首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Experiments were carried out to investigate 10 winter triticale cultivars for 1) genetic variability of patterns of resistance to pre-harvest sprouting, and 2) the simultaneity of seed maturation in spikes by determining the developmental stage and by measuring the rate of germination before and after physiological maturity. The cultivars used were Dagro, Fidelio, Lamberto, Lasko, Lupus, Modus, Prego, Tewo, Ulrika and Vision, and were compared by measuring the post-harvest grain falling number and by germination tests on harvested spikes during the grain filling period. Winter rye Vambo and winter wheat Kosack were used as controls. The moisture content of kernels at physiological maturity (PM) was affected by climatic conditions (r=0.38; p<0.05). Germination rate of kernels in spike before PM was influenced by cultivar only up to 17%; mostly it was affected by climatic conditions (coefficient of determination, 54%). Kernel germination rate after PM was dependent on cultivar up to 37%, but was dependent on precipitation amounts in August (coefficient of determination, 60%). The most resistant cultivar to germination during post-physiological maturity period was Modus, followed by Dagro and Prego. Kernels’ germination rate after PM was found to be an appropriate measure for selection of promising triticale cultivars for the climatic conditions, which are specific for the locations studied. The desiccation rate after PM affected significantly the duration of the period from PM up to harvest time (r=?0.50; p<0.01).  相似文献   

2.
Abstract

Management practices during seed development are crucial for boosting seed quality and establishment. This study determined the interactive effect of soil fertility and maturity stage on maize seed quality. The cultivar SC701 were harvested at milk, dent, and physiological maturity stages and dried to <12% moisture content. Field trials were split plots replicated four times. Seed quality was evaluated using standard germination test, vigor indices and electrical conductivity test. Highly significant interactions (p?相似文献   

3.
Commingling of rice cultivars commonly occurs during harvest, drying, and storage operations. Because different cultivars often have different functional properties, there is a need to study the impact of commingling on these properties. Two long‐grain hybrid (H) cultivars, CL XL745 and CL XL729, and two long‐grain pureline (P) cultivars, CL 151 and Wells, were used to prepare H/P, H/H, and P/P commingles in various proportions. Gelatinization and pasting properties of all individual lots and commingled samples were measured. When two cultivar lots with different onset gelatinization temperatures (Tos) were commingled, the To of the commingled sample was similar to the To of that cultivar in the commingle with the lower To. Tps, Tcs, and ΔHs of commingled samples generally increased or decreased according to the mass percentages of the cultivars in the samples. Peak, breakdown, and final viscosities of commingled samples also varied according to the mass percentages of the cultivars in the commingled samples. These findings are intended to help make decisions regarding cultivar commingling and to optimize process conditions and product characteristics, given the gelatinization and pasting properties of individual‐cultivar lots.  相似文献   

4.
Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by artificial sprouting, by incubating wheat stalks, or directly from the field and were used to determine the effects of cultivar, storage temperature, grain moisture content, and initial FN on changes in FN and α‐amylase activity. Increases in FN of artificially sprouted grain during storage were affected by temperature but not evidently by grain moisture in the range of 10.0–13.0%. The FN of artificially sprouted grain increased when stored at 5, 23, and 35°C for 20 weeks by averages of 9.4, 24.1, and 34.4, respectively. The influences of storage temperature and initial FN of grain obtained from incubated stalks were different between cultivars when stored for 8 weeks. Wheat grain obtained directly from the field also exhibited significant increases in FN during 8 weeks of storage at 5, 23, and 35°C with average increases of 10.0, 27.1, and 38.5, respectively. The impact of α‐amylase activity on the increase in FN during storage was evident only for field‐harvested grain of varying FN. α‐Amylase activity exhibited a negative logarithmic relationship (R2 = 0.87) with FN in field‐harvested grain. The magnitude of the changes in α‐amylase activity varied by cultivar.  相似文献   

