首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The validity of using rare earth elements as flow markers of undigested residues was evaluated by comparing mean gastrointestinal residence time (GMRT) of rare earths specifically applied to cottonseed hulls (CSH) to that of the indigestible fiber of CSH. Feces were collected from five lambs fed a mineral supplemented diet of CSH containing 52 g CP/kg DM and five lambs fed a CSH plus cottonseed meal diet (CSH+CSM) containing 123 g CP/kg DM. Rare earth elements (La, Yb, and Tb) specifically bound to CSH were included in the diet for a 5-d period and then deleted from the diet for a 3-d period. Following the last fecal collection, lambs were slaughtered for collection of digesta from segments of the gastrointestinal tract. Potentially indigestible NDF (PIF) was determined in diets and digesta from each segment of the gastrointestinal tract. Mean turnover rate, time delay, and GMRT for each rare earth element was estimated by fitting an age-dependent compartment model to profiles of markers appearing in the feces (compartmental model-marker method, CMM). The GMRT also was computed by the indigestible entity pool dilution method (IEPD) as grams of PIF in sampled segment/mean intake rate of PIF proceeding slaughter, g/h. The GMRT computed by the CMM and the IEPD methods did not significantly (P < 0.05) differ (99.6 vs 94.8 h and 58.9 vs 59.5 h for CMM vs IEPD and CSH and CSH+CSM diets, respectively). Regression of GMRT estimated for rare earths vs PIF yielded a highly significant regression (P = 0.001) with a regression coefficient of 0.94 +/- 0.016. It was concluded that rare earth elements applied to specific feeds are valid flow markers for the undigested residues derived from such marked feeds.  相似文献   

2.
Two experiments were conducted to assess the endogenous fraction of purine derivative (PD) excretion, urinary recovery, and intestinal digestibility of purines in Nellore heifers. For both experiments, 8 Nellore heifers fitted with ruminal and abomasal cannulas were allocated to two 4 × 4 Latin squares. The diets were based on corn silage and concentrate (60 and 40% DM basis, respectively); feces and urine samples were obtained by total collection, and abomasal DM flow was estimated using indigestible NDF as an internal marker. In Exp. I, 4 of the 8 heifers (BW 258 ± 20 kg) were also fitted with ileal cannula. The planned treatments were 4 different DMI: 1.2, 1.6, 2.0, and 2.4% of BW (DM basis). The endogenous losses and purine recovery as urinary PD were estimated using linear regression between daily urinary PD excretion (Y) and daily abomasal flow of purine bases (X), expressed in millimoles per kilogram of BW(0.75). In Exp. II, the same 8 Nellore heifers (BW of 296 ± 15 kg) were fed at 1.37% BW (DM basis). The treatments were the infusion of purines (RNA from torula yeast, type VI, Sigma) into the abomasum in increasing amounts (0, 33, 66, and 100 mmol/d). All statistical analyses were performed using the PROC MIXED procedure in SAS. In Exp. I, the DMI range was 1.16 to 1.84% of BW and did not affect (P > 0.05) the apparent RNA digestibility in the small intestine, which had a mean of 75.6%, and a true digestibility of 93.0%. The mean ratio of the N-RNA to the total-N in the ruminal bacteria was 0.137. The daily urinary PD excretion (Y, mmol/kg of BW(0.75)) was a function of RNA flow in the abomasum (X, mmol/kg of BW(0.75)): Y = 0.860X + 0.460, where 0.860 and 0.460 were the PD recovery of purines and the endogenous fraction (in mmol/kg of BW(0.75)), respectively. In Exp. II, the daily urinary PD excretion was a function of RNA flow in the abomasum: Y = 0.741X + 0.301, where 0.741 and 0.301 were the recovery of PD in urine of infused purines and the endogenous losses (in mmol/kg of BW(0.75)), respectively. In conclusion, our data suggest that in Nellore heifers the respective values of endogenous PD excretion (mmol/kg of BW(0.75)), urinary recovery of the purines absorbed in the abomasum, and true digestibility of RNA in the small intestine were 0.30, 0.80, and 0.93.  相似文献   

