首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Weeds are a major biotic constraint; compete with crop for the same resources and ultimately reduce productivity. This study evaluated the impact of irrigation intervals and weed management treatments on chlorophyll content and morphological growth of tomato to find an appropriate integrated weed management strategy. Two-year field experiments (2018/2019) were conducted at district Mardan (34°15′38″ N and 72°6′36″ E). Tomato F1 hybrid (Taj?3592) was transplanted during March. The experiments were laid out in a randomized complete-block design in split-plot arrangement with three replications. The main block comprised three irrigation intervals (3, 6, and 9 days) and the sub-block included weed management treatments: transparent polythene, black polythene, weeding except Orobanche, sole weeding of Orobanche, weeding of all weeds, copper oxychloride 1.5?kg a.i ha?1 (single dose), copper oxychloride 1.5?kg a.i ha?1 (split doses), copper oxychloride?+?humic acid 25?kg ha?1 (single dose), copper oxychloride?+?humic acid 25?kg ha?1 (split doses), copper sulphate 2?kg ha?1 (single dose), copper sulphate 2?kg ha?1 (split doses), ammonium sulphate 200?kg ha?1 (single dose), ammonium sulphate 200?kg ha?1 (split doses), pendimethalin 33 EC 1.44?kg a.i ha?1, glyphosate 48 SL 1.5?kg a.i ha?1, and weedy check. Lowest relative weed density (RWD) of O. cernua (2.23%) and highest RWD of O. cernua (38.01%) were recorded in the 3? and 9?day irrigation intervals, respectively. However, 3?day irrigation interval resulted in highest fresh weed biomass (5794?kg ha?1). Moreover, the 6?day irrigation interval significantly increased chlorophyll content by 11 and 5%, leaf area by 23 and 6%, and number of branches plant?1 by 30 and 22% compared to 9? and 3?day irrigation intervals, respectively. Among the weed management treatments, black polythene resulted in the highest weed control efficiency (96%), increasing chlorophyll content by 16%, leaf area by 33%, and number of branches plant?1 by 64% vs. weedy check. Consequently, 6?day irrigation intervals?×?black polythene could be the best weed management strategy, followed by transparent polythene, weeding of all weeds, pendimethalin, glyphosate, and ammonium sulphate.

  相似文献   

2.

The aim of this study was to evaluate the water and nitrogen use efficiency and some quantitative and qualitative characteristics of forage beet cultivars under the influence of different irrigation methods and nitrogen levels in two cropping years, 2017–18 and 2018–19, at Agricultural Research Station in Karaj, Iran. Experimental factors included the first factor with four irrigation methods (normal leakage, alternate furrow irrigation, fixed furrow irrigation, type (drip-strip)), the second factor was the amount of nitrogen fertilizer with three levels (150, 200 and 250?kg N ha?1) and the third factor included three forage beet cultivars (Sbsi052, Jamon and Kyros). Among irrigation treatments, alternate furrow irrigation and fixed furrow irrigation had the highest sugar content with 9.28% and 9.17%, respectively. The highest yield of digestible organic matter was obtained in leakage irrigation treatment, nitrogen fertilizer of 250?kg ha?1 and in Kyros at the rate of 19.45?t ha?1. The highest yield of root digestible dry matter, potassium, sodium and free nitrogen was observed in leakage irrigation treatment and consumption of 200?kg ha?1 nitrogen was observed in foreign cultivars. The highest crude protein was observed in alternate furrow irrigation conditions with a consumption of 200?kg ha?1 nitrogen in cultivar Sbsi052 at 13.08%. Leakage irrigation and type tape had the highest consumption efficiency and efficiency of nitrogen uptake with application of 150 and 200?kg ha?1 N, and the highest water use efficiency was also observed in leakage irrigation and type tape with application of 250?kg ha?1 N in domestic and foreign cultivars. The type irrigation method showed better quantitative and qualitative yield than the furrow irrigation methods.