5.
Abstract

An experiment was conducted in the greenhouse to evaluate the effects of seed phosphorus (P) concentration on growth, nodulation, and nitrogen (N) and P accumulation of three common bean (Phaseolus vulgaris L.) cultivars. Seeds were produced under low or high soil P levels, and soaked, or not, in 200 mM KH2PO4 solution. The experiment had a 3×3×2×2 factorial block design: three cultivars (ICA Col 10103, Carioca and Honduras 35), three levels of applied P (15, 30 and 45 mg P kg?1 soil), two native seed P concentrations, and two seed soaking treatments. Plants were harvested at flowering. Soaked seeds increased the number, dry mass and P content of nodules, but did not affect plant growth. Plants originated from seeds with high native P concentration presented higher shoot dry mass and nodule number and mass at every soil P level, and were less responsive to increased soil P supply, than plants from low seed P. In plants from seeds with high P, soil P levels did not alter significantly root dry mass, while in plants from seeds with low P bean cultivars expressed wider differences in root dry mass. The genotypic variability of nodulation was influenced by soil P levels and seed P concentration. Both higher soil or seed P supply enhanced N and P accumulation in shoots. These results indicate that a high seed P concentration produces plants less dependent on soil P supply, and can enhance nodulation and N2 fixation of common bean. Seed P supply affected the cultivar performance, and should be considered in evaluation of bean genotypes.  相似文献   

6.
When grown with mixtures of nitrate‐nitrogen (NO3‐N) and ammonium‐nitrogen (NH4‐N) (mixed N) spring wheat (Triticum aestivum L.) plants develop higher order tillers and produce more grain than when grown with only NO3. Because similar work is lacking for winter wheat, the objective of this study was to examine the effect of N form on tillering, nutrient acquisition, partitioning, and yield of winter wheat. Plants of three cultivars were grown to maturity hydroponically with nutrient solutions containing N as either all NO3, all NH4, or an equal mixture of both forms. At maturity, plants were harvested; separated into shoots, roots, and grain; and each part analyzed for dry matter and chemical composition. While the three cultivars varied in all parameters, mixed N plants always produced more tillers (by a range of 16 to 35%), accumulated more N (28 to 61%), phosphorus (P) (22 to 80%), and potassium (K) (11 to 89%) and produced more grain (33 to 60%) than those grown with either form alone. Although mixed N‐induced yield increases were mainly the result of an increase in grain bearing tillers, there was cultivar specific variation in individual yield components (i.e., tiller number, kernels per tiller, and kernel weight) which responded to N form. The presence of NH4 (either alone or in the mixed N treatment), increased the concentration of reduced N in the shoots, roots, and grain of all cultivars. The effect of NH4 in either treatment on the concentrations of P and K was variable and depended on the cultivar and plant part. In most cases, partitioning of dry matter, P, and K to the root decreased when NH4 was present, while partitioning of N was relatively unaffected. Changes in partitioning between the shoot and grain were affected by N treatment, but varied according to cultivar. Based on these data, the changes in partitioning induced by NH4 and the additional macronutrient accumulation with mixed N are at least partially responsible for mixed‐N‐induced increases in tillering and yield of winter wheat.  相似文献   

7.
植物防御酶与桉树对焦枯病抗性的关系   总被引:5,自引:1,他引:5  
为筛选鉴定桉树对焦枯病(CylindrocladiumqulnqueSeptatumMorgan)抗性的生化指标,对福建省11个桉树主栽种系接种焦枯病菌前后关键防御酶系中的过氧化物酶(POD)和超氧岐化酶(SOD)活性及其同工酶变化进行了研究.结果表明:无论是桉树健叶还是接种后的病叶,体内POD、SOD活性均表现为抗病种系>中抗种系>中感种系>感病种系,呈规律性变化;接种前后POD同工酶谱带数与桉树对焦枯病的抗性间不呈规律性变化,而SOD谱带数与抗病性成正比.从抗病育种角度出发可将接种前后桉树POD、SOD活性和接种后SOD同工酶谱带作为桉树对焦枯病抗性早期鉴定的生化指标.  相似文献   

