首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
金属离子对纤维素酶制备的影响   总被引:2,自引:0,他引:2  
在纤维素制备过程中,C^2+,Co^2+,Fe^2+,Mg^2+,Mn^2+及K^+等金属离子对纤维素酶的合成均有一定的影响。金属离子过量或不足都会降低酶产率,在此基础上提出了纤维素酶制备的产酶培养基中较适宜的金属离子组成。  相似文献   

2.
培养基组成对里氏木霉合成纤维素酶的影响   总被引:1,自引:0,他引:1  
研究了碳源种类及比例、氮源种类及比例、碳氮比和添加物等对里氏木霉合成纤维素酶的影响.里氏木霉以含纤维素质量比为4:6的蒸汽爆破玉米秸秆和微晶纤维素为碳源,含氮素质量比为5:2的硫酸铵-尿素为氮源,C/N为6,添加4g/L黄豆粉和10g/L麸皮为主要成分的培养基合成纤维素酶,纤维素酶活力在培养132 h达到最大,滤纸酶活...  相似文献   

3.
氮源对里氏木霉木聚糖酶和纤维素酶生物合成的影响   总被引:1,自引:3,他引:1  
研究了氮源种类和比例、碳氮比(C/N)等因素对里氏木霉木聚糖酶和纤维素酶生物合成的影响。在各种氮源中,蛋白胨是最好的氮源。复合氮源中当硫酸铵N和尿素N的比例为1:3时,木聚糖酶活力最高,达93.3IU/mL;当比例为1:1时,滤纸酶活力和羧甲基纤维素(CMC)酶活力达到最大值,分别为0.263FPIU/mL和0.026IU/mL。当控制培养基的C/N为8.0和6.0时,它们对木聚糖酶和纤维素酶的诱导作用最强,分别为95.1IU/mL和0.310FPIU/mL。  相似文献   

4.
培养温度对里氏木霉合成木聚糖酶和纤维素酶的影响   总被引:3,自引:3,他引:3  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶菌,研究了不同培养温度对木聚糖酶和纤维素酶合成的影响。培养温度(25-26℃)较低时有利于木聚糖酶和纤维素酶的合成,但产酶时间较长;培养温度(35-36℃)较高时产酶时间缩短,但木聚糖酶的合成受到一定的影响,且严重抑制纤维素酶的合成。采用变温培养,前期(24h)培养温度为35-36℃,中后期培养温度为25-26℃,能有效地促进木聚糖酶的合成,而抑制纤维素酶的合成,致使木聚糖酶与纤维素酶活的比值提高,从而有利于选择性合成木聚糖酶,木聚糖酶活和纤维素酶活力在72h达到最高值,分别为161.69和0.359IU/mL。  相似文献   

5.
分批添料半连续发酵制备纤维素酶   总被引:3,自引:1,他引:2  
以淀粉水解液、纸浆为原料,分批添加底物制备纤维素酶,底物浓度为40g/L时,滤纸酶活力和纤维二糖酶活力分别达51FPIU/mL和15IU/mL,蛋白质浓度达229mg/mL;当底物浓度增加到74g/L时,滤纸酶活力几乎成正比例地提高到148FPIU/mL。以纸浆为原料分批添料产酶,添料速度以03g/d较为适宜,底物浓度达77g/L时,滤纸酶活力达995FPIU/mL,酶产率和酶得率分别为3189FPIU/L·h和1292FPIU/g纤维素。通过分批添加底物,可实现在高浓度底物下制备纤维素酶而达到降低产酶成本的目的。  相似文献   

6.
采用RT-PCR方法克隆到里氏木霉Rut C-30木聚糖酶(XYN II)的cDNA序列。测序结果表明,XYN II的cDNA基因开放阅读框长度为669 bp,编码223个氨基酸,N端1~19个氨基酸为潜在的信号肽序列,删去潜在信号肽序列,将里氏木霉木聚糖酶的基因(xynII)构建到巴斯德毕赤酵母分泌表达载体pPIC9K上,线性化后电击转化到巴斯德毕赤酵母中,经G418筛选和PCR鉴定后的转化子用1%的甲醇进行诱导,对重组木聚糖酶活检测显示该基因能在毕赤酵母中表达有生物活性的XYN II并分泌到胞外。发酵液中的酶活在诱导培养60 h达到1.45 IU/mL,最适酶解温度为50℃,最适pH值为6.0。  相似文献   

7.
里氏木霉木聚糖酶XYN Ⅱ基因在毕赤酵母中的分泌表达   总被引:1,自引:0,他引:1  
采用RT-PCR方法克隆到里氏木霉Rut C-30木聚糖酶(XYN Ⅱ)的cDNA序列.测序结果表明,XYN Ⅱ的cDNA基因开放阅读框长度为669bp,编码223个氨基酸,N端1~19个氨基酸为潜在的信号肤序列,删去潜在信号肽序列,将里氏木霉木聚糖酶的基因(xyn Ⅱ)构建到巴斯德毕赤酵母分泌表达载体pPIC9K上,线性化后电击转化到巴斯德毕赤酵母中,经G418筛选和PCR鉴定后的转化子用1%的甲醇进行诱导,对重组木聚糖酶活检测显示该基因能在毕赤酵母中表达有生物活性的XYNⅡ并分泌到胞外.发酵液中的酶活在诱导培养60h达到1.45IU/mL,最适酶解温度为50℃,最适pH值为6.0.  相似文献   