3.
A grazing trial was carried out to evaluate the inclusion of three feed additives in supplements (crude protein, CP 230 g/kg dry matter, DM) on the performance, voluntary intake, and digestibility of beef heifers grazing Brachiaria decumbens (CP 81 and neutral detergent fiber, NDF 615 g/kg DM). Thirty-five Nellore heifers (21 months of age and 383 ± 6.29 kg of body weight, BW) were used in a completely randomized design. The treatments were as follows: no supplement (control); supplement fed at 1 kg/animal/day without additives (S); supplement with monensin (S + M); supplement with yeast culture (S + YC); and supplement with enzyme complex (S + EC). All of the supplemented heifers had greater (P < 0.1) average daily gain (~0.186 kg/day) compared to the control treatment (0.014 kg/day). Average daily gain and final BW were similar (P > 0.1) among supplemented heifers. Monensin inclusion in the supplement decreased (P < 0.1) forage DM (expressed as g/kg BW) and NDF intake (expressed as kg/day and as g/kg BW). All of the feed additive inclusions decreased (P < 0.1) NDF digestibility. In conclusion, the heifers’ performance was improved by concentrate supplementation. However, the inclusion of additives did not enhance this effect.  相似文献   

4.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

5.
Minimal quantities of ruminally degradable protein from supplements may improve supplement use efficiency of ruminants grazing dormant forages. In Exp. 1, N retention, ruminal NH(3), serum urea N, and NDF digestibility were evaluated for 12 ruminally cannulated cows (Bos spp.) in an incomplete Latin Square design with 3 periods of 42 d each. Cows were fed weeping lovegrass [Eragrostis curvula (Schrad.) Nees] hay (4.1% CP, 75% NDF, OM basis) at 1.3 % BW/d and offered 1 of 3 sources of CP [urea, cottonseed (Gossypium spp.) meal (CSM); or 50% blood meal and 50% feather meal combination (BFM)] fed to supply 0, 40, 80, or 160 g/d of CP. Beginning on d 22 of supplementation, ruminal contents and serum samples were collected at -2, 0, 3, 6, 9, 12, 18, 24, 30, 36, and 48 h relative to the morning offering of hay. On Day 24, feces and urine were collected for 72 h. In Exp. 2, 4 ruminally cannulated steers were used in a replicated 4 by 4 Latin Square to evaluate use of supplements differing in quantity and ruminal CP degradability. Steers were fed 6.8 kg/d chopped sudangrass [Sorghum bicolor (L.) Moench nothosubsp. drummondii (Steud.) de Wet ex Davidse] hay (3.7% CP, 74% NDF on OM basis) and supplemented with 56 g/d of a salt mineral mix (CON); CON + 28 g/d blood meal + 28 g/d feather meal (BFM); CON + 98 g/d CSM (LCS); or CON + 392 g/d CSM (HCS). Treatments provided 0, 40, 40, or 160 g/d of CP for CON, BFM, LCS, and HCS respectively. In Exp. 1, N use and total tract NDF digestibility were not affected by protein sources or amounts (P ≥ 0.18). Ruminal NH(3) concentrations exhibited a quadratic response over time for UREA (P < 0.05) and was greater with increasing inclusion of urea (P < 0.05); whereas BFM or CSM did not differ (P > 0.05) by amount or across time. In Exp. 2, supplementation had a tendency (P = 0.09) to increase DM disappearance. Supplementation also increased (P < 0.01) serum glucose concentrations; however, no difference (P ≥ 0.28) was found between supplements. Serum urea N and ruminal NH(3) concentrations were increased (P ≤ 0.01) in steers fed HCS. Feeding low quantities of a high-RUP supplement maintained rumen function without negatively affecting DM or NDF digestibility of a low-quality forage diet.  相似文献   

