首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Air temperature (Ta) is commonly used for modeling rice phenology. However, since the growing point of rice is under water during the vegetative and the early part of the reproductive period, water temperature (Tw) is likely to have a greater influence on crop developmental rates than Ta during this period. To test this hypothesis, we monitored Tw, Ta, and crop phenology in three commercial irrigated rice fields in California, USA. Sampling locations were set up on along a transect from the water inlet into the field. (Water warms up as it moves into the field.) Ta averaged 22.7 °C across sampling locations within each field, but average seasonal Tw increased from 22 °C near the inlet to 23.4 °C furthest away from the inlet. Relative to Tw furthest from the inlet, low Tw near the inlet delayed time to panicle initiation (PI 5 days) and heading (HD 8 days) and the appearance of one yellow hull on the main stem panicle (R7 9 days). Using Tw instead of Ta when the active growing point is under water until booting (midway between PI and HD) in a thermal time model improved accuracy (root-mean-square error, RMSE) for predicting time to PI by 2.5 days and HD by 1.6 days and R7 by 1.8 days. This model was further validated under more typical field conditions (i.e., not close to cold water inlets) in six locations in California. Under these conditions, average Tw was 2.6 °C higher than Ta between planting and booting, primarily due to higher daily maximum Tw values. Using Tw in the model until booting improved RMSE by 1.2 days in predicting time to HD. Using Tw instead of Ta during this period could improve the accuracy of rice phenology models.  相似文献   

2.
Statistical copolymers of 2-hydroxy-3-benzophenoxy propyl methacrylate (HBPPMA) and benzyl methacrylate (BzMA) in different feed ratios were synthesized by free radical copolymerization method at 60 °C in presence of AIBN initiator. The compositions of copolymer were estimated from 1H-NMR technique. The monomer reactivity ratios of HBPPMA and BzMA were calculated as r1 (rHBPPMA)=0.51±0.076 and r2 (rBzMA)=1.07±0.140 for Kelen-Tüdos method, and was estimated as r1=0.37±0.0006 and r2=0.64±0.0485 according to Fineman Ross equation. The average values estimated from the two methods showed that monomer reactivity ratio of benzyl methacrylate was a slightly high in comparison to HBPPMA. The copolymer system showed an azeotropic point, which is equal to M BzMA =m BzMA =0.43. DSC measurements showed that the Tg’s of poly(HBPPMA) and poly(BzMA) were 84 °C and 73 °C, respectively. The Tg in the copolymer system decreased with increase in benzyl methacrylate content. The decomposition temperature of poly(BzMA) and poly(HBPPMA) occurs in a single stage at about 207 °C and 260 °C, respectively. Those of HBPPMA-BzMA copolymer systems are between decomposition temperatures of two homopolymers. The dielectric constant, dielectric loss factor and electrical conductivity were investigated depend on the frequency of the copolymers. The highest dielectric constants depending on all the studied frequencies were recorded for the poly(HBPPMA) and the copolymer containing the highest HBPPMA unit. The dielectric constant for P(HBPPMA) and P(BzMA) at 1 kHz are 6.56 and 3.22, respectively. Also, those of copolymer systems were estimated between these two values. Similarly, poly(HBPPMA) and copolymers, which are prepared under the same conditions show the dissipation factor and conductivity as well.  相似文献   

3.
Cobaltous sulfate heptahydrate (CoSO4·7H2O) was incorporated as filler into diglycidyl ether of bisphenol A (DGEBA) based epoxy resin system, to prepare organic-inorganic polymer hybrid materials. Mechanical tensile studies and dynamic mechanical analysis (DMA) were carried out in order to study the static and dynamic mechanical properties of the prepared hybrid films. Mechanical tensile studies were carried out at room temperature, at a test speed of 30 mm/min. Highest tensile strength of 24.74±2.42 MPa was achieved for 4.44 wt% filler level (FL), along with an increase in the value of Young’s modulus. Storage modulus (E′), loss modulus (E″), damping factor (tan δ) were obtained by DMA studies. Glass transition temperature (Tg) was obtained for pure epoxy and filled epoxy, for various FLs varying from 0.28 wt% to 5.00 wt%. Pure epoxy showed highest Tg value compared to filled epoxy hybrids. Highest storage modulus of 9.5 GPa was obtained for 2.22 wt% FL, which also showed highest loss modulus peak. Parameters like effectiveness coefficient (C) and crosslink density were calculated from the storage modulus data. Loss modulus and tan δ curves were analyzed to study the energy dissipation properties of prepared hybrid films. Activation energy (Ea) value for glass transition was obtained from damping factor (tan δ), which showed highest Ea value of 630.5 kJmol-1, for 4.44 wt% FL. DMA studies for various FLs were carried out at different test frequencies in order to study the changes in dynamic mechanical properties of the prepared hybrid materials with respect to frequency  相似文献   

