首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The anthracnose fungus Colletotrichum orbiculare invades hosts and establishes biotrophy, later switching to necrotrophy, together with the secretion of an arsenal of effectors. In this review, we describe current progress in the study of pathogen effectors. We identified three virulence-related effectors in C. orbiculare, and revealed part of the strategy for effector-mediated infection, including suppression of immunity triggered by particular effectors. The virulence-related effectors accumulate in a unique interfacial region between C. orbiculare and cucumbers around the neck of primary biotrophic invasive hyphae. We found that the secretion of effectors toward the interface involves exocytosis and SEC22-dependent ER-Golgi traffic.  相似文献   

2.
Five fungal isolates (Trichoderma, Fusarium, Penicillium, Phoma and a sterile fungus) from zoysiagrass rhizosphere that promote plant growth were tested for their ability to induce systemic resistance in cucumber plants against Colletotrichum orbiculare. Roots of cucumber plants were treated with these fungal isolates using barley grain inocula (BGI), mycelial inocula (MI) or culture filtrate (CF). Most isolate/inoculum form combinations significantly reduced the disease except BGI of Trichoderma. These fungal isolates were also evaluated for induction of systemic resistance against bacterial angular leaf spot and Fusarium wilt by treatment with BGI. Penicillium, Phoma and the sterile fungus significantly reduced the disease incidence of bacterial angular leaf spot. Phoma and sterile fungus protected plants significantly against Fusarium wilt. Roots treated with CFs of these fungal isolates induced lignification at Colletotrichum penetration points indicating the presence of an elicitor in the CFs. The elicitor activity of CFs was evaluated by the chemiluminescence assay using tobacco callus and cucumber fruit disks. The CFs of all isolates elicited conspicuous superoxide generation. The chemiluminescence activity of the CF of Penicillium was extremely high, and its intensity was almost 100-fold higher than that of other isolates. The chemiluminescence activity was not lost following treatment with protease or autoclaving or after removal of lipid. The MW 12,000 dialyzed CF fraction was highly effective in eliciting chemiluminescence activity. Chemiluminescence emission from cucumber fruit disks treated with Penicillium was the same as that obtained from tobacco callus, except that the lipid fraction also showed a high activity. Both the MW 12,000 fraction and the lipid fraction induced lignification in the epidermal tissues of cucumber hypocotyls.  相似文献   

3.
Colletotrichum lagenarium is the casual agent of anthracnose disease of melons. Light and scanning electron microscopy were used to observe the infection process of C. lagenarium on the leaves of two melon cultivars differing in susceptibility. On both cultivars conidia began germinating 12 h after inoculation (hai), forming appressoria directly or at the tips of germ-tubes. By 48 hai appressoria had melanised and direct penetration of host tissue had begun. On the susceptible cultivar, infection vesicles formed within 72 hai and developed thick, knotted primary hyphae within epidermal cells. By 96 hai C. lagenarium produced highly branched secondary hyphae that invaded underlying mesophyll cells. After 96 hai, light brown lesions appeared on the leaves, coincident with cell necrosis and invasion by secondary hyphae. While appressoria formed more quickly on the resistant cultivar, fewer germinated to develop biotrophic primary or invasive necrotrophic secondary hyphae than on the susceptible cultivar. These results confirm that C. lagenarium is a hemibiotrophic pathogen, and that resistance in melons restricts colonisation by inhibiting the development of necrotrophic secondary hyphae.  相似文献   

4.
The infection process of Fusarium avenaceum on wheat spikes and the alteration of cell wall components in the infected host tissue were examined by means of electron microscopy and cytochemical labelling techniques following spray inoculation at growth stage (GS) 65 (mid-flowering). Macroconidia of the pathogen germinated with one to several germ-tubes 6–12 h after inoculation (hai) on host surfaces. The germ-tubes did not penetrate host tissues immediately, but extended and branched on the host surfaces. Hyphal growth on abaxial surfaces of the glume, lemma and palea was scanty 3–4 days after inoculation (dai) and no direct penetration of the outer surfaces of the spikelet was observed. Dense mycelial networks formed on the inner surfaces of the glume, lemma, palea and ovary 36–48 hai. Penetration of the host tissue occurred 36 hai by infection hyphae only on the adaxial surfaces of the glume, lemma, palea and upper part of ovary. The fungus penetrated the cuticle and hyphae extended subcuticularly or between the epidermal wall layers. The subcuticular growth phase was followed by penetration of the epidermal wall, and hyphae spread rapidly inter- and intracellularly in the glume, lemma, palea and ovary. During this necrotrophic colonization phase of the wheat spike, a series of alterations occurred in the host tissues, such as degeneration of cytoplasm and cell organelles, collapse of host cells and disintegration of host cell walls. Immunogold labelling techniques showed that cell walls of spike tissues contained reduced amounts of cellulose, xylan and pectin near intercellular hyphae or infection pegs compared to walls of healthy host tissues. These studies suggest that cell wall degrading enzymes produced by F. avenaceum facilitated rapid colonization of wheat spikes. The different penetration properties of abaxial and adaxial surfaces of the spikelet tissues as well as the two distinct colonization strategies of host tissues by F. avenaceum are discussed. The penetration and colonization behaviour of F. avenaceum in wheat spikelets resembled that of F. culmorum and F. graminearum, although mycotoxins produced by F. avenaceum differed from those of the latter two Fusarium species.  相似文献   