  相似文献   

3.
This study was conducted to examine the possibility of enhancing productivity and reducing blossom-end rot (BER) incidence in bell pepper (Capsicum annumn L.). Four rates of phosphorus application (30, 60, 90 and 120?kg?ha? 1 of P2O5) were combined with two commercial naturally occurring amino acid stimulants (Amino green and Aminofort). Water was used as a control treatment as well. Plants were sprayed with 500?ppm of solutions three weeks after transplanting. Increasing P application rate increased vegetative growth, fruit yield, fruit quality (fruit size, TSS, acidity and vitamin C.) and nutritional elements content (N, P, K and Ca). However, it was showed that the phosphorus level of 90?kg?ha? 1 had no significant differences to the level of 120?kg?ha? 1 for most parameters measured. Furthermore, P-applications had a remarkable effect on reducing blossom end rot, probably due to a positive effect on water uptake and Ca acquisition. In addition, positive effects on the vegetative growth parameters, individual fruit weight and number of fruits were showed concerning the amino acid used. Fruit quality in terms of total soluble solids (TSS), total acidity and ascorbic acid contents were also improved compared to control. Aminofort was superior in its effect as Amino green. However, the tested amino acids showed no effect on BER incidence.  相似文献   

4.
Field and glasshouse experiments were conducted from 1995 through 1996 to evaluate application timing of asulam (methyl sulfanilylcarbamate) for torpedograss (Panicum repens L.) control in relation to plant age in sugarcane. Above‐ground shoots of torpedograss were completely controlled with asulam at 2–4 kg active ingredient (a.i.) ha?1 applied 60 or 80 days after planting (DAP) in artificially infested pots. But some newly developed rhizome buds survived after asulam application resulting in 1–25 and 76–100% or more regrowth in 60 and 80 DAP‐applied pots, respectively. Whereas the herbicide at 2–4 kg a.i. ha?1 applied within 60 DAP completely controlled above‐ground shoots, applied 80 DAP at 2 kg a.i. ha?1 it did not completely control the weed in the artificially infested field. Regrowth levels were 1–25 and 76–100% or more in 60 and 80 DAP‐applied plots, respectively. Asulam at 2–3 kg a.i. ha?1 applied 20, 40, 60 or 80 DAP in a naturally infested field completely controlled above‐ground shoots and regrowth levels were 76–100 or more, 51–75, 1–25 and 26–50% in these same DAP applied plots, respectively. The herbicide applied at 4 kg a.i. ha?1 caused chlorosis on younger sugarcane leaves (one‐leaf stage), but when applied at 2–3 kg a.i. ha?1, no injury symptoms were shown. The herbicide at 2–4 kg a.i. ha?1 applied within 60 DAP resulted in remarkably higher yield and shoot biomass of sugarcane than that applied 80 DAP. This study suggested that asulam at 2–3 kg a.i. ha?1 should be applied 60 days after planting for the maximum control of torpedograss regrowth and better yield of sugarcane. This study also indicated that torpedograss cannot be completely controlled with a single application of asulam in a naturally infested field because of rhizome fragmentation by cross plowing and distribution of rhizomes into different soil layers that require different times to emerge. The shoots emerging after asulam application could not be controlled. Another study is required to determine the interval between sequential applications of asulam for better control of torpedograss in a naturally infested field.  相似文献   

5.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. II. Prediction of the phytotoxicity of atrazine residues to following crops Total and plant-available atrazine residues in the top 10 cm soil were measured 120 days after application of 3 kg ai ha?1 to maize (Zea mays L.) at three sites in Rumania. At one site, similar measurements were made 3?5 years after application of 100 kg ai ha?1. Plant-available atrazine residues were estimated by extraction of soil samples with water, and by bioassay using Brassica rapa as the test plant. It was calculated that between 30 and 120μg atrazine 1?1 was potentially available to plants in the different soils. Dose-response relationships for atrazine and the most important rotational crops with maize in Rumania—sunflower, winter wheat, soybean and flax—were determined in hydroponic culture using herbicide concentrations corresponding with the plant-available fractions measured in the different soils. ED50 values were determined by probit analysis and the results showed that sunflower (ED50, 22μg 1?1) was the most sensitive crop, and soybean (ED50, 78μg 1?1) was the least. The residual phytotoxicity of atrazine to succeeding crops in the different soils was predicted using the appropriate availability and phytotoxicity data, and the results showed good agreement with those observed. The results suggest that measurements of plant-available herbicide residues afford a rapid method of assessing possible phytotoxicity to following crops.  相似文献   

6.
Bulut  Sancar  Çağlar  Özcan  Öztürk  Ali 《Gesunde Pflanzen》2022,74(2):291-301

In this study, effects of different sowing dates and seeding rates on N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) of facultative wheat were investigated. As the average of cropping year, sowing dates and seeding rates, N uptake efficiency (NUE), N translocation efficiency (NTE), agronomic efficiency (AE), physiological efficiency (PE), water use efficiency for grain yield (WUEg) and water use efficiency for biomass (WUEb) values were respectively obtained as 1.17?kg Nuptake/kg Napplied, 68.5%, 36.9?kg grain/kg Napplied, 31.2?kg grain/kg Nuptake, 5.19?kg ha?1 mm?1 and 18.04?kg ha?1 mm?1.

