首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Foliar fungicides are important management inputs for winter wheat (Triticum aestivum L.) in high-yielding areas of Europe, but their effectiveness may interact with cultivar selection and nitrogen (N) fertilization. No information is available on the potential use of fungicides in reducing yield losses from foliar diseases in Croatia, where wheat crop is extensively grown under low N inputs. Field experiments were conducted during 2000–02 to evaluate the agronomic responses of six winter wheat cultivars to fungicide application (tebuconazol around heading) compared with untreated plots at low (67 kg N ha−1) and high (194 kg N ha−1) N fertilization rates. Grain yields tended to increase in all years following fungicide treatment at high N rate by an average of 10.1 % (773 kg ha−1), but improved significantly in one year only at low N rate. When these occurred, yield increases were associated with larger grain weight per ear primarily due to heavier 1000-kernel weight. Cultivars differed in their responses to fungicide application across growing seasons and N fertilization rates. Under low disease pressure in 2000 and 2001, improved yields with fungicide use occurred for few susceptible cultivars only, whereas all cultivars significantly increased yields under higher disease severity in 2002 by an average of 383 kg ha−1 (5.0 %) at low N rate and 1443 kg ha−1 (19.0 %) at high N rate. Following fungicide application at high N rate, some susceptible cultivars outyielded resistant cultivars, whereas opposite responses occurred in untreated plots. High N fertilization rate consistently produced larger grain yields except under high disease severity and no fungicide sprayed in 2002, when it had no benefits at all over low N rate. Fungicide application showed limited importance for wheat performance at low N rate; however, cultivars significantly differed in yield responses as well as in rankings after fungicide use at high N fertilization rate.  相似文献   

2.
乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应   总被引:3,自引:0,他引:3  
以玉米品种"郑单958"为材料,在大田条件下,研究了乙烯利(0和180 g hm–2)和氮肥水平(0、75、150和225kg N hm–2)对夏玉米产量、氮素吸收和利用以及SPAD值的影响。结果表明,乙烯利处理显著降低了氮吸收量和吸收效率,但显著提高氮利用效率,其中乙烯利处理氮农学效率比对照提高了32.7%~34.6%,而且乙烯利处理对玉米产量及其产量构成因素没有显著影响;随着施氮量增加,夏玉米产量、产量构成因素和氮吸收量显著增加,而氮吸收效率、氮利用效率、氮偏生产力和氮农学效率随之降低,其中225 kg N hm–2处理氮吸收量比0 kg N hm–2处理提高了68.4%~91.8%,但225 kg N hm–2和150 kg N hm–2处理之间的氮吸收量差异不显著。乙烯利和氮肥对氮吸收量、氮吸收效率和氮农学效率具有互作效应。喷施乙烯利和增施氮肥均能提高灌浆期穗位叶SPAD值,但两者之间没有互作效应。通过相关性分析表明,夏玉米产量与吐丝期氮吸收量、收获期氮吸收量、灌浆期穗位叶SPAD值显著正相关。  相似文献   

3.
2009-2011年在山东临沂冬小麦-夏玉米生产田,探讨了麦季施氮水平和施氮时期对两季作物干物质积累与分配、籽粒产量、氮肥农学利用率和氮肥偏生产力的影响。施氮量设4个处理,分别是0 (N0)、168.75 (N1)、225 (N2)和281.25 kg hm-2 (N3);氮肥追施时期设2个处理,分别为拔节期(S1)和拔节期+开花期(S2)。在S1条件下,冬小麦和夏玉米的籽粒干物质积累量及夏玉米和周年生物产量均表现为N3>N2>N1,冬小麦和夏玉米的籽粒产量N2和N3处理间无显著差异;氮肥农学利用率和氮肥偏生产力在麦季随施氮量增加显著降低,而在玉米季则逐渐升高,但玉米季氮肥偏生产力N3与N2处理间无显著差异。S2条件下麦季施氮量由N2处理增加25% (N3),冬小麦和夏玉米籽粒干物质积累量、生物产量和籽粒产量无显著变化,氮肥农学利用率和氮肥偏生产力在麦季显著降低、在玉米季无显著变化。与S1相比,S2有利于提高N1和N2条件下冬小麦籽粒与营养器官的干物质积累量、生物产量、籽粒产量和氮肥农学利用率及氮肥偏生产力,但对N3条件下的这些指标无显著影响;而在玉米季,3个施氮量水平下夏玉米的各项指标均显著升高。综合周年生物产量、籽粒产量和氮肥农学利用率及氮肥偏生产力结果,麦季总施氮量225 kg hm-2及拔节期+开花期追氮是本试验条件和种植模式下的最佳麦季氮肥运筹模式。  相似文献   

