首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of bovine respiratory syncytial virus (BRSV) and non-cytopathic bovine viral diarrhea virus (ncpBVDV) infection on selected bovine alveolar macrophage (AM) functions was investigated. Alveolar macrophages were harvested from 2- to 6-month-old calves seronegative for BRSV and BVDV and inoculated with approximately 1 median cell culture infective dose of virus per AM. Control, BRSV infected, ncpBVDV-infected and BRSV-ncpBVDV coinfected AM cultures were evaluated for Fc receptor expression, phagosome-lysosome fusion, superoxide anion (O2-) production, and chemotactic activity on Days 1, 3, 5, and 7 post-infection. Both single and combined viral infections significantly depressed AM Fc receptor expression, phagosome-lysosome fusion, and secretion of chemotactic factors with a more significant synergistic depression seen in BRSV-ncpBVDV coinfection. Production of O2- by AM was not decreased by either BRSV or ncpBVDV infection, but was significantly decreased by coinfection with BRSV-ncpBVDV. The present study confirms previous reports of BRSV effects on AM functions and indicate that ncpBVDV affects AM functions in vitro. Coinfection with BRSV-ncpBVDV produced a synergistic depression on AM functions.  相似文献   

2.
Viruses may predispose the respiratory tract to the development of secondary bacterial pneumonia by impairing functions of alveolar macrophages. The effects of bovine respiratory syncytial virus (BRSV) on selected functions of bovine pulmonary alveolar macrophages (PAM) were examined in vitro. Alveolar macrophages were obtained from nonsedated cattle, using a polypropylene tube passed intranasally into the lung. The PAM lavaged from the lung were allowed to adhere to glass coverslips or plastic tissue culture plates, and were exposed to BRSV for 2 hours. Control and BRSV-inoculated PAM were compared at intervals over a 72-hour period for their abilities to phagocytize and kill Staphylococcus epidermidis, rosette with and phagocytize antibody-coated sheep RBC (SRBC), phagocytize latex particles, and influence lysosomal enzyme activity. Challenge exposure with BRSV did not affect the ability of PAM to adhere and did not affect cell viability. There were numerical differences between control and BRSV-inoculated cell populations in phagocytosis and killing of S epidermidis, but these were not significant (P greater than 0.05). There was less than 5% difference in the abilities of control and BRSV-challenged PAM to phagocytize latex beads. When Fc-receptor-mediated phagocytosis of antibody-coated SRBC was compared with controls, BRSV-challenged PAM had significantly (P less than 0.05) impaired phagocytic function, which was maximal 72 hours after BRSV inoculation; the phagocytic impairment occurred in spite of normal Fc-receptor function, as determined by rosetting with antibody-coated SRBC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Calves, 90 to 130 days old, were inoculated with bovine herpesvirus-1 (BHV-1) or parainfluenza-3 (PI-3) virus. Pulmonary lavage specimens obtained from calves before virus inoculation contained 98% alveolar macrophages (AM) and 1% neutrophils. Six days after inoculation, the mean percentage of neutrophils in lavage specimens had significantly increased to 7.9 +/- 6.0% in BHV-1-inoculated calves and to 18.3 +/- 9.9% in PI-3 virus-inoculated calves, reflecting viral-induced pulmonary inflammation that was confirmed histologically. Approximately 75% of AM obtained before virus inoculation had Fc surface receptors, and 60% had C3b receptors. Six days after inoculation, the percentage of AM with Fc and C3b receptors was significantly reduced to 69.7 +/- 8.6% and 27.1 +/- 19.8%, respectively, in BHV-1-inoculated calves and to 67.8 +/- 15.4% and 38.8 +/- 23.2%, respectively, in PI-3 virus-inoculated calves. Alveolar macrophages obtained after virus inoculation were significantly impaired in their ability to phagocytize opsonized Staphylococcus epidermidis, but were able to kill ingested bacteria. Alveolar macrophage dysfunctions caused by BHV-1 or PI-3 respiratory infection did not differ appreciably.  相似文献   

4.
Cattle inoculated with bovine respiratory syncytial virus (BRSV) were evaluated for the development of a cell-mediated immune response. Results of the leukocyte migration-inhibition test under agarose and the delayed hypersensitivity test indicated that a cell-mediated immune response was elicited after intranasal inoculation of calves with BRSV. Migration inhibition in the leukocyte migration-inhibition test was detected by postinoculation day (PID) 5 and reached maximum inhibition on PID 21. Inhibition of leukocyte migration was still evident by PID 42 when values were still appreciably greater than preinoculation values. All of the calves inoculated with BRSV developed a delayed hypersensitivity skin response when challenge exposed intradermally with BRSV antigen.  相似文献   

5.
Five field trials evaluated whether immunization of beef cattle prior to weaning, at weaning, or immediately upon arrival at the feedlot with a commercial bovine respiratory syncytial virus (BRSV) vaccine would reduce subsequent treatment for respiratory disease.