5.
Panicle blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), directly contributes to yield loss in the field. The effects of panicle development stage and temperature on panicle blast were studied and the infection process of M. oryzae in panicles was visualized. Rice panicles at different development stages from three rice cultivars were inoculated with a conidial suspension in vitro. The rice cultivar Lijiangxintuanheigu was highly susceptible to panicle blast at 5 days postinoculation (dpi) when the pulvinus distance was 15–20 cm. Nanjing 9108 was moderately susceptible to panicle blast when the pulvinus distance was 8–10 cm, but Yliangyou 800 was resistant. The effect of temperature on panicle blast was determined under 22–35 °C temperature treatments. Inoculated panicles placed at temperatures of 28 and 30 °C showed the highest lesion grade based on lesion length at 5 dpi. The infection process of M. oryzae in rice panicles was observed by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). M. oryzae initially formed the appressorium to invade through the epidermis of rice panicles at 24 hours postinoculation (hpi). As the disease progressed, the invasive hyphae formed dense mycelial networks in the inner parenchyma cells at 60 hpi. Our results will contribute to the understanding of panicle development stage and temperature effects on panicle blast and improve resistance evaluation methods. Additionally, visualization of the infection process by CLSM and TEM are valuable methods to observe M. oryzae invasive hyphae inside rice panicle cells.  相似文献   

6.
Glomerella leaf spot (GLS), characterized by black necrotic spots and severe defoliation, is a destructive foliar disease of apple. Widely grown cultivars such as Gala and Golden Delicious are highly susceptible to GLS. Currently, the infection biology of the causal pathogen, Colletotrichum fructicola, on apple leaves is unclear. In the present study, the penetration and colonization processes of C. fructicola were characterized on apple (cv. Gala) leaves using light and transmission electron microscopy. C. fructicola conidia produced germ tubes 4 hours post-inoculation (hpi) and appressoria at 8 hpi. In melanized appressoria, funnel-shaped appressorial cones formed around the penetration pore. At 12 hpi, C. fructicola produced secondary conidia. After penetration, C. fructicola began to develop infection vesicles at 36 hpi. At 48 hpi, the primary hyphae of C. fructicola were produced from infection vesicles within host epidermal cells; the host epidermal cell plasma membrane remained intact, indicating a biotrophic association. Subsequently, secondary hyphae penetrated epidermal cells and destroyed cell components, initiating necrotrophic colonization. C. fructicola also produced biotrophic subcuticular infection vesicles and hyphae. Together, these results demonstrate that C. fructicola forms special infection structures and colonizes apple leaves in a hemibiotrophic manner, involving intracellular as well as subcuticular colonization strategies. Detailed characterization of the infection process of C. fructicola on apple leaves will assist in the development of disease management strategies and provide a foundation for studies of the molecular mechanism of the C. fructicola–apple leaf interaction.  相似文献   

7.
The hemibiotrophic fungus Colletotrichum orbiculare forms appressoria as infection structures and primarily establishes biotrophic infection in cucumber epidermal cells. Subsequently, it develops necrotrophic infection. In the pre-invasion stage, morphogenesis of appressoria of C. orbiculare is triggered by signals from the plant surface. We found that C. orbiculare PAG1 (Perish-in-the-Absence-of-GYP1), a component of MOR [morphogenesis-related NDR (nuclear Dbf2-related) kinase network] plays an essential role as a key component of the plant-specific signaling pathway and that hydrolysis of cutin by a spore surface esterase creates a cutin monomer that constitutes a key plant-derived signal. Development of the infection structure of C. orbiculare is strictly regulated by the cell cycle and we found that proper regulation of G1/S progression via two-component GAP genes, consisting of BUB2 (Budding-Uninhibited-by-Benomyl-2) and BFA1 (Byr-Four-Alike-1) is essential for the establishment of successful infection. In the post-invasion stage, the establishment of the biotrophic phase of hemibiotrophic fungi is crucial for successful infection. We found that C. orbiculare WHI2 (WHIsky-2), an Saccharomyces cerevisiae stress regulator homolog, is involved in the phase transition from biotrophy to necrotrophy through TOR (Target of Rapamycin) signaling, and is thus essential for full pathogenesis.  相似文献   