Nitrogen and water use efficiencies decreased with delayed sowing dates and increased with increasing seeding rates. It is possible to maintain a high wheat yield, nitrogen and water use efficiency by increasing plant density through winter sowing. It was concluded based on present findings that sowing date and seeding rates had significant effects on nitrogen and water use efficiencies and winter sowing should be practiced as not to cause yield losses and high seeding rates (575 seeds m?2) yielded greater nitrogen-water use efficiencies.

  相似文献   

7.
Yari  Payman  Pasari  Babak  Rokhzadi  Asad  Mohammadi  Khosro 《Gesunde Pflanzen》2022,74(1):193-203

This experiment was conducted to study the effects of foliar application of silicon, sulfur, and flowering fruit set biostimulant on canola in the farmer’s condition in Darzian, 12?km from Marivan city in the northwest of Iran. The experimental layout was designed as a split-split plot in a randomized complete-block design, with three replications during two consecutive growing seasons, 2017–18 and 2018–19. The main factor included silicon application at two levels: control (0: non-application) and silicon application at 2?kg ha?1. Sub-factor was sulfur spraying at three levels (0, 1, and 2?L ha?1) and sub-sub-factor was Tecamin flower (Agri Tecno Fertilizantes, Valencia, Spain) spraying as a flowering fruit set biostimulant at three levels (0, 1, and 2?L ha?1). The results of the combined analysis showed that the number of grains per pod and biomass were increased significantly at the 1% level by silicon application. Sulfur application improved 1000-grain weight, grain yield, and biomass. This increase was 7.42% for grain yield. Tecamin also significantly increased all traits, including fertile and infertile pod numbers, grain number per pod, 1000-grain weight, grain yield, and biomass. As the most important economic traits, Tecamin increased grain yield by 14.12% compared to controls. Among the treatments, the effect of Tecamin on increasing grain yield was superior. In this experiment, some traits were significantly affected by interaction effects of treatments.

  相似文献   

8.
Petroleum spray oil (2, 4 and 6% in water) was applied to Valencia orange, Citrus sinensis (L.) Osbeck, for the control of Chinese wax scale, Ceroplastes sinensis del Guercio, using a low-volume ( <2000 litre ha?1)air-blast (LV AB) sprayer, a low- to high-volume (L-HV) (up to 7000 litre ha?1) sprayer with four fan-assisted rotary atomiser (FARA) spray heads mounted on a vertical tower, and a high-volume (>7000 litre ha?1) oscillating boom (HV OB) sprayer. The most effective sprayer was the L-HV FARA sprayer. The most cost-effective treatment was a 20 ml litre?1 (60 litre oil ha?1) spray applied at 3000 litre ha?1 by the L-HV FARA sprayer. It gave mortality equivalent to a standard 20 ml litre?1, 10 700 litre ha?1 spray (214 litre oil ha?1) applied by the HV OB sprayer but with 72% less spray and significantly less oil deposited per cm2 of leaf area. Equivalent or significantly (P = 0·05) higher mortality than that given by the 10 700 litre ha?1 HV OB spray was given by the 40 ml litre?1, 3000 (120 litre oil ha?1) and 60 ml litre?1, 2180 and 3000 litre ha?1 (130·8 and 180 litre oil ha?1) L-HV FARA sprays, but the 60 ml litre?1 sprays deposited more oil per cm2 than the 20 ml litre?1 HV OB spray and were considered to be potentially phytotoxic. The least effective sprayer was the LV AB sprayer, which applied a 60 ml litre?1 spray (57·6 litre oil ha?1) at 960 litre ha?1. Linear relationships were established for Chinese wax scale mortality, transformed using an angular transformation (arcsin proportion), versus log10 spray volume for the 20, 40 and 60 ml litre?1 sprays applied by L-HV FARA at 1260,2180 and 3000 litre ha?1, mortality versus log10 μg oil cm?2 and log10 μg oil versus log10 volume of oil sprayed.  相似文献   