Bovine respiratory syncytial virus vaccination was associated with a significant (p<0.05) reduction in treatment rate in one of three groups of calves immunized prior to weaning (−12%) and in calves immunized upon arrival at the feedlot (−4%).

There was no significant (p>0.05) effect of the BRSV vaccine on treatment rate in calves immunized at weaning, in calves immunized upon arrival at the Saskatoon bull test station, or in yearlings immunized upon arrival at the feedlot.

Although the trend in these field trials was to a sparing effect of the BRSV vaccine, the small reduction in treatment rate may not justify the cost of the vaccination program.

  相似文献   

6.
An experiment was conducted to reproduce respiratory tract disease with bovine respiratory syncytial virus (BRSV) in one-month-old, colostrum-fed calves. The hypothesized role of viral hypersensitivity and persistent infection in the pathogenesis of BRSV pneumonia was also investigated. For BRSV inoculation a field isolate of BRSV, at the fifth passage level in cell culture, was administered by a combined respiratory tract route (intranasal and intratracheal) for four consecutive days. Four groups of calves were utilized as follows: Group I, 6 calves sham inoculated with uninfected tissue culture fluid and necropsied 21 days after the last inoculation; Group II, 6 calves inoculated with BRSV and necropsied at the time of maximal clinical response (4-6 days after the last inoculation); Group III, 6 calves inoculated with BRSV and necropsied at 21 days after the last inoculation; Group IV, 6 calves inoculated with BRSV, rechallenged with BRSV 10 days after initial exposure, and necropsied at 21 days after the initial inoculation. Clinical response was evaluated by daily monitoring of body temperature, heart rate, respiratory rate, arterial blood gas tensions, hematocrit, total protein, white blood cell count, and fibrinogen. Calves were necropsied and pulmonary surface lesions were quantitated by computer digitization. Viral pneumonia was reporduced in each principal group. Lesions were most extensive in Group II. Disease was not apparent in Group I (controls). Significant differences (p less than 0.05) in body temperature, heart rate, respiratory rate, arterial oxygen tension, and pneumonic surface area were demonstrated between control and infected calves. Results indicate that severe disease and lesions can be induced by BRSV in one-month-old calves that were colostrum-fed and seropositive to BRSV. BRSV rechallenge had minimal effect on disease progression. Based on clinical and pathological response, results did not support viral hypersensitivity or persistent infection as pathogenetic mechanisms of BRSV pneumonia.  相似文献   

7.
The morphogenesis and repair of airway and alveolar injury induced by bovine respiratory syncytial virus (BRSV) was studied ultrastructurally in conventional calves to characterize pulmonary cell types susceptible to viral infection and cytopathologic changes associated with infection. Viral nucleocapsids and budding virions were present in tracheal and bronchial ciliated and nonciliated epithelial cells and mucous cells 3, 5, and 7 days after inoculation and in bronchiolar ciliated and nonciliated epithelial cells 5 days after inoculation. Mild interstitial pneumonia was observed 5 days after inoculation and was characterized by swelling of type 1 and type 2 alveolar epithelial cells, interstitial edema, and infiltration by lymphocytes and macrophages. Viral assembly and release in tracheal and bronchial epithelial cells was associated with loss of cilia from ciliated cells, formation of syncytial epithelial cells, swelling of mitochondria and endoplasmic reticulum, and cell necrosis. Neutrophils, lymphocytes, and macrophages were present in close association with the viral-infected and damaged epithelial cells. There was intercurrent hyperplasia of basal epithelial cells that, in association with other epithelial lesions, resulted in the loss of normal ciliated epithelium in these airways 5 and 7 days after inoculation. Regeneration of airway epithelium was largely completed by 10 days after inoculation, except in 1 of 4 calves that had failure of epithelial repair and that developed secondary bacterial pneumonia. Pulmonary ultrastructure in BRSV-inoculated calves 30 days after inoculation was indistinguishable from that in controls. The results demonstrated that BRSV can induce reversible alterations in airway epithelium, which may cause depression of mucociliary clearance and thereby enhance susceptibility to bacterial infection.  相似文献   

