首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
大白菜核基因雄性不育复等位基因Ms的SSR标记   总被引:3,自引:2,他引:3  
 利用大白菜细胞核复等位基因型雄性不育两用系‘AB01’的不育株,与多国芸薹属植物基因组计划MBGP的基础材料'Chiifu'杂交及回交,构建BC1群体。根据SSR检测体系中各主要成份浓度对扩增结果的影响,优化反应体系。选用250对SSR引物,对大白菜核基因雄性不育复等位基因Ms进行SSR+BSA分析,获得了7对多态性引物。在101株BC1个体间对这些引物进一步检测,得到2个与Ms基因连锁的SSR标记cnu_m273和cnu_m295。经连锁分析,二者位于Ms的同一侧,遗传距离分别为4.95 cM和7.92 cM。  相似文献   

2.
 以大葱(Allium fistulosum L.)雄性不育系和保持系为试材,开发了一个能够鉴别细胞质雄性不育类型的SCAR 标记。此标记在大葱雄性不育系(S 型细胞质)中扩增出1条607 bp 片段,而在保持系(N 型细胞质)中没有扩增出此片段,将此片段命名为S607。对5 组不同遗传背景的不育系和相应保持系,以及4 份杂交组合进行验证,SCAR 标记S607 鉴定结果与实际细胞质类型完全相符。  相似文献   

3.
大白菜核基因雄性不育转育研究进展   总被引:6,自引:0,他引:6  
大白菜核基因雄性不育系具有雄蕊退化彻底、不育性稳定、不育株率100%等特点,是一类比较理想的雄性不育材料.现对该不育材料转育的理论基础以及转育方法进行归纳,总结了该类雄性不育系的5大转育模式.指出由于存在的转育难、利用难的问题,致使该类不育材料无法在更大范围(多个生态型)上应用.要解决此问题,提出3点看法:改进现有的转育方法;探索新的转育途径;借助生物技术手段.  相似文献   

4.
大白菜显性核复等位基因雄性不育恢复基因Msf的SSR标记   总被引:1,自引:0,他引:1  
 为筛选大白菜核复等位基因遗传的雄性不育恢复基因Msf的SSR标记,用基因型为MsfMs的雄性不育两用系‘AB01’的可育株自交,得到恢复基因型纯合个体MsfMsf。再用其与基因型为msms的自交系‘a20’杂交和连续回交,获得BC4分离群体。筛选了104对SSR引物,获得3个与雄性不育恢复基因Msf连锁的SSR标记syau_m13、syau_m14和BRMS-040。经群体验证和连锁分析,Msf基因位于R07连锁群上,3个标记位于Msf基因的同一侧,距Msf基因的遗传距离分别为6.7、6.7和8.6 cM。  相似文献   

5.
一个用于甘蓝显性雄性不育基因转育辅助选择的SCAR标记   总被引:19,自引:2,他引:17  
一个与甘蓝显性雄性不育基因连锁的RAPD标记OTII900被转化为显性的SCAR(Sequence Characterized Amplified Region) 标记STII900,它可用于甘薯显性雄性不育基因转育辅助选择。  相似文献   

6.
利用游离小孢子培养获得的DH系群体和BSA法对与大白菜橘红心基因紧密连锁的分子标记进行了研究, 筛选到与橘红心球色基因or连锁的RAPD标记S1338656和AFLP标记P67M54172 , 其遗传距离分别为8 cM和13 cM, 并将其成功转化成SCAR标记SCOR204和SCOR127。对标记的通用性在110个大白菜自交不亲和系育种材料中进行了验证, 与田间鉴定结果的吻合率分别为90%和89.1%。SCAR标记的获得为大白菜橘红心性状的分子标记辅助选择与基因的图位克隆奠定了基础。  相似文献   

7.
大白菜抗根肿病与核基因雄性不育性的遗传关系   总被引:2,自引:0,他引:2  
采用菌土置入法对大白菜进行根肿病抗病接种鉴定;根据大白菜核基因雄性不育复等位基因遗传假说,对26个抗根肿病自交系育性基因进行测定。  相似文献   

