首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
通过查阅国清寺相关资料,并考察主要佛寺遗存,结合实地调查,分析佛寺的发展历程、空间布局、植物配置及植物空间营造,归纳总结国清寺园林植物空间的理法。结果表明:性具实相、一心三观、三谛圆融、一念三千、净土思想等5大天台宗美学思想在国清寺植物造景中得到很好的运用,包含寺内的各类生物和谐相处所体现的人与自然和谐相处思想、寺庙选址与布局等所体现的植物造景因素、鱼乐园植物配置所体现的植物配置方式的多样化、隋塔周边植物造景所体现的主体与客体融合为一以突出主体的思想、听雨轩长廊南面树林植物配置所体现的植物造景者对植物各部分的综合利用思想等,赋予了国清寺寺庙园林深厚的文化内涵,值得现代园林植物造景借鉴。  相似文献   

2.
以云南省德宏州南传佛寺园林植物为研究对象,对南传佛寺园林植物的分类、植物造景方式与特点以及植物配置方式进行研究。结果认为,南传佛寺园林植物分为宗教属性、生产属性和观赏属性植物3类。分别阐述作为主景、配景、前景、背景的园林植物造景方式。充满宗教含义的植物选用、对原生植物的保护利用、香花植物的大量应用、极具热带亚热带特色的植物选种是南传佛寺园林植物配置与造景的特点。  相似文献   

3.
北京寺庙园林植物景观初探   总被引:1,自引:0,他引:1  
在调查实例并结合文献考证的基础之上,对北京寺庙园林主要植物景观应用现状进行了详细的介绍,并对其配置应用进行了分析。最后展望了北京寺庙园林植物应用的前景,并对北京寺庙园林植物应用提出了优化建议。  相似文献   

4.
通过对淮安市不同建设时期的公园绿地中园林植物的群落结构、植物景观特点和多样性评价指标进行统计和分析,总结出各公园内园林植物多样性现状和植物景观的典型特征;针对淮安公园绿地园林植物多样性保护和利用方面的进展与不足进行探讨,为公园植物景观的科学配置和可持续性发展提出建议和对策。  相似文献   

5.
范钟琪 《广东园林》2021,43(6):13-16
寺庙园林历史底蕴深厚 , 文化内涵丰富,园内的植物更是其独特内涵的体现。以唐代岭南佛教中心桂林的寺庙园林为例 ,研究其中植物景观的种类特点与配置结构。结果发现:11 处寺庙园林共有园林植物 75 种,隶属 52 科 67 属,其中桑科榕属 Ficus植物和天门冬科植物是最主要的组成部分;并且有些园林植物 ( 如桂花Osmanthus fragrans 、樟Cinnamomum camphora 等)既蕴含佛教内涵又体现了壮族文化。总体而言,桂林寺庙园林植物景观建设不仅体现了独特的山水特征,也包含着壮族文化底蕴。  相似文献   

6.
卧佛寺位于北京西山,为历代皇家寺庙。本文以卧佛寺植物景观改造工程为例系统的介绍了植物景观在寺庙园林中的重要意义及植物种类和配置方式,重点探讨了恢复古寺园林植物景观的方法和步骤,为以后寺庙园林的改造工作提供一定的理论经验。  相似文献   

7.
通过对大同市公园植物种类、数量、配置现状进行调查,发现公园植物种类丰富,但存在着植物造景整体效果欠佳等问题。笔者对今后公园建设中植物的选择、植物景观的营造做了初步探讨,提出大同市应充分利用现有园林植物资源,同时引进驯化新品种和开发利用野生资源等发展策略。  相似文献   

8.
指出了在园林规划设计当中,植物和山石是两种最重要的因素,植物与山石不同的搭配形式。不同的植物与不同山石之间的配置会形成不同的景观,有着不同的审美特征,所以在现代园林设计当中,必须根据景观建设的目的,科学合理地配置园林植物与山石,以获得更好的景观审美效果。根据现有的研究资料,分析了园林设计当中,园林植物与山石配置的基本原则,具体分析了园林植物与山石配置的形式,并就配置中应该注意的问题提出了相应的意见:在配置的过程中要注意满足植物的生存和发展条件,并为后期的养护创造良好的条件等。通过研究希望能够对园林的规划设计提供一些帮助和启示。  相似文献   

9.
以洛阳市城区范围内的5个佛寺庭院和2个祠庙庭院作为调查研究对象,运用植物群落学的方法,对各寺庙植物种群多样性、物种丰富度及群落相似性系数进行比较分析。结果表明:17个寺庙植物群落共有维管植物73种(包括变种),隶属49属33科,优势植物群落为乔木,其中常绿乔木占主导地位[1]。2各寺庙内寺庭与寺园乔灌木层均匀度指数值都比较高,说明寺庙内各树种分布数量比较均衡;各寺园物种丰富度及多样性指数均大于寺庭,说明寺园区域多为寺庙公共绿地。3各寺庙间相似性系数值较小,证明所调查的7个寺庙间植物种类重复概率比较低,各寺庙园林植物配置差异较大。  相似文献   