4.
When grassland is ploughed and reseeded this results in an increased mineralization of organically bound nitrogen (N) in the soil. Greater amounts of nitrate in autumn are at risk of being leached during the winter half of the year. In two field experiments, nitrate leaching was measured over 2 years after reseeding of a 9‐year‐old grassland field in spring on a sandy soil in northwest Germany. During the experiments, major management factors that can influence the intensity of mineralization were varied: Type of fertilizer, mineral N fertilizer or organic manure, and the level of fertilization, 0, 160 or 320 kg N ha−1 a−1, before renewal of the grassland, and level of fertilization, 0, 160 or 320 kg N ha−1 a−1 in mineral form, after renewal of the grassland. The type of fertilization as well as the level of N fertilization before ploughing had no significant effect on the soil mineral nitrogen content (SMN) in autumn and N leaching in the year following the grassland renewal. N fertilizer level after sward renovation had a significant effect on the nitrate leaching losses in the two following years. Fertilization at a rate of 320 kg N ha−1 resulted in leaching losses of 7 and 61 kg N ha−1 in the first and second subsequent years, respectively. At fertilizer rates of 0 and 160 kg N ha−1 leaching losses were lower than 5 kg N ha−1. It is concluded that for mown grassland no restriction of the N fertilization before the renovation of the sward is necessary to reduce the nitrate leaching risk as long as the amount of N fertilized does not exceed the N‐uptake by the crop. Similarly, the N fertilization after the sward renewal does not bear a particular leaching risk.  相似文献   

5.
Water scarcity is known to be a strong limiting factor affecting maize grown and yield in cold semi-arid regions. Numerous studies have shown that rehydration improves maize growth. Our study aimed to explore the effects of rehydration treatments on maize growth and yield under water and nitrogen stress during different growth stages. We selected the drought-tolerant maize variety Nendan 19 (ND19) and subjected it to water stress during the V6 (sixth-leaf), R2 (filling) and R6 (maturity) growth stages and a rehydration treatment after each stress stage. Our results indicated that N1 (N100 kg N ha−1) and N3 (N300 kg N ha−1) treatments significantly increased the leaf moisture status relative to water content (RWC), bound water content (BWC), free water content (FWC) and water potential (WP)) at different growth stages. Similar trends were observed in the accumulation of plant leaf and root hormones (zeatin+zeatin riboside, indole-3-acetic acid, abscisic acid and gibberellic acid), photosynthetic pigments and chlorophyll fluorescence. However, under the same water stress conditions, they decreased as the N rate increased and reached a minimum value in the S3 (water stress for N3) treatments. In addition, with growth stage advancement and extension of the rehydration time, both showed a gradual upward trend. The results showed that to save water resources in the cold semi-arid region, rehydration treatments (R2S1 and R2S3) significantly increased the photosynthetic pigments and chlorophyll fluorescence parameters, leaf moisture status, biomass, 100-grain weight, hormone content, ear characteristics and grain yield of maize.  相似文献   