8.
大白菜核雄性不育相关基因BrLTP1的克隆及特征分析   总被引:2,自引:0,他引:2  
 利用cDNA-AFLP技术分析大白菜核雄性不育两用系‘AB02’可育株(msms)和不育株(Msms)花蕾的基因表达谱,在可育株混合花蕾cDNA中扩增出1条特异条带TDF-25,通过RACE和RT-PCR技术克隆了该基因的全长cDNA序列。序列分析表明,该基因编码脂质转移蛋白,命名为BrLTP1。BrLTP1全长cDNA序列为750 bp,推测编码1个包含183个氨基酸残基的前体蛋白。BrLTP1蛋白含有典型的脂质转移蛋白N端信号肽,保守的AAI结构域和半胱氨酸位点。预测BrLTP1蛋白含有多种修饰性位点,包括1个PKC磷酸化位点,2个N–糖基化位点和10个N–端豆蔻酰基化位点。基因表达模式表明,BrLTP1在两用系不育株花蕾中受到强烈抑制,在可育株的大花蕾、成熟花药以及花瓣中高水平表达。  相似文献   

9.
大白菜核基因互作雄性不育系91—5A遗传机制初探   总被引:4,自引:0,他引:4  
张书芳  赵雪云 《园艺学报》1994,21(4):404-405
大白菜核基因互作雄性不育系91—5A遗传机制初探张书芳,赵雪云,周邦福(沈阳市农业科学院,110034)关键词核基因互作,显性不育基因,显性上位可育基因ResearchonGeneticMechanismofInteractiveGenieMaleS...  相似文献   

10.
大白菜细胞核雄性不育基因向自交系97A407的转育   总被引:9,自引:0,他引:9  
根据复等位基因遗传假说 ,利用大白菜核不育系 9810 9和已知基因型的甲型两用系可育株 99135 2作为不育源 ,以大白菜自交系 97A40 7为目标亲本 ,经过 5个世代的转育 ,获得了具有 97A40 7遗传基因型的新甲型两用系、临时保持系和雄性不育系。  相似文献   

11.
以大白菜品种Chiifu 为试验材料, 采用RT-PCR 技术, 克隆了3 个硫甙合成关键基因
BrAOP2 基因的cDNA 序列(BrAOP2.1、BrAOP2.2、BrAOP2.3)。通过氨基酸同源性比对分析,BrAOP2.1
与BrAOP2.2 的同源性为78%,BrAOP2.1 与BrAOP2.3 的同源性为74%,BrAOP2.2 与BrAOP2.3 的同源
性为81%。通过32 份大白菜重测序数据分析了3 个BrAOP2 基因CDS 序列的遗传多样性,并对其与硫甙
含量的相关性进行了分析。结果表明:在32 份大白菜中共检测到7 种硫甙,其中4-戊烯基硫甙(GBN)
含量和2-羟基-3-丁烯基硫甙(PRO)含量较高,分别占总硫甙含量的23.99% 和23.16%。在BrAOP2.1
基因编码区检测到5 个变异位点,在BrAOP2.2 基因编码区检测到7 个变异位点,在BrAOP2.3 基因编码
区仅检测到1 个变异位点。其中BrAOP2.1 基因的A1051G 变异位点与PRO 含量极显著相关,BrAOP2.2
基因的A560G、C753T、A790G 和T927C 变异位点与PRO 含量显著相关,BrAOP2.2 基因的G825A 位点
与4-羟基-3-吲哚基甲基硫甙(4OH)含量显著相关。  相似文献   