8.
OBJECTIVE: To develop a model of bovine respiratory syncytial virus (BRSV) infection that induces severe disease similar to that seen in some cattle with naturally acquired BRSV infection. ANIMALS: 25 male Holstein calves, 8 to 16 weeks old. PROCEDURE: 17 calves were given a low-passage field isolate of BRSV by aerosolization; 8 control calves were given supernatant from noninfected cell culture. Disease was characterized by evaluating clinical signs, virus isolation and pulmonary function tests, and results of blood gas analysis, gross and histologic postmortem examination, and microbiologic testing. RESULTS: Cumulative incidence of cough, harsh lung sounds, adventitious sounds, and dyspnea and increases in rectal temperature and respiratory rate were significantly greater in infected calves. Three infected calves developed extreme respiratory distress and were euthanatized 7 days after inoculation. Virus was isolated from nasal swab specimens from all infected calves but not from mock infected calves. On day 7 after inoculation, mean PaO2 and PaCO2 were significantly lower, and pulmonary resistance was significantly higher, in infected calves. During necropsy, infected calves had varying degrees of necrotizing and proliferative bronchiolitis and alveolitis with syncytial formation. The 3 calves euthanatized on day 7 had emphysematous bullae in the caudal lung lobes; 1 had unilateral pneumothorax. CONCLUSION AND CLINICAL RELEVANCE: Severe disease similar to that seen in some cattle with naturally acquired BRSV infection can be induced in calves with a single aerosol exposure of a low-passage clinical isolate of BRSV. Our model will be useful for studying the pathogenesis of BRSV infection and for evaluating vaccines and therapeutics.  相似文献   

9.
This paper describes an investigation of the cytotoxic activity of bovine alveolar macrophages for parainfluenza type 3 (PI-3) virus-infected target cells, using 51Cr release assays. Alveolar macrophages from uninfected calves were shown to be capable of killing PI-3 virus infected cells without the presence of antibody or complement (antibody-independent cell-mediated cytotoxicity). The level of killing was shown to vary from animal to animal with specific lysis values ranging from <5% to 70%. Presence of PI-3 virus antiserum was shown to inhibit, rather than enhance macrophage cytotoxicity in a dose-dependent manner, suggesting that bovine alveolar macrophages do not always exhibit antibody-dependent lysis in all cases. Following intranasal and intratracheal inoculation of calves with PI-3 virus, the level of cytotoxicity by macrophages lavaged from the lungs of the calves increased substantially, and by Day 5 post inoculation, levels of 95% to 98% specific lysis were recorded. After Day 5, the killing ability decreased rapidly to low levels. Cell-free lavage fluids, collected from PI-3 virus infected and control calves at various times throughout the experiment, were incubated with aliquots of an alveolar macrophage population from an uninfected donor calf, which initially showed a low level of killing, and were subsequently added to PI-3 virus infected target cells. The recorded levels of cytotoxicity, mirrored those which were seen with the initial macrophage effector cells from the infected and control animals, suggesting that macrophage cytotoxicity was largely controlled by extracellular factors.  相似文献   

10.
OBJECTIVE: To evaluate the effect of infection with bovine respiratory syncytial virus (BRSV) on clearance of inhaled antigens from the lungs of calves. ANIMALS: Eleven 6- to 8-week-old Holstein bull calves. PROCEDURES: Aerosolized (99m)technetium ((99m)Tc)-labeled diethylene triamine pentacetate (DTPA; 3 calves), commonly used to measure integrity of the pulmonary epithelium, and (99m)Tc-labeled ovalbumin (OA; 8 calves), commonly used as a prototype allergen, were used to evaluate pulmonary clearance before, during, and after experimentally induced infection with BRSV or sham inoculation with BRSV. Uptake in plasma (6 calves) and lung-efferent lymph (1 calf) was examined. RESULTS: Clearance of (99m)Tc-DTPA was significantly increased during BRSV infection; clearance of (99m)Tc-OA was decreased on day 7 after inoculation. Clearance time was correlated with severity of clinical disease, and amounts of (99m)Tc-OA in plasma and lymph were inversely correlated with clearance time. Minimum amounts of (99m)Tc-OA were detected at time points when pulmonary clearance of (99m)Tc-OA was most delayed. CONCLUSIONS AND CLINICAL RELEVANCE: BRSV caused infection of the respiratory tract with peak signs of clinical disease at 7 or 8 days after inoculation. Concurrently, there was a diminished ability to move inhaled protein antigen out of the lungs. Prolonged exposure to inhaled antigens during BRSV infection may enhance antigen presentation with consequent allergic sensitization and development of chronic inflammatory lung disease. IMPACT FOR HUMAN MEDICINE: Infection of humans with respiratory syncytial virus early after birth is associated with subsequent development of allergic asthma. Results for BRSV infection in these calves suggested a supportive mechanism for this scenario.  相似文献   