6.
本试验旨在研究不同中性洗涤纤维(NDF)水平饲粮对羔羊生长性能、营养物质表观消化率、消化道重量及瘤胃乳头发育的影响。选用60只体况良好,体重为(3.23±0.20)kg的初生母羔羊,随机分为4组,每组5个重复,每个重复3只羊。试验羔羊于10日龄补饲开食料,开食料NDF水平分别为12%(12NDF组)、16%(16NDF组)、20%(20NDF组)和24%(24NDF组)的饲粮。试验期60 d,饲养试验所有羔羊均随母哺乳,消化试验所有羔羊不随母哺乳。结果显示:1)随着日龄的增加,羔羊的体重极显著增加(P<0.01);各日龄阶段日增重均差异不显著(P>0.05);随日龄的增加,羔羊干物质采食量(DMI)极显著增加(P<0.01),饲喂不同NDF水平饲粮,各组羔羊DMI差异不显著(P>0.05)。2)24NDF组羔羊干物质(DM)、有机物(OM)采食量和总能(GE)摄入量显著高于16NDF、20NDF组(P<0.05)。24NDF组羔羊粗蛋白(CP)采食量显著高于20NDF组(P<0.05);24NDF组羔羊中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)采食量极显著高于20NDF组(P<0.01),20NDF组极显著高于16NDF、12NDF组(P<0.01);24NDF组羔羊DM、OM表观消化率显著低于12NDF、16NDF组(P<0.05),24NDF组GE表观消化率显著低于16NDF组(P<0.05),但20NDF、24NDF组NDF、ADF表观消化率显著或极显著高于12NDF组(P<0.05或P<0.01);24NDF组羔羊粪能显著高于12NDF、16NDF和24NDF组(P<0.05)。各试验组CP表观消化率和消化能差异不显著(P>0.05)。3)12NDF组羔羊全胃重显著高于16NDF、20NDF组(P<0.05)。12NDF组羔羊瘤胃重显著高于20NDF组(P<0.05)。12NDF组羔羊瘤胃占宰前活重的比例显著高于16NDF、20NDF和24NDF组(P<0.05)。12NDF组羔羊十二指肠重及十二指肠占宰前活重的比例显著高于16NDF组(P<0.05)。其余各指标均差异不显著(P>0.05)。综上所述,母羔羊在0~60日龄最适的NDF水平为16%~20%。  相似文献   

7.
The quality of different classes of forage hay (C3, C4 grasses and legumes) was determined in intake and digestibility trials with mature cattle, sheep and goats. For all nine hays, DM and NDF digestibility by cattle and goats was higher (P less than .05) than by sheep, with no differences due to forage class. Cattle had a higher (P less than .01) DM intake than sheep or goats averaged across forage (92.6 vs 65.8 and 68.6 g/kg BW.75); hay intake was highest on legume, with no difference between C3 and C4 grasses. Mean NDF intake by cattle was greater than by sheep or goats (58.7 vs 39.6 and 42.6 g/kg BW.75); NDF intake for all animal species decreased in the order C4 grass greater than C3 grass greater than legume. Particle passage rates did not differ (P greater than .05) with forage class but were higher (P less than .02) for sheep and goats than for cattle. Prefeeding ruminal DM fill values, determined by emptying, were 10.6, 15.0 and 19.9 g/kg BW1.0 for alfalfa, orchardgrass and switchgrass hays fed to cattle, and 11.2, 11.3 and 16.5 g/kg BW1.0 for the same hays fed to sheep. Estimated turnover times for DM and NDF were shorter (P less than .05) for sheep than for cattle; DM turnover was longer for switchgrass than for alfalfa and orchardgrass, with no forage differences in NDF turnover between these two animal species. Results show that goats were superior to sheep in NDF digestion.  相似文献   

8.
Holstein steer calves (101 to 350 kg BW) consumed bermudagrass hay ad libitum without or with supplemental ground corn up to 1.0% of BW. As BW increased, total DMI increased quadratically (-2.459 + .05448 [BW]-.000073 [BW2] + .540 [corn DMI]; R2 = .83, sy.x = .655). Each kilogram of corn DM decreased bermudagrass DMI by .46 kg. Total digestible OM intake (kg) increased with BW and corn supplementation (.314 + .0127 [BW] + .441 [corn OM intake]; R2 = .79, sy.x = .444). Feed intake level accounted for approximately 2.5 times more variability in total digestible OM intake than digestion did. Corn supplementation decreased digestion of bermudagrass NDF (62.50 - 8.468 [corn DMI, % BW]; R2 = .13, sy.x = 8.121), with a similar decrease across BW. Increasing bermudagrass DMI (% of BW) decreased bermudagrass NDF digestion slightly, but variation accounted for was only 33% of that attributable to corn DMI (% of BW). Concentrations of common fiber fractions (NDF, ADF, cellulose, hemicellulose, and ADL) in bermudagrass explained very little variation in feed intake and digestion, indicating considerable influence of other factors. Bermudagrass intake and digestion were not related, and no substantial interactions were observed among steer BW, corn level, and bermudagrass composition.  相似文献   