8.
Abstract

Defining growth stages of the potato plant (Solanum tuberosum L.) based on aboveground morphological characteristics could be more practical than using underground characteristics such as tuber size. The applicability of this approach was tested in Cyprus for a spring‐harvested crop sown in a Tera Rosa soil with three different within‐row spacings (15, 25, and 35 cm). The development of various tuber characteristics of three commercial potato cultivars (cvs. “Cara”, “Nicola”, and “Spunta”) was monitored for two growing seasons. The three cultivars represent late, medium, and early maturity classes. Various tuber sizes obtained from each cultivar were related with the number of fully expanded leaves (NFEL) based on linear equations. For individual cultivars, the NFEL appeared to be a reliable aboveground parameter for estimating the size of the largest tuber during the early stages of growth. Defining growth stages based on NFEL could also be a practical approach for the farmers to perform activities, which must be done at a specific developmental stage.  相似文献   

9.
以转甜菜碱醛脱氢酶(betaine aldehyde dehydrogenase)基因(BADH)大豆、非转基因亲本‘黑农35’、野生大豆、当地栽培种‘抗线王’、耐盐碱性较差品种‘合丰50’等5种大豆品种为材料,在典型盐碱土封闭种植,于大豆苗期、花荚期、鼓粒期和成熟期取根际土,采用经典方法测定氮素转化过程相关的细菌数量、生化功能及速效氮含量等指标的动态变化,为揭示转BADH基因大豆对土壤氮素转化的影响机制提供理论支持。结果表明:与非转基因亲本相比,转BADH基因大豆对苗期和花荚期根际土壤固氮菌数量有促进作用,但抑制苗期和花荚期根际土壤氨化细菌数量,对硝化细菌数量无显著性影响;显著促进成熟期大豆根际土壤固氮作用强度,对大豆苗期、花荚期和鼓粒期根际土壤氨化作用强度有显著抑制作用,显著促进各生育时期硝化作用强度;转BADH基因大豆苗期和花荚期根际土壤铵态氮含量显著降低,对鼓粒期根际土壤铵态氮含量无显著性影响,成熟期根际土壤铵态氮含量显著增高,大豆苗期、鼓粒期和成熟期根际土壤硝态氮含量显著升高,花荚期根际硝态氮含量显著降低。研究结果说明,转BADH基因大豆通过调节苗期、花期根际土壤氮素转化功能菌数量和生化过程强度进而影响氮素转化。  相似文献   

10.
The effects of NaCl salt (EC = 16 dS m−1) on water potential, and accumulation of proline, Na+ and K+ in leaves on the main stem of 30 wheat cultivars (Triticum aestivum L.) at awn appearance and 20 days after anthesis (20 DAA) were evaluated in a greenhouse experiment. Plants were arranged in a according to a randomized complete block design with factorial treatments in three replications. Proline accumulation at 20 DAA increased with increasing salt stress. This increase was 27.4-fold with the salt-sensitive cultivar “Ghods,” while the mean was 5.2-fold for 19 salt-resistant cultivars. Positive correlations between proline, and K+ + Na+ concentrations associated with higher sensitivity to salt stress indicated that proline may not have a protecting role against salt stress. No correlation was observed between leaf proline and water potential. Almost no contribution to the osmotic adjustment seems to be made by proline. The contribution made by proline to the osmotic adjustment of plants at 20 DAA was 0.69 bar, whereas that made by K+ and Na+ was 2.11 and 4.48 bar, respectively. The 30 wheat CVs used in this experiment showed different performances regarding the traits observed. Eleven of them showing the higher stress sensitivity indices had the highest level of proline and Na+ concentrations. They were considered to be salt-sensitive cultivars. Among the others, nine cultivars showed salt tolerance with almost the same Na+ and proline concentrations, but a higher K+/Na+ selectivity of ions from leaf to grains. In 10 of the cultivars, Na+ and proline concentrations were low, indicating the presence of a salt avoiding mechanism.  相似文献   