12.
大白菜AB-81高频再生系统的建立及gus A基因瞬时表达的研究   总被引:15,自引:1,他引:14  
 以大白菜自交系AB-81 的子叶和真叶切块为外植体, 建立了高频不定芽离体再生系统。在MS 附加TDZ 0. 2 mg/L , NAA 2. 0 mg/L , AgNO3 10 mg/L 和ABA 0. 25 mg/L 的再生培养基上, 子叶和真叶的不定芽再生频率分别达到93. 3%和90. 0%, 每块外植体的不定芽数达3~6 个, 最多达21 个。以EHA105/ pMOG410 为载体转化侵染大白菜AB-81 的子叶, 获得较高gus A 基因瞬时表达频率的条件为: 子叶预培养2~3 d ; 侵染的工程菌液的浓度OD 0. 3~0. 5 ; 侵染时间2~10 min ; 共培养时间2~3 d。  相似文献   

13.
 以129份大白菜 [Brassca campestris L.ssp.pekinensis(Lour.)Olsson] DH系为材料,采用HPLC法,对不同季节生长的大白菜叶片中硫苷的组分和含量进行了研究。在129份材料中均检测到8种硫苷成分,包含3种脂肪族硫苷,4种吲哚族硫苷和1种芳香族硫苷。主成分分析表明脂肪族硫苷3–丁烯基硫苷(NAP)、4–戊烯基硫苷(GBN)和2–羟基–3–丁烯基硫苷(PRO)是大白菜硫苷的主要组分,占总硫苷含量的60%。筛选出了6份高硫苷含量的材料。联合方差分析结果表明,脂肪族硫苷NAP、GBN和PRO在不同品种间差异极显著;某些吲哚族硫苷受环境影响较大,在不同的季节间差异显著;芳香族硫苷2–苯乙基硫苷(NAS)的含量在季节和季节 × 品种间差异显著。不同硫苷间的积累存在相互影响, NAP与GBN、NAP和GBN与总硫苷在两个年份中均呈极显著正相关。  相似文献   

14.
利用cDNA-AFLP技术研究大白菜白引2号杂交种及其亲本在幼苗期、莲座期、结球期的基因差异表达。结果表明:在3个发育期,发现有29条差异片段,其中5个差异片段出现在幼苗期,14个差异片段出现在莲座期,10个差异片段出现在结球期|19个差异片段在杂种中表达,3个差异片段在双亲中同时表达,2个差异片段仅在母本中表达,5个差异片段仅在父本中表达。将29个差异片段的序列在白菜基因组序列数据库网站(http://brassicadb.org/brad/)进行BLAST分析,均找到了对应的染色体位置。其中17个差异片段分别有明确的基因及编码蛋白与其相对应。其中有两个基因片段分别含有AP2/EREBP结构域和PPR结构域,这两个结构域在控制植物生长发育方面具有重要作用。  相似文献   

15.
玻里马胞质大白菜雄性不育系CMS3411-7温度敏感特性的研究   总被引:4,自引:1,他引:4  
 采用光照培养箱恒温、变温和田间自然变温, 研究大白菜玻里马胞质雄性不育系CMS 411-7 温度敏感的特性。结果表明: 在3~ 15℃内CMS 3411-7 均有育性转换, 其中昼/夜温度8/ 4~ 14/ 10℃ ( 即日平均温度6~ 12℃ ) 是有效转换的温度范围。在恒温6℃条件下经过3~ 5 d 处理时CMS 3411-7 的育性转换值( 不育级别) 可达到2 级, 该温度下随着处理时间延长( 3~ 9 d) 不育性转换程度逐渐加重。在9℃恒温下处理6 d 较处理3 d 和处理9 d 时的转换程度都大。在14/ 10℃下转换程度与处理时间无关。在17/ 13℃ 下处理时间延长反而抑制不育性转换。虽然不同处理下CMS 3411-7 不育性转换开始和转换结束的时间差异较大, 但显著转换发生的时间一般稳定在温度处理后10~ 27 d, 表现相对集中。就育性转换的启动来看,经过3 d 处理后8/ 4~ 17/ 13℃下均发生了育性转换, 说明3 d 处理就可以启动育性转换基因。  相似文献   