9.
Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.  相似文献   

10.
Effects of level and frequency of supplementation with alfalfa (A) on feed intake and digestion by steers fed bermudagrass (B) or orchardgrass (O) were determined in two Latin square experiments. In Exp. 1, six Holstein steers (224 kg) were fed B (2.25% N; 71.4% NDF) or O (2.52% N; 64.3% NDF) with 0, 15 or 30% (DM) A (2.70% N; 44.0% NDF). Total DMI was 2.43, 2.72 and 2.85% BW for B and 2.98, 3.00 and 2.87% BW for O with 0, 15 and 30% A, respectively. Total DMI was affected by forage (P less than .05), A level (linear; P less than .06) and a forage x A level (linear) interaction (P less than .05). Digestible OM intake increased .42 (15%) and .67 kg (24%) with feeding of 15 and 30% A, respectively, for B, but for O, only dietary inclusion of 30% A elevated digestible OM intake (.14 kg and 4% increases). In Exp. 2, five Holstein steers (165 kg) were fed B (1.81% N; 78.6% NDF) alone or with A (2.76% N; 52.8% NDF). Morning meals consisted of ad libitum B (OA), .3% BW of A daily (.3A), .6% BW of A every 2nd d (.6A), .9% BW of A every 3rd d (.9A) or 1.2% BW of A every 4th d (1.2A). All steers received B in the afternoon ad libitum, and B was given in the morning when A was not fed. Total DMI was 2.31, 2.12, 2.12, 2.26 and 2.29% BW for OA, .3A, .6A, .9A and 1.2A, respectively (SE .049). Grass characteristics affected response in feed intake to legume supplementation. Frequency of dietary legume addition may alter feed intake.  相似文献   

11.
Intake and digestion in cattle fed warm- or cool-season grass hay with or without low-level grain supplementation were studied with a 2 x 2 factorial arrangement of treatments in two 4 x 4 Latin square experiments. In Exp. 1, four cannulated beef cows (396 kg) were given Bermuda grass (B) or orchard grass (OG) hay at 1.5% body weight (BW) with 0 or .3% BW of ground corn (C; dry matter). Bermuda grass contained 12.1% crude protein, 79.3% neutral detergent fiber (NDF) and 5.5% acid detergent lignin (ADL); OG contained 10.6% crude protein, 82.4% NDF and 8.1% ADL. An interaction (P less than .07) between forage type and C supplementation was noted for microbial N entering the duodenum; C supplementation had a positive effect with B (30% increase) and little effect with OG. Corn supplementation did not affect ruminal NDF digestion with B, but it elicited an increase with OG (interaction, P less than .05; means were 60.7, 60.1, 61.5 and 66.3%). In the second experiment, growing dairy steers (196 kg) were given ad libitum access to similar B or OG hays and were fed 0 or .5% BW of C. Dry matter (DM) intake was lower for OG than for B (P less than .05) and was lower with than without C (P less than .06; means were 2.76, 2.56, 2.53 and 2.30% BW for B, BC, OG and OGC, respectively). Total tract organic matter digestion (%) was higher for OG than for B (P less than .10) and was higher with than without C (means were 54.7, 61.5, 60.4 and 65.3%). In conclusion, chemical constituents such as NDF may govern differences in intake between warm- and cool-season grasses, but physical attributes of the forages appear more important to digestion.  相似文献   

12.
The objective of this study was to evaluate an interaction between harvest at 0600 (AM) vs. 1800 (PM) with high (HI) or low (LO) ruminal degradability of a protein supplement to change voluntary intake, digestion, or N retention by steers offered switchgrass (Panicum virgatum L.) hay. Black steers (255 +/- 14 kg of BW) were blocked by BW, and then randomly assigned (5 steers each) to AM/HI, PM/HI, AM/LO, or PM/LO treatment groups. Steers were group-housed in covered, outdoor pens with individual feeding gates. After adaptation and standardization, intake was measured for 21 d followed by a digestion trial (5 d of total collection). Steers were offered 767 (LO) or 825 (HI) g/d of supplement to provide 268 g of CP/d. Compared with AM, PM had greater (P = 0.01) concentrations of total nonstructural carbohydrate (TNC, 71 vs. 56 g/kg of DM), and lesser concentrations of NDF (760 vs. 770 g/kg of DM, P = 0.02), ADF (417 vs. 427 g/kg of DM, P = 0.02), and CP (55.9 vs. 58.6 g/ kg of DM, P = 0.07). Protein fractions A, B(2), and B(3) were similar for AM and PM, but HI contained more (P < 0.02) A (694 vs. 296 g/kg of protein) and less B(2) (174 vs. 554 g/kg of protein) fraction than LO. Harvest interacted with supplement to increase (P = 0.07) ad libitum digestible DMI for steers offered PM/HI (11.4 g/kg of BW daily) compared with steers offered PM/LO (10.2 g/kg of BW daily), but there was no difference for steers offered AM/LO or AM/HI (10.7 g/kg of BW). Apparent digestibilities of DM (594 vs. 571 g/kg of intake), NDF (591 vs. 562 g/kg of intake), ADF (585 vs. 566 g/kg of intake), and N (651 vs. 632 g/kg of intake) were greater (P < 0.04) for PM than for AM. Apparent digestibility of N was greater (P = 0.02) for HI (652 g/ kg of intake) vs. LO (631 g/kg of intake). Interactions between harvest and supplement for apparent digestibilities of NDF (P = 0.09) and ADF (P = 0.03) were due to no change or an increase in digestibility in response to increased ruminal degradability of supplement in steers offered PM harvest, whereas increased ruminal degradability of supplement decreased digestibility of NDF and ADF in steers offered AM harvest. Treatments did not affect hay intake (3.93 kg/d), N retained (15.8 g/d), or plasma urea N (5.25 mM) during ad libitum intake. Greater TNC in PM vs. AM harvest was not sufficient by itself to increase total voluntary DMI, but greater protein degradability interacted with harvest time to increase ruminal fiber digestibility and digestible DMI of beef steers offered PM vs. AM harvest.  相似文献   