9.
A glasshouse study was conducted to evaluate the effects of different rates (0, 50, 100, 200 and 400 kg ha?1) of nitrogen (N) fertilizer application on the growth, biomass production and N‐uptake efficiency of torpedograss. The growth responses of torpedograss to the N application were significant throughout the observation periods. Torpedograss grown for 60 days obtained the highest total biomass of 23.0 g plant?1 with an application of 200 kg ha?1 N, followed by 20.4 g plant?1 with an application of 100 kg ha?1 N; when it was grown for 90 days a significantly higher biomass of 102.3–106.0 g plant?1 was obtained with the 200–400 kg ha?1 N than the biomass (68.0 g plant?1) obtained with the fertilizer applied at a lower rate. When the torpedograss was grown for 130 days the highest biomass was 230.0 g plant?1 with the 400 kg ha?1 N application, followed by a biomass of 150.0 g plant?1 with the 200 kg ha?1 N application, but the above‐ground shoot in all treatments was over mature for animal food. The ratio of the above‐ground shoot to the underground part increased with the increase in N application up to 400 kg ha?1 during the 90 days after planting (DAP), but the above‐ground shoot biomass was the same with the 200 and 400 kg ha?1 N. The agronomic efficiency of the N application decreased to 5–38 with the increase in N application to 400 kg ha?1, which was less than half the agronomic efficiency with the 200 kg ha?1 N. The agronomic efficiency of N was very low (5–22) during the 60 DAP, which indicated that the N application would not be economically viable in this period for torpedograss as a pasture, and short‐duration plants could be cultivated in torpedograss‐infested fields to minimize weed‐crop competition. The nitrogen concentration (%) in the torpedograss increased with the increase in N application, but N‐uptake efficiency was the opposite and the value was very low with the 400 kg ha?1 N. The above results lead us to conclude that the N application rate of 200 kg ha?1 is the most effective for torpedograss growth.  相似文献   

10.
In a field experiment, isoproturon (as Arelon) applied to soil at 2·5 kg ai ha?1 caused variable effects in the rhizosphere of winter wheat. These included transient increases and decreases in the number of bacterial and fungal propagules. No changes in soil levels of NH4+-N, NO2?-N, NO3?-N or PO43? were detected. Similar results were recorded with wheat grown in pots and in laboratory-incubated soil. Arelon (1–60 μg ai ml?1) did not affect pure cultures of bacteria but at the highest concentration (approximating to fifty times field rate) inhibited growth of some fungi. The value of laboratory and field experiments for studying effects of pesticides on micro-organisms is discussed. The results suggest that Arelon, in practical use, is unlikely to have harmful effects on the micro-organisms or fertility of soil.  相似文献   

11.

Salinity is a crucial problem which has affected crop productivity globally. Ascorbic acid is considered helpful against abiotic stresses due to its powerful antioxidant potential. In the pot experiment, salinity stress (0, 35, 70, and 105?mM) was applied to sweet peppers in split doses after 20 days of transplantation. To mitigate the adverse effects of salinity, ascorbic acid (0, 0.40, 0.80, and 1.20?mM) was applied as foliar spray after a 6-day interval during vegetative growth. Sweet pepper plants sprayed with distilled water (control) recorded maximum plant height (cm), leaf area (cm2), number of branches, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), and chlorophyll content (mg 100?g?1), while the maximum polyphenol oxidase (PPO) activity (unit mg protein?1 min?1) and ascorbate peroxidase (APX) activity (unit mg protein?1 min?1) were recorded in plants treated with 70?mM NaCl application. Salinity stress beyond 70?mM significantly reduced all the studied parameters. An ascorbic acid concentration of 1.20?mM significantly mitigated the negative effects of salt stress and recorded maximum plant height (cm), number of leaves plant?1, leaf area (cm2), number of branches plant?1, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), chlorophyll content (mg 100?g?1), PPO activity (unit mg protein?1 min?1), and APX activity (unit mg protein?1 min?1). Hence, a 1.20?mM concentration of foliar ascorbic acid could be used in saline conditions up to 70?mM of sodium chloride (NaCl) for better growth, productivity, and enzymatic activity of sweet peppers.