11.
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves, of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor alpha (TNF-alpha) in the BAL fluids was detected and quantified by a capture ELISA. TNF-alpha was detected in 21 of the infected animals. The amount of TNF-alpha in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-alpha were detected on PID 6, maximum levels of TNF-alpha were reached on PID 7, and smaller amounts of TNF-alpha were seen on PID 8. The high levels of TNF-alpha appeared on the days where severe lung lesions and clinical signs were obvious and the amounts of BRSV-antigen were at their greatest. Although Pasteurellaceae were isolated from some of the BRSV-infected calves, calves treated with antibiotics before and through the whole period of the infection, as well as BRSV-infected calves free of bacteria reached the same level of TNF-alpha as animals from which bacteria were isolated from the lungs. It is concluded that significant quantities of TNF-alpha are produced in the lungs of the calves on PID 6-7 of BRSV infection. The involvement of TNF-alpha in the pathogenesis of, as well as the anti-viral immune response against, BRSV infection is discussed.  相似文献   

12.
An antibody-capture enzyme-linked immunosorbent assay (ELISA) for detection of immunoglobulin (Ig) M antibodies to bovine respiratory syncytial virus (BRSV) in cattle was developed. Monoclonal antibody to bovine IgM was used as the catching antibody. The IgM-ELISA was used, as well as a BRSV-specific IgG ELISA to determine the kinetics of IgM and IgG antibody responses to BRSV infections in cattle. High IgM and IgG antibody titers developed after naturally occurring or induced BRSV infection of calves (6 to 7 months old). Induced infection resulted in an IgM response that was first detectable at postinoculation day (PID) 11 reached a maximum at PID 13, and became undetectable again about PID 28. An IgG response also was detected by PID 11. However, a maximum response was not reached before PID 23, and titers remained high (until PID 80). In naturally occurring infection, IgM and IgG responses in calves were observed in the acute phase of epizootics of respiratory tract disease. Patterns of IgM and IgG response curves were similar to those observed in experimentally infected calves. The involvement of BRSV in an epizootic of respiratory tract disease in 8 calves (2 to 3 weeks old) was demonstrated by the detection of BRSV in several lung lavage samples. All calves had existing IgG antibodies to BRSV which were interpreted to be maternally derived. None of the calves responded with an increase in IgG antibody titer. However, a weak but distinct BRSV IgM antibody response occurred in 6 calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

14.
15.
The immune receptor-mediated functions of bovine alveolar macrophages (AM) inoculated in vitro with bovine herpesvirus-1 (BHV-1) or parainfluenza-3 (PI-3) virus were tested in the presence or absence of virus-specific antiserum or pulmonary lavage fluids collected from calves 6 days after inoculation with BHV-1 or PI-3 virus. The Fc and C3b phagocytic indices of noninoculated AM, collected from 6- to 16-week-old calves, ranged from 75 to 87 and 59 to 64, respectively, and the binding indices ranged from 5 to 8 and 22 to 28, respectively. Infection of AM with either BHV-1 or PI-3 virus had no significant effect on receptor-mediated phagocytosis or binding, with the exception of a significant (P less than 0.05) decrease, from 64 to 46, of the C3b phagocytic index of PI-3 virus-infected AM. The addition of lavage fluids, collected after BHV-1 or PI-3 virus infection, to AM infected with the respective virus caused a significant (P less than 0.05) decrease in phagocytic indices with values for the Fc and C3b indices in BHV-1-infected AM decreasing from 81 to 49 and from 47 to 8, respectively, and those for the PI-3 virus-infected AM from 79 to 51 and from 46 to 15, respectively. The binding indices of virus-infected AM increased with the addition of viral lavage fluids, but the only significant (P less than 0.05) increase was for C3b binding in PI-3 virus-infected cells, which increased from 33 to 56.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