8.
An isolate of the fungus Fusarium culmorum constitutively expressing green fluorescent protein was used to investigate the infection process and host response of primary seedling roots and stem base leaf sheaths of soft wheat cv. Genio. Disease progress was assessed macroscopically by visual symptoms, microscopically by confocal laser scanning microscopy (CLSM) and via gene expression analysis of fungal and wheat genes by real‐time quantitative RT‐PCR. In the roots, CLSM investigations revealed an initial intercellular and subsequent intracellular colonization by fungal hyphae. The fungus invaded the rhizodermal layer and cortex but was not seen to colonize the stele. The fungus consistently expressed TRI5 (24, 48 and 96 h post‐inoculation), indicating that trichothecenes were being synthesized throughout this phase of infection and colonization. The expression of the six host defence‐associated genes (Wheatwin 1‐2, PR1, Chitinase, PAL, WIR1 and LOX) increased early in infection and decreased during later stages. In the stem base, CLSM observations revealed the fungus sequentially penetrating though the first, second and third basal leaf sheaths. Expression of TRI5 was initiated early in the infection of each leaf sheath. The expression of the host defence‐associated genes varied over time and across leaf sheaths, and all were also expressed in leaf sheaths which had not yet been in contact with the fungus. Expression of LOX and WIR1 were particularly enhanced in the third leaf sheath.  相似文献   

9.
A new pathogen of pyrethrum (Tanacetum cinerariifolium) causing anthracnose was described as Colletotrichum tanaceti based on morphological characteristics and a four‐gene phylogeny consisting of rDNA‐ITS, β‐tubulin (TUB2), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) and actin (ACT) gene sequences. The fungus produced perithecia in culture, requiring an opposite mating type isolate in a heterothallic manner. The initial infection strategy on pyrethrum leaves involved the formation of appressoria followed by production of multilobed infection vesicles in the epidermal cells. Infection and colonization then proceeded through thinner secondary hyphae, which resulted in the initial production of water‐soaked lesions followed by black necrotic lesions. The infection process was suggestive of a hemibiotrophic infection strategy. Moreover, phylogenetic analysis clearly showed that C. destructivum, C. higginsianum and C. panacicola were separate species that also had similar intracellular hemibiotrophic infection strategies as C. tanaceti, which all clustered in the C. destructivum complex. Colletotrichum spp. were detected at 1% incidence in seed of 1 of 19 seed lines, indicating the potential for seed as a source of inoculum into crops. Colletotrichum tanaceti was detected in leaf lesions from 11 of 24 pyrethrum fields surveyed between April and July 2012, at a frequency of 1·3–25·0% of lesions. Anthracnose probably contributes to the complex of foliar diseases reducing green leaf area in pyrethrum fields in Australia.  相似文献   

10.
Northern corn leaf blight (NCLB) caused by Setosphaeria turcica is a major foliar disease of maize. The early-stage infection events of this pathogen on maize leaves are unclear. We investigated the optimum temperature for conidial germination and appressorium formation, and characterized penetration and growth of S. turcica in maize leaf sheath and onion epidermis cells, including use of histological staining to assess plant cell viability. The results showed that the optimum temperature for conidial germination and appressorium formation was 20°C. On the maize leaf sheath, the appressoria were formed by germinated conidia, and penetration on the epidermal cells occurred at 8 h postinoculation (hpi). Round vesicles developed beneath the appressoria. Between 16 and 24 hpi, the branched invasive hyphae invaded three to five adjacent cells at most infection sites. The invasive hyphae tended to move along the cell wall and crossed from one cell to another. In the onion epidermis cells, the appressoria formed at 8 hpi, and in most cases the epidermal cells were penetrated through the juncture of the cell walls. At 16–24 hpi, the primary hyphal terminus swelled to a vesicle. The maize leaf sheath cells died at 8 hpi, whereas the onion cells did not. Our findings documented in detail the penetration and invasive hyphal growth in maize leaf sheath and onion epidermis, as well as viability of plant cells, at the early stages of infection, and provide a foundation for elucidating the underlying mechanism of S. turcica–maize interactions.  相似文献   