  相似文献   

12.
The influence of no-tillage and conventional tillage on the outcome of early weed interference in maize (Zea mays L., cv. TZB), cowpea [Vigna unguiculata (L.) Walp, cv. VITA-5] and their intercrop at populations of 40000, 50 000 and 30 000 + 40 000 plants ha?1 was investigated on a loamy sand Oxic Ustropept in a subhumid tropical environment between April and July 1980. Both tillage treatments received 60 kg N, 30 kg P2O5 and 30 kg K2O ha?1. Although the weed spectrum was wider under no-tillage, weed weight was only 52% of the weight recorded under conventional tillage 6 weeks after sowing and the average food energy yield reductions caused were 28 and 65%, respectively. Cropping pattern had no effect on plot weediness. With minimum or no weed interference, maize performance was better in conventional than no-tillage but worse with prolonged weed interference. Cowpea responded more to weed interference than to tillage practice. Regardless of tillage practice and weed interference duration (up to 6 weeks) after sowing, maize monoculture produced the highest food energy yield, followed by maize/cowpea intercrop and cowpea monoculture in that order.  相似文献   

13.
A glasshouse experiment was carried out to investigate the influence of increasing levels of nitrogen and phosphorus on the growth of six common weed species growing alone or in competition with spring barley (Hordeum vulgare). Capsella bursa‐pastoris, Chenopodium album, Papaver rhoeas, Sinapis arvensis, Spergula arvensis, Viola arvensis and spring barley were grown in pots with different levels of nitrogen (0, 30, 60, 90, 120 and 150 kg N ha?1) or phosphorus (0, 10, 20, 30, 40 and 60 kg P ha?1). The aboveground parts of the plants were harvested after 7 weeks and the dry weight of shoots, percentage N and P content of the shoot and uptake of N and P were determined. A linear or a polynomial model was used to describe the data. Growing alone, Spergula arvensis was the only weed species that increased its dry weight at the same rate as barley. Weed species with low dry weight increase had larger increases in percentage N or P content than barley, indicating a luxury accumulation of nutrients. The uptake of N and P per pot did not differ much between weeds and barley. V. arvensis and P. rhoeas accumulated least nutrients (per cent of dry matter) and Spergula arvensis accumulated most. Weeds grew poorly in competition with barley. The percentage N and P content in barley did not change when they grew in competition with weeds.  相似文献   

14.
Ammonium-containing fertilizers such as granular limestone ammonium nitrate (LAN) and liquid ammonium nitrate (AN) proved to be most effective in stimulating germination and emergence of wild oat in sandy and loamy soil. In pot experiments, rates as low as 25 kg N ha?1, significantly increased seedling emergence of wild oat. In sandy soil percentage emergence increased with increasing levels of LAN-fertilizer up to 125 kg N ha?1 which gave 76·1 % emergence after 60 days. In control pots where no nitrogen was applied, only 21·6% of seeds planted emerged after 60 days, In loamy soil, as for AN in both soil types, high levels of LAN initially delayed seedling emergence. This negative effect disappeared approximately 15 days after seeding, resulting in no significant difference in emergence of wild oat where 25 to 125 kg N ha?1 was applied as LAN or AN. All these rates, however, increased seedling emergence between 25 and 35% compared to the no-nitrogen treatments. Since the same rate of ammonia gas is not equally effective in breaking dormancy of semi- and deeply dormant wild oat seed, results of these experiments are not necessarily applicable to wild oat seeds differing in dormancy status.  相似文献   

15.

Salinity affects many areas in our country and around the world, resulting in dramatic reductions in plant yields. In this study, the plant yield, some plant quality parameters, and soil salinity in the plant root area were investigated by irrigating tobacco plants (Nicotiana tabacum L.) with different salinity irrigation waters. The experiment was carried out in pots in 4 replicates according to the randomized plot design. Six different salinity of irrigation water applications were applied in the experiment (S0?=?0.38 dS m?1, S1?=?2 dS m?1, S2?=?5 dS m?1, S3?=?8 dS m?1, S4?=?11 dS m?1, S5?=?15 dS m?1). According to the data obtained at the end of the research, as the salinity of irrigation water increased, plant length, leaf width, leaf length, leaf dry weight and leaf number decreased. It was determined that there was a certain increase in nicotine content in the face of the decrease of all examined physical parameters in irrigation water increase. In addition, the salinity values in the plant root zone soils and the salinity values in the outlet (drainage) water have also increased. Salinity threshold value of the tobacco plant was determined to be 2.04 dS m?1. With an increase in salinity by one unit, there was a 7.1% decrease in leaf dry weight. It was determined that the tobacco plant is vulnerable to salinity based on the data collected.