17.
Tilmicosin is a potent antimicrobial with broad-spectrum activity against the bacterial agents involved in the bovine respiratory disease complex. Recent studies indicate that in addition to being bactericidal, tilmicosin is capable of modulating inflammation in the lung. A series of experiments were designed to determine whether tilmicosin alters alveolar macrophage-prostaglandin E(2) (PGE(2)) production induced by Escherichia coli (O55:B5) lipopolysaccharide (LPS). Twenty-two healthy Holstein bull calves were used to study the effects of LPS-induced PGE(2) production of alveolar macrophages after in vivo or in vitro treatment with tilmicosin. In Experiment 1, tilmicosin was given by subcutaneous injection (15 mg/kg) twice, 48 hours apart, to four calves; four control calves received no treatment. Twenty-four hours after the second treatment, alveolar macrophages were stimulated with LPS in vitro. In Experiment 2, alveolar macrophages from five untreated calves were harvested and treated in vitro with tilmicosin, followed by LPS stimulation. In Experiment 3, the ability of in vitro tilmicosin treatment to alter the expression of LPS-induced cyclooxygenase-2 (COX-2) mRNA was evaluated. In Experiments 4 and 5, secretory phospholipase A(2) activity was examined in untreated calves. Treatment of calves with tilmicosin resulted in reduced LPS-induced alveolar macrophage PGE(2) production. Similar reductions in PGE(2) by LPS-stimulated alveolar macrophages after in vitro tilmicosin treatment were noted. This in vitro tilmicosin treatment was not associated with reduction of the expression of LPS-induced COX-2. Alveolar macrophage phospholipase A(2) activity induced by LPS was significantly reduced by prior tilmicosin treatment in vitro. Tilmicosin (in vivo and in vitro) appears to reduce the PGE(2) eicosanoid response of LPS-stimulated alveolar macrophages by reducing the in vitro substrate availability without altering in vitro COX-2 mRNA expression.  相似文献   

18.
Respiratory syncytial virus (RSV) infection causes severe lower respiratory tract disease in infants and calves. Neonatal respiratory tract infection in children often produces persistent changes in lung function. The specific objective of this study was to determine whether neonatal calves have transient or persistent alterations in pulmonary function and airway reactivity following RSV infection. Six 2- to 3-day-old Holstein bull calves were inoculated with 10 ml of bovine respiratory syncytial virus (BRSV) inoculum (10(2.7) to 10(3.8) cell culture infective doses/ml) intranasally and 10 ml of BRSV inoculum (10(4.8) to 10(5.9) cell culture infective doses/ml) intratracheally for 4 consecutive days, and 5 other calves were sham-inoculated. Prior to inoculation (day 0) and on days 4, 14, and 30 after the last inoculation, body weight (kg), dynamic compliance (Cdyn), pulmonary resistance (RL), and 2 indices of airway reactivity (effective dose [ED] 65Cdyn and ED200RL) were measured. Control calves gained weight progressively throughout the study, whereas RSV-inoculated calves failed to gain weight for 14 days, but equaled control calf weight by 30 days after inoculation. The Cdyn of control calves increased significantly by 30 days, but did not in the RSV-infected calves. Pulmonary resistance was increased significantly at 4, 14, and 30 days, but was unaffected by sham inoculation. The ED65Cdyn and ED200RL indicated an age-dependent increase in reactivity to histamine and an increase in responsiveness in the infected group beginning at 14 days and persisting until the end of the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Conventionally raised male Holstein calves, 1 month of age, were infected by intranasal and intratracheal inoculation with bovine respiratory syncytial virus. Viral antigen was identified by fluorescence microscopy most commonly in the cytoplasm of tracheal and bronchial epithelial cells 3 to 5 days after inoculation. Cytoplasmic viral antigen was identified also in nasal, nasopharyngeal, bronchiolar, and alveolar epithelial cells and in alveolar macrophages. Bronchitis and tracheitis, characterized in part by epithelial necrosis, formation of syncytial epithelial cells and epithelial hyperplasia, were the most common lesions observed histologically. Rhinitis, bronchiolitis, and interstitial pneumonia were observed less frequently. Alterations were not detected in the numbers of cells recovered by bronchoalveolar lavage after inoculation. An increase in the phagocytic rate of latex beads occurred in macrophages 5 days after inoculation. Viral-induced lesions were resolved by 30 days after inoculation. The results indicated that bovine respiratory syncytial virus inoculation of calves results in reversible alterations in airway epithelial structure and in the phagocytic function of alveolar macrophages.  相似文献   

20.
A 16-month seroepizootiologic study of bovine respiratory syncytial virus (BRSV) infection was conducted in a dairy herd. Results indicated that antibodies to BRSV present in serum from newborn calves were derived through the ingestion of colostrum. This passive immunity in calves became undetectable in an average of 99 days (SD = 36.5; range = 30 to 208 days). Two epizootics of respiratory tract disease occurred during the study period, and an association with BRSV was demonstrated in both epizootics. In the 2 epizootics, clinical signs of respiratory tract disease were only mildly to moderately severe, with no mortality or evidence of chronic pneumonia occurring. Seemingly, the passive immunity failed to protect calves from infection and disease caused by BRSV. Additionally, it was observed that if active immunity was induced by infection with BRSV, this immunity protected from the development of clinical disease, but not from reinfection upon subsequent exposures to BRSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号