11.
Northern leaf blight is a lethal foliar disease of maize caused by the fungus Exserohilum turcicum. The aim of this study was to elucidate the infection strategy of the fungus in maize leaves using modern microscopy techniques and to understand better the hemibiotrophic lifestyle of E. turcicum. Leaf samples were collected from inoculated B73 maize plants at 1, 4, 9, 11, 14 and 18 days post-inoculation (dpi). Samples were prepared according to standard microscopy procedures and analysed using light microscopy as well as scanning (SEM) and transmission electron microscopy (TEM). Microscopic observations were preceded by macroscopic observations for each time point. The fungus penetrated the leaf epidermal cells at 1 dpi and the disease was characterized by chlorotic leaf flecks. At 4 dpi the chlorotic flecks enlarged to form spots, and at 9 dpi hyphae were seen in the epidermal cells surrounding the infection site. At 11 dpi lesions started to form on the leaves and SEM revealed the presence of hyphae in the vascular bundles. At 14 dpi the xylem was almost completely blocked by hyphal growth. Hyphae spread into the adjacent bundle sheath cells causing cellular damage, characterized by plasmolysis, at 18 dpi and conidiophores formed through the stomata. Morphologically, lesions started to enlarge and coalesce leading to wilting of leaves. This study provides an updated, detailed view of the infection strategy of E. turcicum in maize and supports previous findings that E. turcicum follows a hemibiotrophic lifestyle.  相似文献   

12.
The progress of colonization of ash stems from ascospore inocula of Hymenoscyphus fraxineus was examined by light and electron microscopy. The main aim of the study was to characterize the cytology of the biotroph to necrotroph transition during lesion formation. Following direct penetration into epidermal cells, the fungus produced intracellular hyphae that invaded up to five cells before plant cells died. A lack of close attachment between the hyphal cell wall and plant cell membrane was revealed by plasmolysis of epidermal cells. Plant cells died at the centre of the infection but hyphae at the edge were typically found in living plant cells even around large lesions. During biotrophic invasion, the cytoplasm of penetrated plant cells showed very little response despite the plant cell membrane being in direct contact with the fungal cell wall. Before plant cell death, dark staining of the cytoplasm and proliferation of small vesicles was noted, but organelles retained normal ultrastructure. Dead plant cells contained dark brown, osmiophilic droplets. Penetration between epidermal or collenchyma cells was usually targeted to shared pits and involved constriction of hyphae. The transition to necrotrophy was not associated with a clear change in hyphal morphology. Biotrophic intracellular hyphae contained dense cytoplasm but hyphae in dead plant cells were more vacuolated. Remarkably little plant cell wall degradation was observed despite the fungus penetrating up to 18 cells deep into stem tissue. Features of the development of the ash dieback fungus are compared with other hemibiotrophic pathogens.  相似文献   

13.
14.
Studies on polymer size, concentration and mode of application, either as foliar spray or soil drench, in relation to the induction of resistance to tobacco mosaic virus (TMV) in Nicotiana tabacum cv xanthi-nc by poly(acrylic acid) (PA) are reported. PA also induced resistance to TMV in N. glutinosa, to pelargonium leaf curl virus in Datura stramonium, to cucumber mosaic virus in Vigna sinensis and to tobacco ring-spot virus in N. tabacum cv White Burley. No TMV was detected in PA-treated tomato cv Virocross 11 days after inoculation; but the susceptible cultivar Craigella became infected. PA treatment had no effect on TMV replication in White Burley tobacco but resistance was induced to Peronospora tabacina, a fungal pathogen of N. tabacum cv xanthi-nc. The potential of PA-induced resistance as a control measure for viruses and fungi is discussed.  相似文献   

15.
Nine accessions of three cucurbit species, ten of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon (Cucumis melo), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (Solanum melongena), the cultivated potato (Solanum tuberosum) and three wild potato species (Solanum albicans, S. acaule and S. mochiquense) were more heavily infected in comparison with melon, cucumber, courgette, pea and S. dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato powdery mildew differs from that reported in some other countries, which also varied among each other, suggesting that the causal agent of tomato powdery mildew in the Netherlands differ from that in those countries. Histological observations on 36 accessions showed that the defense to O. lycopersici was associated with a posthaustorial hypersensitive response.  相似文献   

16.