13.
One hundred-sixty Holstein growing-finishing steers (initial BW of 185 kg) were blocked by BW to determine the effectiveness of long-term bovine somatotropin (bST) administration on lean, skeletal, and carcass measurements. Steers were randomly allocated to 4 treatments (10 steers/treatment) within a block (n = 4 blocks). Treatments were control, no bST (C-C); bST from d 0 to 182 (bST-C); bST from d 183 to slaughter (C-bST); and bST from d 0 to slaughter (bST-bST). Steers received a s.c. injection of placebo or bST at 14-d intervals. Doses were 320 mg of bST/injection from d 0 to 112 and 640 mg of bST/injection from d 113 to slaughter. The last treatment was administered 31 d before slaughter. Steers received a 14% CP (DM basis) diet from d 0 to 182 and 11.5% CP from d 183 to slaughter that consisted of dry, whole-shelled corn and a pelleted protein-mineral supplement. Steers were slaughtered when BW per block averaged 615 kg (d 325, 353, 367, and 381 for the 4 blocks, respectively). Thirty steers were removed from the study because of poor performance with respect to their pen mates, illness, lameness, death, incomplete castration, and incorrect treatment. Serum IGF-I concentrations increased 151% (P < 0.01) from d 7 through 35 in bST-treated steers compared with control steers. During the first 182 d, bST-C and bST-bST steers were heavier (P < 0.01) and had greater (P < 0.01) ADG, G:F, hip height, and hip height gain compared with C-C and C-bST steers. From d 183 to slaughter, C-bST steers had reduced (P < 0.05) daily DMI and greater G:F than bST-C steers. At final slaughter, C-bST and bST-bST steers had greater (P < 0.05) hip height than C-C steers. Noncarcass weight was increased and dressing percent reduced (P < 0.05) in C-bST and bST-bST steers compared with C-C steers. Quality grade was least (P < 0.05) in bST-bST carcasses compared with C-C, whereas bST-C and C-bST carcasses were intermediate. At final slaughter, steers receiving bST had greater (P < 0.05) carcass protein and water composition and lower (P < 0.05) carcass lipid and lipid accretion than C-C steers. Bovine somatotropin was effective in reducing carcass fat and increasing edible lean. Administering bST to young, lightweight steers increased skeletal growth and noncarcass weight without an increase in total carcass weight, but decreased carcass quality.  相似文献   