4.
3,3'-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide (DImDBr), a gemini imidazolium ionic liquid, was synthesized for the modification and dyeing promotion of poly(ethylene terephthalate) (PET) filaments. The results showed that parameters such as treatment temperature, time, and DImDBr concentration played a critical role on the tensile strength and tensile strength retention of modified PET filaments. The optimal treatment parameters of the PET filaments were 120 °C for 90 min with addition of 6 % ionic liquid. The influence of disperse dyeing parameters (temperature, time, and dye concentration) on DImDBr modified PET filaments were also studied. The disperse dyed PET filaments (after treatment with DImDBr) exhibited a desirable color strength (K/S value), excellent soap washing fastness, light fastness, and rubbing fastness. Furthermore, the native PET filaments and DImDBr treated PET filaments were characterized by FT-IR, XRD, DSC, TGA, and SEM. Density functional theory (DFT) simulation showed the presence of two kinds of hydrogen bonds (C-H/O and O-H/Br) and eight strong hydrogen bonds in the DImDBr/cis-PET monomers, while only three hydrogen bonds were found in the DImDBr/trans-PET monomers. The structural transformation from the crystalline phase to the amorphous phase (FT-IR, XRD, and DFT simulation) after DImDBr modification confirmed the dyeing promotion of PET filaments at lower temperature.  相似文献   

5.
A series of copolyesters (Co-PETs) containing poly(ethylene glycol) (PEG), 5-sodiumsulfodimethyl isophthalate (DMS), and dimethyl isophthalate (DMI) were synthesized via the conventional two-step melt-polycondensation method. The synthesized Co-PETs were characterized by 1H-NMR spectroscopy, FT-IR spectroscopy, differential scanning calorimeter (DSC), and thermogravimetric analyzer (TGA). The DSC results showed that the melting temperature (T m) and the heats of fusion (ΔH m) of Co-PETs decreased with increasing the DMS content in Co-PET, while the inclusion of PEG did not affect their thermal properties significantly. The water absorption and the water contact angle of the Co-PET films were found to be significantly affected by the DMS content rather than PEG content. The moisture-related cooling properties of the fabric samples made of Co-PET 5 as well as PET were evaluated by using liquid moisture management tester (MMT) and Q max measurements. The MMT and Q max results indicated that Co-PET 5 fabric containing DMS 1.0 mol% and PEG 10.0 wt% in Co-PET seemed to be a good candidate for the fabric having durable cooling effects.  相似文献   

6.
The main objective of this study was to evaluate the actual performance of a conceptual body mapping sportswear (BMS) kit while doing different activities in a warm dry condition. Eight subjects participated in this study and each subject underwent two trials. Each trial was composed of 40 min treadmill walking at 5.0 km/h, 10 min resting, 20 min treadmill running at 10.0 km/h and a final 20 min resting. All trials were performed in a chamber where the T a =30±0.5 °C, RH=40±5 % and v air =0.17±0.05 m/s. Human physiological and perceptual responses in CON (i.e., traditional cotton sportswear) and BMS were measured and compared. It was found that both physiological responses (such as core temperature, mean skin temperature, mean torso temperature, mean body temperature and hear rate) and local subjective sensations (e.g., thermal sensation) were improved in BMS during the running phase as well as the second recovery phase. It was thus concluded that the conceptual BMS kit does have advantages over traditional cotton sportswear in terms of improvements on both physiological responses and local subjective sensations.  相似文献   