16.
不同形态氮素营养对大白菜芝麻状斑点病发生的影响   总被引:3,自引:0,他引:3  
 选择高感“大白菜芝麻状斑点病”品系03B9大白菜为试材,调查不同形态氮素营养对其发病的影响;并选择高抗品系C24、P8-1和高感品系03B9、P8-2为试材,在总氮素浓度为25 mmol · L-1,NO3- -N︰NH4+ -N分别为3︰7、5︰5和7︰3的水培条件下,研究氮代谢和抗氧化系统生理指标的变化。结果表明:铵态氮促进芝麻状斑点病发生的作用高于硝态氮和酰胺态氮。随铵态氮比例的增大,感病品系03B9和P8-2较抗病品系病斑数显著增多,叶柄中PPO活性和铵态氮、MDA含量及电导率升高,NR活性和多酚含量降低;抗病品系C24和P8-1叶柄中GDH活性和多酚含量升高,PPO活性、MDA含量及电导率变化不明显。推测营养液中铵态氮的比例增加,影响感病品系氮素代谢中有关酶类的活性,使体内铵态氮过量积累,导致细胞膜系统受到伤害,使液泡内的酚类物质与细胞质中的多酚氧化酶接触,引起褐变,在叶柄表面表现出芝麻斑点症状。  相似文献   

17.
利用DAD1反义片段转化创建菜薹可调控雄性不育材料   总被引:1,自引:0,他引:1  
 菜薹因为没有好的雄性不育材料或自交不亲和系,至今尚无一代杂种用于生产,根据拟南芥及白菜型油菜的花药不开裂基因DAD1的保守序列设计引物,扩增菜薹的DAD1基因片段(DAD1F),构建反义DAD1F植物表达载体,用农杆菌介导法转化菜薹,对转基因植株进行分子检测,鉴定其雄性不育性并进行育性恢复试验.克隆得到的菜薹的DAD1基因片段大小为678 bp,命名为BrcpDAD1F,其序列与拟南芥和白菜型油菜的DAD1高度同源,同源率分别为88%和99%;共得到了12株转基因植株,有6株在转录水平上得到表达,表现为雄性不育,花器官畸形,花粉活力低,萌发率不到10%,且开花后不能结角果或结空角果,或者得到极少种子但种子不萌发;用对照的花粉给转基因植株授粉可使其正常结实.以500 μmol·L-1茉莉酸甲酯处理可使其雄性不育得到恢复,花粉可以在柱头和培养基上萌发,具有受精能力。T1代可育株与不育株的比例都呈1:3分离, T2代不同株系的育性分离比例不同,有些株系继续呈1:3的分离,有些株系全是可育株或全是不育株,说明反义抑制呈单基因稳定遗传。  相似文献   

18.
白菜核基因雄性不育系转育研究   总被引:14,自引:0,他引:14  
 以大白菜核基因雄性不育系‘1NA’转育成的白菜核不育系00S107为不育源, 根据大白菜核基因雄性不育“复等位基因遗传假说”设计转育方案, 向白菜可育品系‘青梗奶油白菜’中转育核不育基因, 经过3年5个世代杂交转育, 获得了新的白菜核基因雄性不育系及其相应的甲型“两用系”和临时保持系。  相似文献   

19.
茎芥菜胞质四倍体白菜雄性不育系花药发育的研究   总被引:1,自引:0,他引:1  
 以茎芥菜胞质雄性不育系与四倍体白菜杂交获得的同源四倍体白菜异源胞质雄性不育系及其保持系为材料,采用形态学和石蜡切片方法研究其花药解剖结构及发育。结果表明:该雄性不育为结构性雄性不育,其退化或畸形雄蕊分为5种类型:盾状雄蕊、条状雄蕊、片状雄蕊、羽状雄蕊和瓣状雄蕊。该雄性不育系花药发育败育有两个时期,盾状雄蕊花药败育于孢原细胞分化期,雄蕊整个发育时期均处在孢原细胞分化期,无绒毡层与花粉母细胞的分化,不形成药室,属孢子体败育型;其它类型雄蕊,花药败育发生在雄蕊原基分化时期,由于雄蕊原基偏离正常的分化轨道,形成瓣状化雄蕊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号