14.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

15.
An experiment was carried out to determine the ileal digestibility values of NDF, CP, and AA associated with NDF in different samples of wheat shorts consisting of different proportions of wheat bran, shorts, and flour, hereafter referred to as wheat fractions. Six barrows (average initial BW 37.2 kg, and fitted with a simple T-cannula at the distal ileum) were fed one of six experimental diets, formulated to contain 17% CP (as-fed basis), according to a 6 x 6 Latin square design. Diets A, B, C, D, and E contained 17.53% soybean meal (SBM), which contributed 50% CP to these diets. The diets contained shorts, bran, or flour alone or in combination, contributing the remaining 50% CP to these diets. The proportions of shorts, bran, and flour in the wheat fractions were 70% shorts and 30% bran in diet A, 85% shorts and 15% bran in diet B, 100% shorts in diet C, 85% shorts and 15% flour in diet D, and 70% shorts and 30% flour in diet E. Diet F contained 35.05% soybean meal, which provided the sole source of dietary CP. Chromic oxide was used as a digestibility marker. During the first experimental period, the daily dietary allowance was provided at a rate of 5% (wt/wt) of the average BW. Thereafter, the allowance was increased by 100 g at each successive period. Each experimental period comprised 12 d. Following a 7-d adaptation period, feces were collected for 48 h and ileal digesta for a total of 24 h. The contribution of CP and AA associated with NDF gradually decreased from wheat fraction A to E, reflecting a decrease in NDF content from 42.3 to 29.5%. Of the indispensable AA in wheat fraction A, the contributions ranged from 12.9 to 15.9%. In wheat fraction E, these values ranged from 9.0 to 11.3%. The ileal digestibility values of NDF ranged from 11.8% in diet E to 17.1% in diet C (P > 0.05). There were usually no differences (P > 0.05) in the ileal digestibilities of AA associated with NDF between the wheat fractions. However, with the exception of lysine and tyrosine, there were negative correlations (P < 0.05) between the apparent ileal AA digestibilities and the content (%) of CP associated with NDF in the wheat fractions. Furthermore, there was no effect (P > 0.05) of the diets containing wheat fractions on the recovery of bacterial protein and mucin in ileal digesta.  相似文献   

16.
Twenty-four wether lambs (BW = 37.5 +/- 0.8 kg) were used in a 64-d randomized complete block design experiment to evaluate the effect of oscillating dietary CP with undegradable intake protein (UIP) on diet digestibility, N retention, and gastrointestinal (GI) organ mass. Four treatments consisted of a 13, 15, or 17% CP diet fed daily or a regimen in which dietary CP was oscillated between 13 and 17% on a 48-h basis (ACP). All diets consisted of 65% bromegrass hay (10.5% CP, 61.9% NDF, 37.2% ADF) and 35% corn-based supplement, and were formulated to contain the same amount of degradable intake protein (9.6% of dry matter), plus additional UIP (from SoyPLUS) to accomplish CP levels above 13%. Beginning on d 52, N balance collections were conducted for 8 d, after which lambs were killed on d 62 and 64 of the trial for measurement of GI organ mass. Because intake was restricted to 3.0% of initial body weight (dry matter basis), dry matter intake did not differ (P > or = 0.67) and no treatment effects (P > or = 0.36) on ADG, feed efficiency, or total tract DM digestibility were observed. Increasing dietary CP from 13 to 17% linearly increased (P = 0.0001) N digestibility, but lambs fed ACP had lower (P = 0.07) total tract N digestibility than those fed 15% CP daily. Although urinary N excretion increased linearly (P = 0.0001) with increasing CP, a linear increase (P = 0.07) was observed in N retention (g/d) with increasing dietary CP. Although the quantity of N retained by lambs fed ACP was not statistically different (g/d, P = 0.19; % of digested N, P = 0.23) from those fed 15% CP daily, N retention in lambs fed ACP was 42% lower than in those fed 15% CP daily (1.8 vs 3.1 g/d, respectively). Increasing CP linearly decreased (P < or = 0.09) weights of the reticulorumen, abomasum, and small intestine, but did not affect (P > or = 0.16) liver or omasum weights. Length of the small intestine was not affected (P > or = 0.45) by treatment, but lambs fed ACP had greater (P = 0.03) small intestine weights than those fed 15% CP daily. Increasing dietary CP linearly decreased (P = 0.03) total GI organ mass, and lambs fed ACP had a greater (P = 0.03) total GI organ mass than those fed 15% CP daily. Oscillating dietary CP may increase the weights of the GI organs, which may subsequently have negative effects on N and energy metabolism in the animal. Likewise, the potential for decreased GI organ mass in response to increased supply of CP with UIP deserves further investigation.  相似文献   