10.
以风景名胜区的园林植物配置为主题,结合广东英德宝晶宫风景名胜区的区位及植被现状,根据景区植物选择和配置原则,以升级改造景区绿地、增强植物造景效果为切入点,通过采取植物选择的策略、植物配置的特色设计和植物的区划布局,对该景区的植物选择和配置进行探讨,使其逐步形成具有自身特色的植物景观。  相似文献   

11.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

12.
重庆酸雨区缙云山典型林分冠层酸雨淋洗特征   总被引:2,自引:1,他引:2       下载免费PDF全文
选取重庆缙云山的针阔混交林、常绿阔叶林、毛竹林、灌木林4种典型林分,观测酸性降水过程中林外雨、穿透雨及干流等林内水分转换分量中的主要离子含量变化,分析林分冠层对雨水化学组成的影响,结果表明:(1)降雨中的离子当量浓度大小依次是SO42->Ca2+> NH4+>Mg2+>K+>Na+>NO3-;(2)降雨经过林冠层后pH值降低,干流的酸化程度增加最大;(3)降雨经林冠层后离子浓度明显增加(除灌木林),穿透雨中通量增加最大的阴离子和阳离子分别为SO42-(2.19×103~6.47×103 eq·hm-2)和Ca2+(1.41×103~3.39×103 eq-hm-2),离子来源主要为大气沉降和植物分泌物或淋出;(4)同一离子在不同林分的干流和穿透雨中的通量变化不同,反映出不同林分冠层的离子交换性差异.在针阔混交林中,林下降雨净淋溶量大小顺序为SO42->Ca2+> NO3->K+>NH4+>Mg2+> Na+;常绿阔叶林为SO42-> Ca2+> K+>NO3-> NH4+> Mg2+ >Na+;毛竹林为Ca2+> SO42-> K+>NO3-> NH4+>Na+>Mg2+;灌木林为Ca2+> NO3-> K+> Na+>Mg2+> NH4+> SO42-.  相似文献   

13.
A typhoon event catastrophically destroyed a 45-year-old Japanese larch plantation in southern Hokkaido, northern Japan in September 2004, and about 90% of trees were blown down. Vegetation was measured to investigate its regeneration process and CO2 flux, or net ecosystem production (NEP), was measured in 2006–2008 using an automated chamber system to investigate the effects of typhoon disturbance on the ecosystem carbon balance. Annual maximum aboveground biomass (AGB) increased from 2.7 Mg ha−1 in 2006 to 4.0 Mg ha−1 in 2007, whereas no change occurred in annual maximum leaf area index (LAI), which was 3.7 m2 m−2 in 2006 and 3.9 m2 m−2 in 2007. Red raspberry (Rubus idaeus) had become dominant within 2 years after the typhoon disturbance, and came to account for about 60% and 50% of AGB and LAI, respectively. In comparison with CO2 fluxes measured by the eddy covariance technique in 2001–2003, for 4.5 months during the growing season, the sum of gross primary production (GPP) decreased on average by 739 gC m−2 (64%) after the disturbance, whereas ecosystem respiration (RE) decreased by 501 gC m−2 (51%). As a result, NEP decreased from 159 ± 57 gC m−2 to −80 ± 30 gC m−2, which shows that the ecosystem shifted from a carbon sink to a source. Seasonal variation in RE was strongly correlated to soil temperature. The interannual variation in the seasonal trend of RE was small. Light-saturated GPP (Pmax) decreased from 30–45 μmol m−2 s−1 to 8–12 μmol m−2 s−1 during the summer season through the disturbance because of large reduction in LAI.  相似文献   

14.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

15.
The competition–density (C–D) effect for non-self-thinning Populus deltoides and Populus × euramericana plantations from 3 to 9 years was analyzed using the reciprocal equation of the C–D effect. The C–D effect was well described by the reciprocal equation, and with the progress of time the C–D curve, on logarithmic coordinates, of the P. × euramericana plantations shifted upward faster than that of the P. deltoides plantations. With increasing physical time t, the biological time τ, i.e. the integral from zero to t of the coefficient of growth λ(t) in the general logistic curve with respect to t, increased rapidly during early growth stages and the increases in τ gradually became slow during later growth stages. This trend was more evident in the P. deltoides plantations than in the P. × euramericana plantations. The coefficients A and B included in the reciprocal equation were calculated at each growth stage. With increasing τ, the coefficient A, the reciprocal of which means the asymptote of yield (=) at a given growth stage, increased abruptly to a maximum value and then tended to decrease gradually to a constant level. On the other hand, the coefficient B, the reciprocal of which means the asymptote of mean stem volume at a given growth stage, decreased exponentially and tended to be close to zero with increasing τ. The λ(t) decreased with increasing stand age, whereas the final yield Y(t) defined as W(t) ρ, where W(t) is the asymptote of w in the general logistic growth curve, increased gradually with increasing stand age. The differences in coefficients A, B, and λ(t) between the two species were reported.  相似文献   