Chemical fungicides are mainly used to control Colletotrichum orbiculare, but this fungal pathogen usually develops resistance to the pesticides. Natural compounds are therefore desirable for controlling C. orbiculare. Here, a culture filtrate (CF) from ME202, a fungal strain isolated from Trifolium incarnatum in Shimane Prefecture in 2020, was tested in vitro and found to inhibit conidial germination of C. orbiculare. The inhibitory compound in ME202-CF was soluble in ethyl acetate. The ethyl acetate extract of ME202-CF (ME202-ECF) significantly inhibited in vitro conidial germination of C. orbiculare in a dose-dependent manner and lesion formation on cucumber leaves. The inhibitory compounds were heat stable at 40–121 °C and molecular mass?≥?500 and ≥?1000 Da. Thin layer chromatography–bioautography of ME202-ECF showed that the compounds inhibiting C. orbiculare growth had an Rf of 0.81 and 0.91. Furthermore, ME202 was found to be a member of the genus Cercospora through sequence analysis of the internal transcribed spacer and 5.8 S rDNA. These results suggest that secondary metabolites of Cercospora spp., such as ME202, can be used to develop new fungicides against anthracnose.

  相似文献   

17.
Barley, oat and wheat were used as both inappropriate hosts (IH) and appropriate hosts (AH) for three formae speciales of the fungus Blumeria graminis, the causal agent of powdery mildew disease. Treatment with either the glucose analog 2-deoxy- -glucose (DDG) or with -mannose dramatically suppressed penetration resistance in IH and to a much lesser extent in AH combinations. Other effects of DDG and -mannose were strikingly dissimilar. DDG greatly reduced localized autofluorescence at fungal attack sites on epidermal cells, and prevented hypersensitive epidermal cell death (HR). -mannose had little effect on autofluorescence or HR. DDG arrested the development of fungal haustoria and apparently prohibited biotrophy leading to secondary hyphae. -mannose allowed haustorial development and functional biotrophy leading to the production of elongating secondary hyphae. This suggests that B. graminis is in some way capable of utilizing -mannose as a carbon substrate. Results with IH combinations paralleled those of known mlo -barley responses to DDG and -mannose. Results are discussed in relation to specific physiological processes known to be influenced by either DDG or by -mannose, or by both compounds.  相似文献   

18.
Expression of many host genes can be altered during virus infection. In a previous study of sugarcane mosaic virus (SCMV) infection in maize (Zea mays), we observed that expression of ZmTrm2, a gene encoding thioredoxin m, was up-regulated at about 10 days post-inoculation (dpi). In this present study we determined that ZmTrm2 silencing in maize by virus-induced gene silencing significantly enhanced systemic SCMV infection. In contrast transient over-expression of ZmTrm2 in maize protoplasts inhibited accumulation of SCMV viral RNA. Furthermore, we found that in inoculated Nicotiana tabacum leaves transient expression of ZmTrm2 inhibited accumulation of the RNA of tobacco vein-banding mosaic virus (TVBMV), a potyvirus infecting dicotyledonous plants. Interestingly in ZmTrm2 transiently expressed N. tabacum leaves, we detected by semi-quantitative RT-PCR a reduced level of the mRNA of class I beta-1, 3-glucanase (GluI), a protein known to have a role in cell wall callose deposition and viral movement. Our data indicate that the maize ZmTrm2 plays an inhibitory role during infection of plants by SCMV and TVBMV.  相似文献   

19.
Cytological studies were carried out to elucidate the importance of cell wall degrading enzymes (CWDE) during infection of wheat spikes by Fusarium graminearum. Scanning electron micrographs revealed that at 6–24 hours after inoculation (hai) of single spikelets with macroconidia of F. graminearum, the fungus germinated by forming several germ tubes and developed a dense hyphal network in the cavity of the spikelet. At 24–36hai, the fungus formed infection hyphae which invaded the ovary and inner surface of the lemma and palea. Transmission electron microscopical studies revealed that the fungus extended inter- and intracellularly in the ovary, lemma and rachis and caused considerable damage and alterations to the host cell walls. In different tissues of healthy and F. graminearum-infected wheat spikes the cell wall components cellulose, xylan and pectin were localized by means of enzyme-gold and immuno-gold labelling techniques. Localization of cellulose, xylan and pectin showed that host cell walls which were in direct contact with the pathogen surface had reduced gold labelling compared to considerable higher labelling densities of walls distant from the pathogen–host interface or in non-colonized tissues. The reduced gold labelling densities in the infected host cell walls indicate that these polysaccharide degrading enzymes might be important pathogenicity factors of F. graminearum during infection of wheat spikes. The results revealed that, infection and colonization of wheat spikes by F. graminearum and reactions of infected host tissue were similar to those reported for F. culmorum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号