropping systems with PCU, anhydrous ammonia and sidedressed urea ammonium nitrate (UAN) at 168 kg N ha?1. Farmers should recognize that high yields may not be obtained if PCU rates are reduced by 50 % (84 kg N ha?1) in high‐residue (DC soybean or FSC), no‐till production systems. Several N sources such as PCU, anhydrous ammonia and sidedressed UAN worked similarly in high‐residue, no‐till systems, although no differences between N sources were observed in a reduced‐tillage system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号