17.
The goal of this research was to develop empirical equations to predict chemical and physical compositions of the carcass and the body using the composition of the 9th- to 11th-rib section (rib(9-11)) and other measurements. A database (n = 246) from 6 studies was developed and comprised 37 bulls (BU), 115 steers (STR), and 94 heifers (HF), of which 132 were Nellore (NEL), 76 were NEL × Angus crossbreds (NA), and 38 were NEL × Simmental crossbreds (NS). The right half carcass and the rib(9-11) from the left half carcass were analyzed for ether extract (EE), CP, and water. The remaining components were chemically analyzed to determine the composition of the body. A stepwise procedure was used to determine the variable inclusion in the regression models. The variables included were EE in the rib(9-11) (EER; %), CP in the rib(9-11) (CPR; %), water in the rib(9-11) (WR; %), visceral fat (VF; %; KPH and mesenteric fats), organs plus viscera (OV; %), carcass dressing percentage (CD; %), cold carcass weight (kg), and empty BW (EBW; kg). No sex or breed effects were found on EE and CP compositions of the carcass (C(EE) and C(CP), respectively; %); the equations were as follows: C(EE) = 4.31 + 0.31 × EER + 1.37 × VF [n = 241; R(2) = 0.83; mean square error (MSE) = 4.53] and C(CP) = 17.92 + 0.60 × CPR - 0.17 × CD (n = 238; R(2) = 0.50; MSE = 1.58). Breed affected water content in the carcass (C(W), %); the equations were as follows: C(W) = 48.74 + 0.28 × WR - 0.017 × EBW for NEL; C(W) = 46.69 + 0.32 × WR - 0.017 × EBW for NA; and C(W) = 38.06 + 0.48 × WR - 0.017 × EBW for NS (n = 243; R(2) = 0.67; MSE = 5.17). A sex effect was found on body chemical EE composition (BW(EE)); the equations were as follows: BW(EE) = 2.75 + 0.33 × EER + 1.80 × VF for BU; BW(EE) = 1.84 + 0.33 × EER + 1.91 × VF for STR; and BW(EE) = 4.77 + 0.33 × EER + 1.28 × VF for HF (n = 243; R(2) = 0.89; MSE = 3.88). No sex or breed effects were found on CP composition in the body (BW(CP)); the equation was as follows: BW(CP) = 14.38 + 0.24 × CPR (n = 240; R(2) = 0.59; MSE = 1.06). A sex effect was found for body water content (BW(W)); the equations were as follows: BW(W) = 38.31 + 0.33 × WR - 1.09 × VF + 0.50 × OV for BU; BW(W) = 45.67 + 0.25 × WR - 1.89 × VF + 0.50 × OV for STR; and BW(W) = 31.61 + 0.47 × WR - 1.06 × VF + 0.50 × OV for HF (n = 241; R(2) = 0.81; MSE = 3.84). The physical carcass composition indicated a breed effect on all components and a sex effect for fat in the carcass. We conclude that body and carcass compositions can be estimated with rib(9-11) for purebred and crossbred NEL animals, but specific equations have to be developed for different groups of animals.  相似文献   

18.
A digestion and N balance trial was conducted to compare effects of traditional endophyte-infected (E+), endophyte-free (E-), and nontoxic endophyte infected (NE; MaxQ; Pennington Seed, Inc., Madison, GA) Jesup tall fescue (Festuca arundinacea Schreb.) hay on digestion and N retention in steers. Hay composition (DM basis) was as follows: E+ (10.8% CP, 59.9% NDF, and 29.4% ADF), E- (11.8% CP, 58.5% NDF, and 28.4% ADF), and NE (11.6% CP, 58.6% NDF, and 28.3% ADF). Eight Polled Hereford steers (initial BW 240 +/- 9 kg) were used in a replicated, 3 x 3 Latin square design, with an extra steer allotted to each square. Steers were fed ad libitum for 14 d, followed by a 9-d adaptation to restricted intake (based on the animal with the lowest ad libitum intake for the square) and a 5-d fecal and urine collection. Water intake (20.2 L/d) and urine output (7.40 L/d) did not differ (P > 0.10) during the collection period. Plasma prolactin concentration was less (P < 0.05) for steers on the E+ hay (8.83 ng/mL) than for those on the E- hay (18.03 ng/mL) and intermediate for steers on the NE hay (12.65 ng/mL). Endophyte-infected hay differed (P < 0.05) from E- and NE in ad libitum DMI (5.02 vs. 5.62 and 5.61 kg/d, respectively) and ad libitum DMI as a percentage of BW (1.86 vs. 2.06 and 2.06%, respectively). Restricted DMI during the fecal and urine collection was lower (P < 0.05) for E+ hay than for E- (5.04 vs. 5.24 kg/d), and NE was intermediate (5.19 kg/d). Dry matter digestibility was lower (P < 0.05) for E+ compared with E- and NE (62.3 vs. 67.0 and 65.9%, respectively). Digestibility of ADF was lower (P < 0.05) for E+ than for E-, and was intermediate for NE (61.5, 66.0, and 63.9%, respectively). There were no differences for NDF, cellulose, or hemicellulose digestibilities among hay types. Crude protein digestibility was higher (P < 0.05) for E- and NE than for E+ (54.3 and 52.5 vs. 48.1%, respectively). Nitrogen retention was lower (P < 0.01) for E+ than for E- or NE (15.6 vs. 22.7 or 23.0 g/d, respectively). Hay type did not influence plasma urea N, urine urea N output, or urine urea N as a percentage of urinary N. Results from this study indicate that E+ tall fescue hay was lower in ad libitum DMI, DM digestibility, and N retention than NE or E- hays with similar chemical composition. Hay from NE and E- fescue had nearly identical composition, and did not differ for any variable measured.  相似文献   