  相似文献   

16.

Lack of control options for cool-season broadleaf weeds is a major deterrent to autumn-sown chickpea. Weed control and chickpea tolerance to PRE (pre-emergence) and POST (post-emergence) application of isoxaflutole and oxyflurofen, PRE metribuzin, POST pyridate, and flumetsulam were investigated at three locations, including Kermanshah, Kurdistan, and Hamedan provinces during 2017–2018. Untreated and weed-free checks were added for comparison. Pyridate and PRE oxyflurofen 125?g ai ha?1 caused the minor visual crop injury according to EWRS score (1–1.8), while the highest crop injury occurred with metribuzin (EWRS score 3.5–8.5) in whole locations. The most effective herbicides for weed reduction were pyridate (70–75%), PRE oxyfluorfen (69–76%), and POST oxyfluorfen (65–73%) at Kermanshah, PRE oxyfluorfen at 125 and 175?g ai ha?1 (70–78%), POST oxyfluorfen (70–76%) and pyridate (70–78%) at Kurdistan, PRE oxyfluorfen at 125 and 175?g ai ha?1 (88–96%), metribuzin (91–100%) and Pyridate (80–97%) at Hamedan. Pyridate and PRE oxyfluorfen at 125?g ai ha?1 resulted in the highest chickpea grain yield at the three locations. In general, PRE oxyfluorfen (125?g ai ha?1) was similar to pyridate in terms of efficacy in weed control and grain yield enhancement.

  相似文献   

17.
Ce projet a permis ?évaluer des programmes de désherbage combinant ?application ?herbicides en bandes et les sarclages mécaniques comme méthode alternative à?utilisation intensive ?herbicides dans le maïs-grain (Zea mays L.). Les résultats des travaux menés au Québec en 1991 et 1992 indiquent que ?application ?herbicides en bandes (atrazine à 1,0 kg m.a. ha?1+métolachlore à 1,9 kg m.a. ha ?1 en post-levée précoce) sur le rang (40% de la surface totale cultivée) suivie par des sarclages mécaniques sélectifs sur toute la surface procurent des rendements de maïs-grain équivalents a ceux obtenus là où les herbicides ont été appliqués sur toute la surface cultivée. Il est donc possible de réduire la quantité?herbicides utilisée dans le maïs-grain sans diminuer son rendement. La répression mécanique des mauvaises herbes a été plus efficace en 1991, qui a été une année sèche comparée à 1992 qui a été froide et pluvieuse. Il ressort de cette étude qu'un traitement combinant une application ?herbicides en bandes et deux sarclages sélectifs sur toute la surface à 2 et 4 semaines après ?émergence du maïs-grain procure à la fois un désherbage adéquat des adventices et un rendement optimum du maïe. Reduced use of herbicides in corn through herbicide-banding combined with cultivations The efficacy of various weed management systems utilizing banded applications of herbicides and mechanical cultivations were investigated in order to find alternatives to intensive herbicide use in grain maize (Zea mays L.) production. In experiments conducted in Quebec in 1991 and in 1992, banded applications of atrazine (1.0 kg a.i. ha ?1) and metolachlor (1.9 kg a.i. ha?1) on maize rows (40% of field area) combined with post-emergence cultivations, achieved a similar grain yield to that obtained when herbicides were broadcast over the whole field. In this project, decreasing herbicide was not accompanied with decreasing maize yield. Mechanical weed control was more effective in 1991, a drier year than 1992 which was cool and rainy. A banded application of herbicides followed by cultivations at 2 and 4 weeks after maize emergence provided commercially acceptable weed control and crop yield.  相似文献   