6.
控释尿素水氮耦合对夏玉米产量和光合特性的影响   总被引:11,自引:0,他引:11  
采用旱棚盆栽试验,以郑单958为材料设置3个水分水平(正常水分W3、轻度水分胁迫W2、重度水分胁迫W1)和高氮N3(施纯氮315 kg hm–2)、中氮N2(施纯氮210 kg hm–2)、低氮N1(施纯氮105 kg hm–2)、不施氮N0四个控释尿素施氮水平,探讨控释尿素水氮耦合对夏玉米产量和光合特性的影响。结果表明,控释尿素水氮耦合对夏玉米产量和光合特性具有显著影响。相同水分条件下,夏玉米产量随施氮量增加而增加,W1条件下增产13.17%~20.96%,W2条件下增产13.93%~32.48%,W3条件下增产14.37%~21.83%。相同施氮水平下,产量也随水分增加而增加,W2N3、W3N2和W3N3的产量在所有处理中较高。水氮耦合对夏玉米穗位叶净光合速率的影响显著,W1条件下N3、N2和N1处理间差异不显著,均显著高于N0,W2、W3各施氮处理的净光合速率随施氮量增加而增加,W3各处理的平均净光合速率高于其他2个水分处理,W2N3比W3N3和W3N2前期略低,后期无显著差异。水氮耦合效应能有效减缓穗位叶的实际光化学效率ΦPSII、叶片光化学猝灭系数qP以及PSII反应中心的最大光能转换效率的下降速率,提高光能利用率。控释尿素水氮耦合能有效提高夏玉米花后穗位叶净光合速率,保证籽粒对营养物质的需求,提高穗位叶实际和最大光化学效率,从而提高夏玉米的产量,产量构成因素中增加千粒重和穗粒数的优势较大。综合产量与光合特性、荧光特性的表现,在田间持水量为75%±5%的土壤条件下,控释尿素施氮量以纯氮210 kg hm–2为最佳;在田间持水量为55%±5%的土壤条件下,控释尿素施氮量以纯氮315 kg hm–2为宜。  相似文献   

7.
Little is known about the effect of combined phosphorus and nitrogen (P‐N) fertilization on the N requirement of sunflower (Helianthus annus L.). This study was carried out to evaluate the effects of varying levels of P and N, as well as the interaction P × N, on the N uptake, yield and N apparent utilization efficiency under field conditions. Split‐plot design experiments were conducted in the mid‐western Pampas in Argentina. Four levels of N (0, 46, 92 and 138 kg N ha?1) and three levels of P (0, 12 and 40 kg P ha?1) were applied to two Typic Hapludolls over two growing seasons (1997–98 and 1998–99). N uptake and soil N‐NO3 contents were determined at the V7, R5 and R9 growth stages. The sunflower yield ranged from 2.5 to 5.0 Mg ha?1. The total N requirement was around 45 kg N Mg?1 grain, and this result suggests that it is not necessary to use different N requirements (parameter b) for fertilized crops when a yield response is expected. To achieve a 100 % yield maximum a N supply (soil plus fertilizer) of 181 kg N ha?1 at P40 was needed. However, at P0, the highest yield was about 80 % of the maximum yield with a N supply (soil plus fertilizer) of 164 kg N ha?1. P application increased the apparent use efficiency of the supplied N.  相似文献   

8.
Crops generally utilize nitrogen (N) from slurries less efficiently than from mineral fertilizers. In order to compare the effects of slurry and mineral N application on yield and residual fertilization effects, a long-term field trial was established in autumn 1994, where pig slurry was applied to oilseed rape (OSR), winter wheat and winter barley at the same application dates as mineral N fertilizer. N amounts ranged from 0 to 240 kg total N ha−1. The same treatment regimes were applied to the same plots in each year. Starting in 2010 (2011), wheat (barley) received no N fertilization in order to allow for testing residual fertilizer effects. Every year seed yield and N offtake by the seeds were determined.Accounting only for ammonia N of pig slurry, similar seed yields in OSR and slightly higher grain yields in wheat and barley compared to mineral N fertilizer were achieved. This indicates that mineralization of organically bounded slurry N compensated gaseous ammonia losses. In plots without N fertilization, OSR showed no yield trends during the experimental period, whereas wheat (barley) yield started to decrease after 10 (13) years without N fertilization. In the highly fertilized treatments, no significant trend in seed yield or N amount required for maximum yield could be detected. In the subsequent unfertilized wheat crop, accumulated slurry effects increased grain yield more than those of mineral N fertilizer. Barley grown in the second year without N supply remained unaffected by the previous slurry N application.  相似文献   