16.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

17.
Jiang XH  Yang JQ  Li N  Wang H  Zhou QX 《Fitoterapia》2011,82(6):878-882
A simple HPLC method was developed to quantify rabbit plasma tetrandrine (Tet) with propranolol (Pro) as internal standard. Based on the established method Tet and Pro were eluted at 7.1 and 12.0 min, respectively. It was shown that the concentration-time data of Tet fit the classical two-compartment model, no matter the drug was administered intravenously or orally to rabbits. The values of AUC0 → ∞, clearance (Cl0 → ∞), volume of distribution (Vd), and elimination half-life (t1/2β) of Tet were 59861.149 ± 26962.196 μg/L ? min, 0.503 ± 0.173 L/min/kg, 179 ± 76.185 L/kg, and 283.808 ± 162.937 min for intravenous injection of 5 mg/kg, or 18986.217 ± 7462.308 μg/L ? min, 0.805 ± 0.267 L/min/kg, 110.284 ± 94.176 L/kg, and 732.919 ± 847.32 min for gavage administration of 10 mg/kg , respectively. The results indicate that Tet displays a limited absorption in intestinal tract, even though it has a favorable pharmacokinetic profile after oral or intravenous administration.  相似文献   

18.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

19.
Thidiazuron (TDZ) induced somatic embryogenesis from immature zygotic embryos in Cinnamomum pauciflorum Nees while 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BA) or picloram only induced callus and/or adventitious buds. The highest induction frequency for somatic embryogenesis was achieved with MS medium (Murashige and Skoog in Physiol Plant 15:473–497 1962) supplemented with 2.5 μM TDZ using torpedo-shaped embryos (3–5 mm in length) as explants. In addition, induction medium was supplemented with 0.8 g l−1 casein, 0.4 g l−1 glutamine, and 10 g l−1 sucrose. Somatic embryos (SEs) initiated from root tips or hypocotyls without callus formation. SEs were maintained and multiplied via secondary somatic embryogenesis. Embryo maintenance medium was similar to induction medium except that TDZ was reduced to 0.5 μM. Secondary embryogenesis was enhanced by supplementation of 5 g l−1 activated charcoal in the culture. The best medium for embryo maturation was MS medium containing 30 g l−1 sucrose and 5 g l−1 Phytagel without plant growth regulators. A typical mature SE consisted of two large cotyledons and a short embryo proper. Approximately 82% of selected mature SEs were able to germinate and 63% could convert into plantlets on germination medium that was composed of half strength MS medium salts, 10 g l−1 sucrose, 3 g l−1 Phytagel, and 5 g l−1 activated charcoal.  相似文献   

20.
After a wildfire, the management of burnt wood may determine microclimatic conditions and microbiological activity with the potential to affect soil respiration. To experimentally analyze the effect on soil respiration, we manipulated a recently burned pine forest in a Mediterranean mountain (Sierra Nevada National and Natural Park, SE Spain). Three representative treatments of post-fire burnt wood management were established at two elevations: (1) “salvage logging” (SL), where all trees were cut, trunks removed, and branches chipped; (2) “non-intervention” (NI), leaving all burnt trees standing; and (3) “cut plus lopping” (CL), a treatment where burnt trees were felled, with the main branches lopped off, but left in situ partially covering the ground surface. Seasonal measurements were carried out over the course of two years. In addition, we performed continuous diurnal campaigns and an irrigation experiment to ascertain the roles of soil temperature and moisture in determining CO2 fluxes across treatments. Soil CO2 fluxes were highest in CL (average of 3.34 ± 0.19 μmol m−2 s−1) and the lowest in SL (2.21 ± 0.11 μmol m−2 s−1). Across seasons, basal values were registered during summer (average of 1.46 ± 0.04 μmol m−2 s−1), but increased during the humid seasons (up to 10.07 ± 1.08 μmol m−2 s−1 in spring in CL). Seasonal and treatment patterns were consistent at the two elevations (1477 and 2317 m a.s.l.), although respiration was half as high at the higher altitude.Respiration was mainly controlled by soil moisture. Watering during the summer drought boosted CO2 effluxes (up to 37 ± 6 μmol m−2 s−1 just after water addition), which then decreased to basal values as the soil dried. About 64% of CO2 emissions during the first 24 h could be attributed to the degasification of soil pores, with the rest likely related to biological processes. The patterns of CO2 effluxes under experimental watering were similar to the seasonal tendencies, with the highest pulse in CL. Temperature, however, had a weak effect on soil respiration, with Q10 values of ca. 1 across seasons and soil moisture conditions. These results represent a first step towards illustrating the effects of post-fire burnt wood management on soil respiration, and eventually carbon sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号