19.
Influence of model and marker on digesta kinetic estimates for sheep.   总被引:4,自引:0,他引:4  
Several models and markers are available for digesta kinetic studies. In this study, kinetic estimates derived from chromium-mordanted hay or pellets were compared to estimates derived from rare earth markers (Yb, Dy, or Er) applied individually to samples. Twelve yearling rams (52 kg) were given ad libitum access to either hay or a commercial pelleted diet in a crossover experiment. Digesta kinetic estimates were obtained both by nonlinear analysis with two age-independent rates (G1G1) or with gamma time dependency in the fast compartment (G2G1 to G4G1) and by linear regression of natural log transformed fecal marker concentrations (LN method of estimate). Model did not influence total tract (P > .21) or ruminal mean retention times (P > .87). Partitioning of total retention time was similar (P > .21) for the LN, G3G1, and G4G1 models, but the G1G1 and G2G1 models did not adequately fit these data. Nonlinear models overestimated, and LN underestimated, fecal DM output by 9% (SEM = 4.7) for the hay diet. All the nonlinear models provided fecal DM output estimates that were within 5% of actual fecal DM output, but the LN model underestimated it by 18% (SEM = 3.3) for the pelleted diet. Ruminal outflow rate was slower (P < .01) and both ruminal and total mean retention time estimates were longer (P < .01) for Cr than for the rare earths. Despite the marker chosen, relative diet effects were similar. The three rare earth markers gave identical results for digesta kinetic estimates, indicating that they are useful for simultaneous study of more than one ingredient or particle, but direct comparison of rare earth and Cr-mordant passage rates is not advisable.  相似文献   

20.
Two trials were conducted to evaluate the effects of dietary NPN levels on animal performance, diet digestibility, ruminal characteristics, and microbial efficiency. Experiment 1 was conducted with 24 Holstein x Nellore crossbred steers (350 +/- 20 kg of BW) distributed in 6 blocks to evaluate intake and digestibility of nutrients and performance. The diets consisted of 70% corn silage and 30% concentrate (DM basis) and were formulated to contain 12.5% CP (DM basis). Treatments consisted of 0, 15.5, 31, and 46.5% of dietary N as NPN. There were no treatment differences in the daily intakes of DM (P = 0.47), OM (P = 0.60), CP (P = 0.24), nonfiber carbohydrates (NFC; P = 0.74), or TDN (P = 0.63); however, NDF intake decreased linearly as NPN increased (P = 0.02). Additionally, no effects of NPN were observed on apparent total tract digestibility of DM (P = 0.50), OM (P = 0.53), NDF (P = 0.63), or NFC (P = 0.44). The apparent total tract digestibility of CP increased linearly (P = 0.01), but ADG (1.14 kg/d) was not influenced (P = 0.96) as NPN increased. In Exp. 2, 4 ruminally and abomasally cannulated steers (300 +/- 55 kg of BW) were fed the same diet used in Exp. 1 to evaluate the effects of NPN levels on intake and digestibility of nutrients, ruminal characteristics, and microbial efficiency. There were no differences in the daily intakes of DM (P = 0.22), OM (P = 0.17), CP (P = 0.31), NDF (P = 0.29), or TDN (P = 0.49). However, NFC intake increased linearly (P = 0.02), and there was a quadratic effect (P = 0.01) on intake of ether extract as NPN increased. Ruminal digestibility of CP increased linearly (P = 0.01) with the increase of dietary NPN. There were no differences (P >or= 0.28) in microbial protein synthesis and microbial efficiency among the treatments. The results of these trials suggest that dietary NPN levels (up to 46.5% of total N) can be fed to crossbred steers receiving corn silage-based diets without affecting their growth performance or ruminal protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号