9.
Crop residue is often grazed by sheep after harvest, over the dry summer period from December to March in Mediterranean environments. However, soil cover provided by crop residues is a key component of conservation agriculture for maintaining favourable soil structure and high yields.A series of 31 site × year experiments was conducted to assess the effect of summer stubble grazing on residue levels and following crop yields. Relatively light grazing, with stocking rates below 10 dry sheep equivalent (DSE) and between 90 and 471 DSE days ha−1, had no significant effect on the amount of residue, soil properties, soil water, weeds or yield in the following crop. The main effect of grazing was to knock down and scatter the standing crop residues. However, longer term grazing at relatively high intensity (956 DSE days ha−1) on heavy soil, over both summer and winter, as in a pasture phase, did significantly reduce residue levels, infiltration and yield (by 59%). The effect of summer grazing on soil mineral N was small and inconsistent, with increased mineral N, by about 3–7 kg N ha−1, following grazing at two of the 13 sites. By contrast, higher mineral N, by 2–15 kg N ha−1, was measured in the un-grazed plots at three of the 13 sites. This was due to increased growth of legume pastures in the absence of grazing.More research is needed to confirm the yield effects when cropping after an annual pasture/fallow that is grazed over summer and winter, particularly on different soil types.  相似文献   

10.
Four crops, corn (Zea mays L.), sweet sorghum (Sorghum bicolor L.), fodder beet (Beta vulgaris L.) and sugarbeet (Beta vulgaris L.) were grown in irrigated plots at the experimental farm of the University of California, Davis, in 1980 and 1981. Six fertilizer N levels ranging from 0 to 280 kg ha?1 were used to estimate the most efficient N input for each of the tested crop in terms of energy input and output analysis. Calculations of cultural energy input costs in relation to potential ethanol yield showed production requirements of: corn 30.9 GJ ha?1, sweet sorghum 30.4 GJ ha?1, fodder beet 49.4 GJ ha?1 and sugarbeet 41.0 GJ ha?1. Highest average energy inputs were for liquid fuels for operations 35%, irrigation 23% and fertilizer nitrogen 19%. Fodder beet had the highest fermentable carbohydrate yield at 13.05 Mg ha?1 followed by sugarbeet at 11.5 Mg ha?1. Sweet sorghum and corn yields were lower at 9.71 and 8.09 Mg ha?1, respectively. Crop production inputs of energy per liter of potential ethanol were: corn 6.42 MJL?1 sweet sorghum 5.25 MJL?1, fodder beet 6.35 MJL?1 and sugarbeet 5.95 MJL?1.  相似文献   

11.
Recovery of fertilizer nitrogen (N) applied to winter wheat crops at tillering in spring is lower than that of N applied at later growth stages because of higher losses and immobilization of N. Two strategies to reduce early N losses and N immobilization and to increase N availability for winter wheat, which should result in an improved N use efficiency (= higher N uptake and/or increased yield per unit fertilizer N), were evaluated. First, 16 winter wheat trials (eight sites in each of 1996 and 1997) were conducted to investigate the effects of reduced and increased N application rates at tillering and stem elongation, respectively, on yield and N uptake of grain. In treatment 90‐70‐60 (90 kg N ha?1 at tillering, 70 kg N ha?1 at stem elongation and 60 kg N ha?1 at ear emergence), the average values for grain yield and grain N removal were up to 3.1 and 5.0 % higher than in treatment 120‐40‐60, reflecting conventional fertilizer practice. Higher grain N removal for the treatment with reduced N rates at tillering, 90‐70‐60, was attributed to lower N immobilization (and N losses), which increased fertilizer N availability. Secondly, as microorganisms prefer NH4+ to NO3? for N immobilization, higher net N immobilization would be expected after application of the ammonium‐N form. In a pot experiment, net N immobilization was higher and dry matter yields and crop N contents at harvest were lower with ammonium (ammonium sulphate + nitrification inhibitor Dicyandiamide) than with nitrate (calcium nitrate) nutrition. Five field trials were then conducted to compare calcium nitrate (CN) and calcium ammonium nitrate (CAN) nutrition at tillering, followed by two CAN applications for both treatments. At harvest, crop N and grain yield were higher in the CN than in the CAN treatment at each N supply level. In conclusion, fertilizer N use efficiency in winter wheat can be improved if N availability to the crops is increased as a result of reduced N immobilization (and N losses) early in the growth period. N application systems could be modified towards strategies with lower N applications at tillering compensated by higher N dressing applications later. An additional advantage is expected to result from use of nitrate‐N fertilizers at tillering.  相似文献   