7.
An epoxy resin (diglycidyl ether of bisphenol-A) was blended with different loadings of a glycidyl-polyhedral oligomeric silsesquioxane (POSS) and isothermally cured with an amine hardener at varying temperatures and times. The glass transition temperature (T g) of the samples was measured at different chemical conversions (α) using differential scanning calorimetry (DSC). Time-temperature shifts were made for T g vs. ln(time) data to be superposed at an arbitrary reference temperature in the kinetically controlled reaction regime, and these shift factors were used to obtain an Arrhenius activation energy. The influence of POSS on different reaction systems was investigated in terms of the T g-α relationship, which was fitted with two models; DiBenedetto and Venditti/Gillham equations. It was found that POSS molecules played different roles at different stages of the curing process. At lower conversions, the inorganic cage of the incorporated POSS (up to 20 wt%) reduced the mobility of the molecular segments, giving rise to an increase in T g. However, above the 20 wt% POSS, there was a depression of T g, which may be associated with a plasticizing effect of organic substituents of the POSS molecules. Moreover, the effect of POSS on T g became less pronounced when the conversion reached 0.8.  相似文献   

8.
In this study, the tetramido macrocyclic iron complex (Fe-TAML) was successfully synthesized, and then it was characterized using 1H nuclear magnetic resonance (1H NMR), electrospray ionization mass spectrometry (EIS-MS) and elemental analysis. An activated peroxide system was established for low-temperature bleaching of cotton by combining the synthesized catalyst (Fe-TAML) with hydrogen peroxide. Experimental results showed that the Fe-TAML/H2O2 bleaching system exhibited effective bleaching performance in the use of 2 μM Fe-TAML, 20 g/l H2O2, 1 g/l NaHCO3, 2 g/l scouring agent and 2 g/l wetting agent at 60 °C for 60 min. In comparison with the conventional bleaching system, the Fe-TAML/H2O2 system provided bleached cotton with a superior degree of whiteness, higher tensile strength and acceptable water absorbency. The application of Fe-TAML was expanded and the activated peroxide system may provide a green approach for the cotton bleaching.  相似文献   

9.
In the present study, an attempt has been made to dye the wool fabric with Limoniastrum monopetalum stems, as a source of natural dye, which has not been exploited so far. Optimization of extraction parameters was done. Optimum results of extraction process were obtained with a dye concentration of 60 g/l, a temperature of 90 °C during 100 min. The study of different factors effecting dyeability of wool fabrics by aqueous L. monopetalum stems extract showed that the pH of dye bath and dyeing temperature and time affected considerably the color yield. The best results were obtained at the following conditions; pH 2, 100 °C, and 60 min. Metal mordants, when used in conjunction with L. monopetalum dye, allowed to obtain various shades. The determination of phenolic contents of aqueous L. monopetalum stems extract showed a high amount of phenolic components. Based on RP-HPLC, the coloring extract of L. monopetalum stems contains tannins and polyphenols. The major identified phenolic compounds were procatechuic, Trans-cinnamic and gallic acids. Hence, aqueous L. monopetalum stems extract could be successfully exploited for dyeing wool fabrics with high color yield (K/S).  相似文献   

10.
The efficacy of antimicrobial treatment of cotton fabrics depends on various parameters of the coating process, such as the chemical nature and concentration of the antimicrobial agent, the composition of the crosslinking formulation, and the curing temperature. The inclusion complex of triclosan with β-cyclodextrin (βCD) was synthesized and characterized by FTIR, XRD, NMR, Raman, SEM, and TGA. The minimum inhibitory concentration and minimum bactericidal concentration of the complex against Klebsiella pneumoniae and Staphylococcus aureus were compared to those of its precursor. A multifactorial study included an evaluation of the effects of triclosan complexation with β-cyclodextrin, a comparison between the glyoxal and tetracarboxylic acid as crosslinkers, an investigation of the effect of crosslinker and catalyst concentrations, and a comparison of curing at 120°C and 180°C. The cotton was characterized by FTIR-ATR, the micrographs of treated samples were obtained by SEM and the weight add-on was calculated. The bactericidal properties were determined according to AATCC-147. The correlation between the coating process parameters and the antimicrobial efficacy was determined. The optimal combination leading to the highest weight add-on and the antimicrobial coating that was most durable to multiple detergent washes at an elevated temperature was the use of complexed triclosan grafted onto the cotton in the presence of tetracarboxylic acid, followed by curing at 180°C. The curing temperatures were 120°C (P=0.002) and 180°C (P=0.008), catalysts were 1 % and 2 % aluminium sulfate and sodium hypophosphite (P<0.001), and the crosslinkers were 5 % and 10 % glyoxal and butanetetracarboxylic acid (P<0.001); these parameters significantly enhanced the antimicrobial properties of the treated fabrics. The study showed that βCD did not have antimicrobial activity, while the βCD/triclosan-treated textile exhibited potential antimicrobial properties. Overall, the bactericidal activity of fabrics can be enhanced by using βCD/triclosan with 10 % butanetetracarboxylic acid as a cross-linker and 5 % sodium hypophosphite as a catalyst at a curing temperature of 180°C.  相似文献   