18.
Littleseed canarygrass (~canarygrass) evolved populations that are resistant to isoproturon during the early 1990s in north‐western India. Clodinafop‐propargyl (~clodinafop) was recommended for controlling these populations. It has been used extensively in wheat for the last several years. Recently, poor or no control of canarygrass by clodinafop has been observed in large areas, which could be related to cross‐resistance or multiple resistance. This study was designed to test whether resistance has evolved in canarygrass populations against clodinafop and to explore control of the resistant populations with sulfosulfuron and pinoxaden. Among the 311 canarygrass populations that were tested, 86, 55 and 34 showed variable phytotoxicity (0–99%) due to 0.030, 0.060 and 0.120 kg ha?1 clodinafop, respectively. Based on the resistance index, 11 populations were “highly resistant”, 60 were “resistant” and the rest (240) were “susceptible” to clodinafop. Five and six clodinafop‐resistant populations showed slight resistance to 0.0125 kg ha?1 sulfosulfuron and 0.025 kg ha?1 pinoxaden, respectively. But, sulfosulfuron at 0.025 and 0.050 kg ha?1 and pinoxaden at 0.050 and 0.100 kg ha?1 controlled all the canarygrass populations. Clodinafop used for 4 years increased the chance of resistance evolving, whereas its rotation with sulfosulfuron reduced the chance of resistance evolving. This study showed that considerable canarygrass populations have evolved a low‐to‐high degree of resistance against clodinafop. The further use of clodinafop would lead to the spread of resistance in larger areas through the dispersal of resistant seeds. Clodinafop should be replaced with 0.025 kg ha?1 sulfosulfuron or 0.050 kg ha?1 pinoxaden. Besides, where canarygrass has not evolved resistance, the yearly rotation of sulfosulfuron with clodanafop or pinoxaden might delay the evolution of resistance.  相似文献   

19.
The efficacies of nine structural analogues of the herbicide antidote naphthalene-1,8-dicarboxylic acid anhydride (naphthalic anhydride, NA) for the protection of maize (Zea mays L. cv. DeKalb XL72AA and DeKalb XL67) against injury by the herbicide S-ethyl dipropyl(thiocarbamate) (EPTC) were elevated under greenhouse conditions. The chemical analogues of NA tested were: acenaphthenequinone (ACQ); 4-aminonaphthalene-1,8-dicarboxylic acid anhydride (NH2NA); 1,8:4,5-naphthalenetetracarboxylic acid dianhydride (NDiA); naphthalene- 1,8-carboximide (NHNA); 4-chloronaphthalene-1,8-dicarboxylic acid anhydride (C1NA); biphenyl-2,2′-dicarboxylic acid anhydride (diphenic anhydride; DA); 2-phenylglutaric anhydride (PGA); phthalic anhydride (PHA); phenalen-1-one (PA). Pre-plant incorporated applications of EPTC at 2.2, 4.5, 6.7, and 9.0 kg ha?1 were highly toxic to XL67 maize. Appreciable injury to XL72AA maize by EPTC was observed only with the high rates of EPTC (6.7 and 9.0 kg ha?1). Of the analogues tested PGA and PA were very toxic and inhibited germination of both maize hybrids. NA, ACQ, NH2NA, NDiA, NHNA, C1NA, DA, and PHA applied as seed dressings at 5.0 and 10 g per kg of seed offered satisfactory protection to XL72AA maize against EPTC rates higher than 6.7 kg ha?1. The same antidotes significantly antagonised the EPTC activity against XL67 maize but the overall protection obtained was partial and not agronomically important. The presence of the dicarboxylic anhydride group and of at least one aromatic ring attached directly to the anhydride appeared to be essential for the exhibition of protective activity by the structural analogues of NA. NA was slightly toxic to both hybrids of maize and chlorination of NA increased the phytotoxicity of this molecule. A genetic component that is present in the thiocarbamate-tolerant XL72AA hybrid but absent from the thiocarbamate-susceptible XL67 hybrid of maize appeared to be important for the phytotoxic activity of EPTC and may be involved in the protective activity of NA and its structural analogues.  相似文献   

20.
Blackcurrants, treated with 0.1 kg of 2,4,5-T ha?1 (as esters of mixed C4–C6 alcohols; ‘Tormona 80’), contained 0.1 mg of 2,4,5-T residues kg?1 in the berries at ripeness 29 days after treatment. Total residues in the berries were not reduced during growth and ripening, although the residue concentrations declined in the same period due to growth dilution. In spinach leaves from old plants, treated with 0.1 kg ha?1, 0.05 mg of 2,4,5-T kg?1 was found 14 days after treatment. Fodder peas showed no residues (< 0.002 mg kg?1) at harvest 62 days after treatment with 2,4,5-T esters. After application of 0.1 kg ha?1 on potato plants, the disappearance of 2,4,5-T was rapid during the first month, but residues were translocated into the tubers and reached a constant level of 0.02 mg kg?1 after 1 month until harvest at 108 days after treatment. In all crops, visible effects were observed after treatment with 0.1 kg ha?1. After the application at 0.01 kg ha?1, phytotoxic effects were observed only in blackcurrants, but negligible residues were found in all the test crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号