12.
Reed canarygrass (Phalaris arundinacea L.) is often planted at wastewater treatment sites to provide ground cover and remove nutrients. Our overall objective was to determine the forage yield and nutrient uptake under year-round potato wastewater application in northern latitudes. Specifically, we determined the effect of N fertilization rate on forage dry matter yield and N and P uptake by reed canarygrass, and compared the forage yield, persistence and nutrient uptake of reed canarygrass relative to those of orchardgrass (Dactylis glomerata L.), smooth bromegrass (Bromis inermis Leyss), timothy (Phleum pratense L.) and quackgrass [Elytrigia repens (L.) Nevski]. With only wastewater application, reed canarygrass had a forage yield of 5.8 Mg ha−1, with N and P uptake of 113 and 30 kg ha−1, respectively. Forage dry matter yield, N uptake and P uptake increased to 14.5 Mg ha−1, 383 kg ha−1 and 64 kg ha−1, respectively, with an N fertilization rate of 224 kg ha−1. Forage yield and N uptake of reed canarygrass, orchardgrass, timothy and smooth bromegrass were similar and exceeded those of quackgrass. Reed canarygrass P uptake exceeded that of the other grasses. Reed canarygrass was less persistent than quackgrass or smooth bromegrass.  相似文献   

13.
More user-friendly methods are needed to detect crop N status/stress and guide the timing of in-season N application. In the current study, a reference curve method of detecting N stress was proposed to remedy practical problems of methods that require leaf sampling or maintaining a N sufficient strip in the field. The reference curve method was derived from the integrated information of ratio vegetation index (RVI) and leaf area index (LAI), which were obtained from field experimental potato crops. Different N treatments received 42 kg N ha−1 at planting and, subsequently, the rest of N was applied during the season. The total N ranged from 0 to180 kg N ha−1. RVI and LAI from the economically optimum 180 kg N ha−1 treatments were used to derive the reference curve. RVI and LAI from 180 kg N ha−1 treatment had a high (R2 = 0.97) correlation and were best fitted with a 2nd order polynomial function, which was independent of season. The treatments where N fertigation was stopped before reaching 180 kg N ha−1 started to deviate from the 95% confidence interval of the reference curve about 10 days after N-fertigation was stopped. This corresponded to 10–20 kg ha−1 difference in total plant N uptake between reference and the N deprived treatments, implying that a deviation from the reference curve occurred for small N deficits. Besides, running crop simulation model to alert for impendent N stress closely corresponded to the reference curve and was recommended as a second management tool. Therefore two tools are hereby made available to guide supplementary N-fertilization. These will be helpful in regional potato production for diagnosis of N status, and allow discrimination between situations of sub-optimal and optimal N supply.  相似文献   

14.
Previous experiments have shown that, at harvest of winter wheat, recovery of fertilizer N applied in early spring [tillering, Zadok’s growth stage (GS) 25] is lower than that of N applied later in the growth period. This can be explained by losses and immobilization of N, which might be higher between GS 25 and stem elongation (GS 31). It was hypothesized that a higher crop density (i.e. more plants per unit area) results in an increased uptake of fertilizer N applied at GS 25, so that less fertilizer N is subject to losses and immobilization. Different crop densities of winter wheat at GS 25 were established by sowing densities of 100 seeds m–2 (Slow), 375 seeds m–2 (Scfp= common farming practice) and 650 seeds m–2 (Shigh) in autumn. The effect of sowing density on crop N uptake and apparent fertilizer N recovery (aFNrec = N in fertilized treatments ? N in unfertilized treatments) in crops and soil mineral N (Nmin), as well as on lost and immobilized N (i.e. non‐recovered N = N rate ? aFNrec), was investigated for two periods after N application at GS 25 [i.e. from GS 25 to 15 days later (GS 25 + 15d), and from GS 25 + 15d to GS 31] and in a third period between GS 31 and harvest (i.e. after second and third N applications). Fertilizer N rates varied at GS 25 (0, 43 and 103 kg N ha–1), GS 31 (0 and 30 kg N ha–1) and ear emergence (0, 30 and 60 kg ha–1). At GS 25 + 15d, non‐recovered N was highest (up to 33 kg N ha–1 and up to 74 kg N ha–1 at N rates of 43 and 103 kg N ha–1, respectively) due to low crop N uptake after the first N dressing. Non‐recovered N was not affected by sowing density. Re‐mineralization during later growth stages indicated that non‐recovered N had been immobilized. N uptake rates from the second and third N applications were lowest for Slow, so non‐recovered N at harvest was highest for Slow. Although non‐recovered N was similar for Scfp and Shigh, the highest grain yields were found at Scfp and N dressings of 43 + 30 + 60 kg N ha–1. This combination of sowing density and N rates was the closest to common farming practice. Grain yields were lower for Shigh than for Scfp, presumably due to high competition between plants for nutrients and water. In conclusion, reducing or increasing sowing density compared to Scfp did not reduce immobilization (and losses) of fertilizer N and did not result in increased fertilizer N use efficiency or grain yields.  相似文献   