11.
The synthesis of poly(norbornene ester)s by using a (η 3-substituted allyl) palladium (N-heterocyclic carbene (NHC)) complex as catalyst was performed and the relationship between chemical structure and glass transition temperature or refractive index of poly(norbornene ester)s was investigated. Norbornene ester monomers were synthesized via esterification of 5-norbornene-2-methyl alcohol and aromatic carboxylic acids. The polymerization catalyst, (η 3-substituted allyl) palladium (NHC) complex, was synthesized according to a published procedure. 1H-NMR spectroscopy was performed to determine chemical structure of monomers and polymers. The molecular weight of the polymers was measured via gel permeation chromatography and the thermal properties were analyzed via thermogravimetric analysis and dynamic mechanical analysis. Refractive indices of polymer films were measured using a prism coupler. Polymers with the highest M n (between 100 kg/mol and 300 kg/mol) were synthesized when the ratio of monomer to catalyst was 2000:1. The glass transition temperature of synthesized polymers was about 100 °C lower than that of conventional norbornene polymers. Among the six polymers of different chemical structures, four polymers exhibited a refractive index of 1.6 or more at a wavelength in the visible light region.  相似文献   

12.
Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers were investigated. The thermal gravimetric analysis (TGA) demonstrated that POD exhibited higher onset thermal degradation temperature (Tonset) than PMIA, exceeding nearly 80 °C. The thermal degradation kinetics, evaluated by the modified Coats-Redfern method, displayed that the apparent activation energy (Ea) of POD and PMIA fibers was similar when the conversion rate (α) ranges from 0.2 to 0.5, while with the α from 0.6 to 0.8, the Ea of POD was significantly lower than that of PMIA. The fire retardant performance of POD and PMIA fibers were evaluated by cone calorimeter under heat fluxes of 35, 50 and 75 kW/m2, during which the temperature of the fibers were monitored by a thermocouple. Surprisingly, POD fibers showed inferior fire retardant performance in comparison with PMIA, with lower time to ignition (TTI) and higher peak heat release rate (PHRR). The origin of the different fire retardant properties of both fibers was revealed by analyzing the residual chars and gaseous products during thermal pyrolysis. The morphology confirmed that stable and compact chars can be formed in PMIA. In addition, the Fourier Transform Infrared Spectroscopy (FTIR) characterization of the residual char revealed that POD can form carbonaceous chars at the heat flux of 50 kW/m2, while the heat flux of PMIA was 75 kW/m2. The pyrolysis products characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that POD can be pyrolyzed completely at 600 °C, while the temperature of PMIA was 700 °C.  相似文献   