8.
以里氏木霉(Trichodermareesei)RutC30为产酶菌株.经适当预处理后的啤酒麦糟为碳源或诱导物,通过深层培养可获得较高浓度的纤维素酯液.当固体碳源浓度为20g/L,碳氮比为8.5时,于初始pH=4.8,温度26~28℃,转速150r/min下培养,其发酵时间为6d.酶液浓度可达3.8FPIU/ml,酶产率为172FPIU/g纤维素.  相似文献   

9.
用10 g/L纸浆作碳源,研究通风量对里氏木霉产纤维素酶的影响.在28℃、搅拌速率250 r/min、pH值4.8时,不调通风量或调节通风量控制溶解氧浓度(DOT),用10 L发酵罐产酶,测定菌丝质量浓度和纤维素酶酶活.结果表明:通风量一定时,DOT有时可能会低于临界DOT,有时又偏高,不利于菌丝生长.改变通风量,调节DOT为20%~30%时,最适宜于茵丝的生长代谢,菌丝质量浓度最高为3.12 g/L,比未调通风量时的最高值2.77 g/L增加12.6%,76 h滤纸酶活达3.55 IU/mL,比未调通风量时的最高值2.80 g/L提高26.8%.  相似文献   

10.
里氏木霉与黑曲霉混合发酵产纤维素酶的研究   总被引:5,自引:0,他引:5  
研究了利用里氏木霉和黑曲霉混合培养的形式产纤维素酶,以两个菌种的不同接种比和延迟黑曲霉的接种时间来寻找两个菌种发挥最大协同作用的结合点.以农林废弃物之一的玉米秸秆为底物,经过蒸汽爆破预处理后,用作产酶碳源.以里氏木霉单一培养与黑曲霉单一培养为参照进行对比研究.结果表明,黑曲霉接种较里氏木霉延迟48h,里氏木霉与黑曲霉接种量比为5: 1时,滤纸酶活最高,达3.295IU/mL,高于里氏木霉单一培养(2.480IU/mL),β - 葡萄糖苷酶活达1.010IU/mL,也远远高于里氏木霉单一培养(0.243IU/mL).本实验充分证明里氏木霉与黑曲霉混合培养产酶是可行的,并优于单一菌种培养.  相似文献   

11.
碳氮比对里氏木霉合成木聚糖酶的影响   总被引:6,自引:2,他引:6  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶菌,研究了不同碳氮比对木聚糖酶合成的影响。结果表明,低碳氮比有利于促进内切-β-木聚糖酶的合成,抑制外切-β-木糖苷酶的合成,有利于选择性合成低外切-β-木糖苷酶活的内切-β-木聚糖酶。高碳氮比使得木聚糖酶的合成滞后,能够有效地抑制纤维素酶的合成,提高木聚糖酶活与纤维素酶活的比值,有利于选择性合成低纤维素酶活的木聚糖酶。  相似文献   

12.
纸浆漂白用木聚糖酶的选择性合成   总被引:5,自引:2,他引:3  
以里氏木霉(Trichoderma reesei) Rut C-30为产酶菌,研究了碳源、培养温度、初始pH值、碳氮比对木聚糖酶和纤维素酶合成的影响.结果表明,粗木聚糖和亚硫酸盐纸浆混合作为碳源有利于木聚糖酶和纤维素酶的合成;低温有利于木聚糖酶和纤维素酶的合成,但产酶时间较长,高温对木聚糖酶的合成有一定的影响,对纤维素酶的合成能有效地抑制,且产酶时间较短;初始pH值低有利于纤维素酶的合成,初始pH值高则延长了木聚糖酶的合成时间,且强烈抑制纤维素酶的合成;低碳氮比有利于纤维素酶的合成,高碳氮比使得木聚糖酶的合成滞后,能够有效抑制纤维素酶的合成.以粗木聚糖和亚硫酸盐纸浆混合作为碳源,调控培养温度、初始pH值和碳氮比能有效地促进木聚糖酶的合成,抑制纤维素酶的合成,致使木聚糖酶活与纤维素酶活的比值提高,从而有利于选择性合成纸浆漂白用木聚糖酶,调控培养方式为:提高碳氮比(7.2)和初始pH值(6.0),在培养初期(1 d)培养温度为35~36 ℃,中后期培养温度25~26 ℃,调控6 d后,木聚糖酶酶活和纤维素酶酶活分别为186.93和0.156 IU/mL,酶活比为1 198.  相似文献   

13.
黄绿木霉固定化生产纤维素酶及酶学特性的研究   总被引:3,自引:3,他引:3  
利用海藻酸钙凝胶包埋法制备固定化细胞黄绿木霉,结果表明:海藻酸钠质量浓度50 g/L,培养基初始pH值4.0~4.5,以滤纸浆为培养基碳源培养的小球的稳定性好。发酵产酶培养时以滤纸浆为碳源,海藻酸钠质量浓度为50 g/L,CaC l2质量浓度控制在20 g/L,培养基初始pH值选择为4.5,产酶效果好、酶活力高、保持时间长。添加表面活性剂Tw in-80后,产酶能力可进一步提高。通过(NH4)2SO4分级沉淀、Sephadex G-100分子筛层析和DEAE Sephadex A-50离子交换层析等步骤,分离纯化出黄绿木霉纤维素酶系中达到电泳纯的3种内切葡聚糖酶(EGⅠ、EGⅡ、EGⅢ)和2种β-葡萄糖苷酶(BGⅠ、BGⅡ)。通过SDS-PAGE和IEF电泳测得5个酶组分的相对分子质量(Mr)分别为62 300、71 900、52 600、85 300和78 300,等电点分别为5.4、4.8、5.0、5.6和5.8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号