15.
In the Lorraine region, major soils used for winter oilseed rape are calcareous. Across two pot and two field experiments, we studied the influence of sulfur applied at different levels on apparent N-use efficiency (ANU), yield, glucosinolate (GLS) and oil content of seeds. The soil received a constant dose of 200 kg N ha−1 as ammonium nitrate, urea or cow slurry and three levels of S: 0, 30 and 75 kg ha−1 as ammonium thiosulfate (ATS), MgSO4 or ATS plus MgSO4. Apparently, oilseed rape is a N-inefficient crop as revealed by low ANU values which varied within 36 and 53% from field experiment versus 25 and 61% under controlled conditions. In both cases, S additions improved N-use efficiency only at the highest dose of 75 kg S ha−1, which is not attained by ATS with 35 kg S ha−1 (10% v/v). S fertilization increased the GLS contents that were found to be negatively correlated with plant N/S uptake ratios observed at maturity. The most important increase in GLS content by 52% was noted with cow slurry in the pot experiment. But, as a whole, the GLS levels remain below the European norm of 18 μmol g seed−1. Moreover, the oil content (% DM) of seeds decreased (but the total production increased) when the soil was fertilized with N and with or without S. The results showed that N and S nutrition during the growth were tightly linked. Their interactions, as reflected by plant uptake, are synergistic at optimum rates and antagonistic at excessive levels of one of the both. Collectively, the results indicate that S fertilization is required to improve N-use efficiency and thereby maintaining a sufficient oil level and fatty acid quality.  相似文献   

16.
通过2年田间试验,研究了氮肥一次性基施对夏播鲜食甜玉米产量、品质及氮素吸收利用的影响,为鲜食甜玉米轻简化栽培技术提供科学依据。设置不施氮(N0)、普通尿素分次施用(CUS)、普通尿素一次性基施(CUB)和控释尿素一次性基施(CRUB)4个处理。结果表明,氮肥施用可以增加鲜食甜玉米的穗长、穗粗、行粒数和穗粒数,并显著提高鲜穗产量。与N0处理相比,施氮处理的鲜穗产量2年分别显著增加17.14%~22.03%和17.77%~26.39%,2年均是CRUB处理的增幅最大,CUS处理次之,CUB处理最低。CRUB与CUS处理间2年的鲜穗产量均无显著差异,2017年2个处理的鲜穗产量显著高于CUB处理,增幅分别为7.32%和6.96%。CRUB处理2年的植株氮素积累量显著高于CUB及CUS处理,并且2年的氮肥偏生产力、氮肥农学利用率、氮肥表观利用率及经济效益均最高。鲜籽粒品质分析结果显示,不同施氮处理仅对鲜籽粒中的可溶性蛋白质含量有显著影响,对皮渣率、可溶性糖、还原糖和维生素C含量的影响不显著。CRUB处理2017年籽粒可溶性蛋白质含量显著高于CUB和CUS处理。综上,控释尿素一次性基施可以减少施肥次数,保障鲜食甜玉米鲜穗产量和籽粒品质,并提高氮肥利用率和增加农民收入。本研究可为湖北东部及相似生态地区的夏播鲜食甜玉米轻简化生产中氮素的管理提供参考依据。  相似文献   