13.
Accurate forecasts of daily crop evapotranspiration (ETc) are essential for real-time irrigation management and water resource allocation. This paper presents a method for the short-term forecasting of ETc using a single-crop coefficient approach and public weather forecasts. Temperature forecasts with a 7-day lead time in 2013–2015 were retrieved and entered into a calibrated Hargreaves–Samani model to compute daily reference evapotranspiration (ET0) forecasts, while crop coefficient (Kc) empirical values were estimated from both observed ETc value and calculated ET0 values using the Penman–Monteith equation for the period of 2010–2012. Daily ETc forecasts of irrigated double-cropping rice were determined for three growing seasons during the period of 2013–2015 and were compared with ETc values measured by the weighing lysimeters at the Jiangxi experimental irrigation station in southeastern China. During the early rice season, the average mean absolute error (MAE) and root-mean-square-error (RMSE) values of ETc forecasts ranged from 0.95 to 1.06 mm day?1 and from 1.18 to 1.31 mm day?1, respectively, and the average correlation coefficient (R) ranged from 0.39 to 0.54; for late rice, the average MAE and RMSE values ranged from 1.01 to 1.09 mm day?1 and from 1.32 to 1.40 mm day?1, respectively, and the average R value ranged from 0.54 to 0.58. There could be three factors responsible for errors in ETc forecasts, including temperature forecast errors, Kc value errors and neglected meteorological variables in the HS model, including wind speed and relative humidity. In addition, ETc was more sensitive to changes in temperature than Kc. The overall results indicated that it is appropriate to forecast ETc with the proposed model for real-time irrigation management and water resource allocation.  相似文献   

14.
Two functional compounds were successfully extracted from neem (Azadiracta indica): a tannin-rich natural dye and an antibacterial agent. The dye was extracted from the bark using water, and the antibacterial from the leaf using methanol. These were used to dye hemp fabrics. Higher color strength values (K/S) were found when dyeing was conducted at a higher dye concentration, elevated temperature, and longer dyeing time. Optimal results were achieved when using 5 %w/v of extracted powder at 100 °C for 60 min. The resulting fabrics appeared reddish-brown, and were rated as good to excellent for color fastness against washing, water, sea water, and perspiration. The antibacterial agent from the neem leaf was extracted by Soxhlet apparatus at 65 °C with methanol as solvent. The dyed and antibacterial-finished hemp fabrics were tested against Staphylococcus aureus, following the percentage reduction test of AATCC 100. The treated fabrics demonstrated a 99.99 % reduction in Staphylococcus aureus.  相似文献   

15.
Polylactide(PLA) films were drawn at various drawing temperature of 65, 90 and 120 °C. The effects of drawing temperature on structural conformation and properties of PLA films were investigated. It was confirmed that the PLA films at drawing temperature of 65 and 90 °C were composed of α′ phase crystal form. The strain-induced crystallization and molecular orientation increased with increasing the draw ratio, which result in improving the mechanical and thermal properties of α′ phase PLA films. However, at drawing temperature of 120 °C, the strain-induced crystallization and molecular orientation of PLA films were not distinctly detected. It was supposed that the rate of the chain relaxation was faster than chain orientation and strain-induced crystallization during uniaxial drawing process.  相似文献   

16.
In this work, the natural dyeing behavior of woollen yarn with madder (Rubia tinctorum L.) root extract was studied. The effects of different tannin-rich plants (Rhus coriaria, Eucalyptus, Terminalia chebula, Quercus castaneifolia, Pomegranate) extract as biomordants and alum (as a chemical mordant) with two mordanting procedures (pre- and metamordanting) on color characteristics of the dyed samples were also investigated. The CIEDE2000 values, color strength (K/S), washing fastness and tensile property of the mordanted and dyed samples were assessed. Visually, a range of hues from orange to brownish-red were obtained. In general, pre-biomordanted samples with Rhus coriaria (10 %owf), Eucalyptus (10 %owf), Terminalia chebula (5 %owf), Quercus castaneifolia (5 %owf) and Pomegranate (5 %owf) showed almost the same color difference (ΔE00) and wash fastness values compared to those treated with 3 %owf alum. Finally, it was concluded from the comparative studies that the biomordants have good potential to be considered as alternatives to the common chemical mordants.  相似文献   