17.
The effects of Nitrogen (N) and Plant Growth Promoting Rhizobacteria (PGPR) on growth and development of sunflower (Helianthus annuus L. var. Hysun-33) grown in the greenhouse under a natural environment were studied. The N-use efficiency of a sunflower crop grown under three N rates (N1 = 0 kg ha?1, N2 = 120 kg ha?1, and N3 = 240 kg ha?1) and three PGPR levels (R1 = 0 kg ha?1, R2 = 30 kg ha?1, and R3 = 60 kg ha?1) were investigated. The maximum amount of N resulted in higher total dry matter production per plant and the effect was prominent from 34 days after sowing (DAS). Seed yields differed significantly among different sunflower crops especially at limiting N supply, with significant shifts according to the N level. N uptake was an important parameter for yield at all N rates. The 240 kg N ha?1 treatments provided the maximum yield, while the oil contents in these treatments of higher yield showed a lower oil content (%). Harvest index was also significantly correlated to yield across N rates; however, its importance depended much on environmental conditions as well. It can be inferred from the study that sunflower crop is well-supplied with respect to growth, development, yield and yield components, to enhance N efficiency and depends very much on the N supply. All the parameters gave maximum results with the increment of N while PGPR regimes had no prominent impact on the sunflower crop, the target environment, and the target yield level grown under a specified controlled glasshouse environment.  相似文献   

18.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

19.
公顷产10000kg小麦氮素和干物质积累与分配特性   总被引:17,自引:0,他引:17  
以泰山23和济麦22为试验品种,通过连续2年的田间试验,对单产高达10 000 kg hm-2的小麦进行了施氮量和氮素吸收转运和分配特性的研究。在2006-2007年生长季,随着施氮量的增加,小麦籽粒产量先增加后降低,施纯氮240 kg hm-2 (N240)和270 kg hm-2(N270)处理的产量分别达9 954.73 kg hm-2和10 647.02 kg hm-2,比不施氮肥处理(N0)分别增加11.20%和18.93%。与N0处理相比,施氮处理显著增加了小麦植株氮素积累量、籽粒氮素积累量和开花后营养器官氮素向籽粒的转运量;随着施氮量的增加,成熟期小麦植株氮素积累量呈先增后降趋势,以N270处理最高;开花后营养器官氮素向小麦籽粒转运量和转运率先升后降,转运量以N270处理最大,为213.78 kg hm-2;而转运率以N240处理最高,为67.98%。随施氮量的增加,小麦成熟期各器官干物质积累量、花后营养器官干物质再分配量和再分配率先增后降,均以N270处理最高;开花后干物质积累对籽粒的贡献率亦呈先增后降的趋势,以N240处理最高。2005-2006年的试验结果呈相同变化趋势。在本试验条件下,小麦产量水平达10 000 kg hm-2时的适宜施氮量为240~270 kg hm-2,可供生产中参考。  相似文献   

20.
公顷产10000kg小麦氮素和干物质积累与分配特性   总被引:4,自引:0,他引:4  
以泰山23和济麦22为试验品种,通过连续2年的田间试验,对单产高达10 000 kg hm-2的小麦进行了施氮量和氮素吸收转运和分配特性的研究。在2006—2007年生长季,随着施氮量的增加,小麦籽粒产量先增加后降低,施纯氮240 kg hm-2 (N240)和270 kg hm-2(N270)处理的产量分别达9 954.73 kg hm-2和10 647.02 kg hm-2,比不施氮肥处理(N0)分别增加11.20%和18.93%。与N0处理相比,施氮处理显著增加了小麦植株氮素积累量、籽粒氮素积累量和开花后营养器官氮素向籽粒的转运量;随着施氮量的增加,成熟期小麦植株氮素积累量呈先增后降趋势,以N270处理最高;开花后营养器官氮素向小麦籽粒转运量和转运率先升后降,转运量以N270处理最大,为213.78 kg hm-2;而转运率以N240处理最高,为67.98%。随施氮量的增加,小麦成熟期各器官干物质积累量、花后营养器官干物质再分配量和再分配率先增后降,均以N270处理最高;开花后干物质积累对籽粒的贡献率亦呈先增后降的趋势,以N240处理最高。2005—2006年的试验结果呈相同变化趋势。在本试验条件下,小麦产量水平达10 000 kg hm-2时的适宜施氮量为240~270 kg hm-2,可供生产中参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号