17.
In food industry, roselle beverages and their subproducts could be functional ingredients since they are an excellent source of bioactive compounds with improved performance due to their important anthocyanins content. The aim of this study was to analyze anthocyanin content and antioxidant properties of aqueous infusions elaborated with color contrasting Hibiscus materials and design a mathematical model in order to predict color-composition relationship. Color measurements of beverages from roselle (Negra, Sudan and Rosa) were made by transmission spectrophotometry, anthocyanins quantification was determined by HPLC, and antioxidant potential was evaluated by in vitro methods (ABTS and FRAP assays). Beverages prepared with particle size minor of 250 μm presented until 4- and 2- times more anthocyanins content and antioxidant capacity respectively, in comparison to beverages prepared with powders with particle size major of 750 μm. Positive correlations among pigments composition and color parameters were found (p?<?0.05), showing that anthocyanins content, antioxidant capacity, C*ab and hab values increased in relation with the smallest particle size of flours. Also, mathematical models were stablished to predict anthocyanin content (r?≥?0.97) and antioxidant capacity (r?≥?0.89) from color data; we propose equations for quick estimation of the antioxidant capacity in the Hibiscus beverages with high anthocyanin content. The obtained models could be an important tool to be used in food industry for pigment characterization or functional compounds with potential health benefits.  相似文献   

18.
When stored at temperatures below 10 °C, potatoes accumulate sucrose and the reducing sugars glucose and fructose. This process, cold-induced sweetening, has been studied extensively because potatoes with elevated reducing sugar contents produce undesirable, dark-colored products and acrylamide, a suspected carcinogen, during high-temperature cooking. Potatoes in commercial storages are cooled slowly, but many research studies have used potatoes cooled rapidly. In this study, effects of cooling rate and variety on chip color, sugars, and gene expression were examined. Sucrose and reducing sugar contents were substantially lower in slowly cooled than in rapidly cooled tubers of ‘Snowden’ and “MegaChip’ for the first 11 weeks after cooling to 3 °C began. Differences in gene expression for VInv, β-amylase, SPS, AGPase and GBSS were observed between cooling treatments and varieties. Overall, the data showed that cooling rate, time in storage, and variety influenced multiple aspects of cold-induced sweetening.  相似文献   

19.
Potato Solanum tuberosum is one of the world’s four most important crops. Its cultivation is steadily increasing in response to the need to feed a growing world population. The yield of potato is influenced inter alia by both climate and pests. The main defoliator pest of potato is Colorado potato beetle Leptinotarsa decemlineata. Using data from a long-term experiment (1958–2013) in western Poland, we show that increasing temperature has affected the trophic relationship between potato and Colorado potato beetle. The planting, leafing, flowering and harvest dates for potato were advanced, after controlling for different cultivars, by 2.00 days, 3.04 days, 3.80 days and 3.42 days respectively for every 1 °C increase in temperature. In contrast, first treatment against Colorado potato beetle advanced by 4.66 days for every 1 °C increase in temperature, and, furthermore, the number of treatments against the beetle increased by 0.204 per 1 °C increase in temperature. This suggests that the beetle responds faster to increasing temperature than the plant does, but both parts of the system are probably greatly modified by farming practices.  相似文献   

20.
Phthorimaea operculella (Zeller) is one of the most common insect pests of cultivated potato in tropical and subtropical regions. In this research, a potential strategy to improve the insecticidal activity of plant essential oils for the effective management of P. operculella was studied. The insecticidal and residual effects of nanofiber oil (NFO) and pure essential oil (PEO) of Cinnamomum zeylanicum were assessed on PTM under laboratory conditions. The nanofibers were made by the electrospinning method using polyvinyl alcohol (PVA) polymer. The morphological characteristics of the nanofibers were evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The chemical constituents of cinnamon essential oil (EO) were detected by GC/MS. Fumigant toxicity of NFO and PEO were evaluated on different growth stages (egg, male and female adults) of P. operculella. SEM and FTIR analyses confirmed the presence of EO on the nanofiber structure. The yield of the EO from C. zelanicum on the nanofibers was 1.86%. GC/MS analysis showed that cinnamaldehyde was the primary constituent (69.88%) of cinnamon EO. LC50 values of C. zelanicum EO and NFO were 4.92 and 1.76 μl/l air for eggs, 0.444 and 0.212 μl/l air for female adults, and 0.424 and 0.192 μl/l air for male adults, respectively. Fumigant bioassays revealed that NFO was more toxic than C. zeylanicum oil against at all stages of P. operculella. The residual effect of PEO and NFO was evaluated against the egg stage of the P. operculella. NFO lost insecticidal effectiveness 47 days after application, while the efficacy of PEO decreased 15 days after application. Our results suggest that NFO of C. zeylanicum can be used as an effective new tool for the management of P. operculella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号