11.
Effects of nutrient solution composition ratio on (Tulipa gesneriana L.) cv, ?Apricot Parrot? and ?Daytona? growth and flowering were studied hydroponics. Plants were grown with five treatments respectively: S1(0), S2(0.01), S3(0.02) S4(0.03) and S5(0.04) meq L.-1 ammonium or 0,0.38, 0.74, 0.11 and 0.14 ammonium (NH4+)/NH4+nitrate (NO3)?ratios. Flowering was accelerated by increase of ammonium level for both cultivars. Nutrition solution was not significant on the stem length of Daytona cultivar, but maximum flowering stem length occurred S2 solution for Apricot Parrot cultivar. Increasing ammonium level, decreased potassium concentration in the aerial parts. Total nitrogen of new bulbs decreased with increasing ammonium level for both cultivars. Maximum bulblet production rate occurred in plants that were fed with S5 solution. Maximum flower longevity was in S2 solution for both cultivars. growth and quality of tulip were affected by ammonium level in nutrient solution, so for obtain the best flower quality must added to nutrient solution.  相似文献   

12.
Vigna vexillata is considered as a pantropical distributed wild species closely related to the cowpea (Vigna uniculata) and adapted to infertile soils. The species is occasionally used for its storage roots as well as forage and erosion control plant. The objective of this study was to pursue personal communications that V. vexillata has be transformed into a cultivar in Indonesia. Seven Indonesian islands were visited (Java, Bali, Sumba, Flores, Timor, Kalimantan and Sulawesi). Wild V. vexillata was found in Java, Bali, Sumba, Flores and Timor, occasionally used as wild ‘forest food’, and cultivated V. vexillata was found in Bali and Timor, Seven cultivars were collected and two of these were made available for the National Botanic Garden of Belgium. The cultivars were primarily cultivated for their storage roots, propagated by seeds, required no scarified seeds for good germination and formed non-dehiscent pods. On-farm root yields of 18–30 t ha−1 and seed yields of 0.7–1.2 t ha−1 were estimated. A brief discussion about the common names of wild V. vexillata is given and it is proposed to use the name ‘tuber cowpea’ for V. vexillata accessions which are cultivated for their storage roots. The material may be of interest for regions, where the growing season is too short or the rainfall too low for sweet potato and cassava as well as to incorporate cultivar characteristics into wild V. vexillata accessions which are used for their storage roots.  相似文献   

13.
In grain legumes, the N requirements of growing seeds are generally greater than biological nitrogen fixation (BNF) and soil N uptake during seed filling, so that the N previously accumulated in the vegetative tissues needs to be redistributed in order to provide N to the seeds. Chickpea, field bean, pea, and white lupin were harvested at flowering and maturity to compare the relative contribution of BNF, soil N uptake, and N remobilisation to seed N. From flowering to maturity, shoot dry weight increased in all crops by approximately 50%, root did not appreciably change, and nodule decreased by 18%. The amount of plant N increased in all crops, however in field bean (17?g?m?2) it was about twice that in chickpea, pea, and lupin. The increase was entirely due to seeds, whose N content at maturity was 26?g?m?2 in field bean and 16?g?m?2 in chickpea, pea, and lupin. The seed N content at maturity was higher than total N accumulation during grain filling in all crops, and endogenous N previously accumulated in vegetative parts was remobilised to fulfil the N demand of filling seeds. Nitrogen remobilisation ranged from 7?g?m?2 in chickpea to 9?g?m?2 in field bean, and was crucial in providing N to the seeds of chickpea, pea, and lupin (half of seed N content) but it was less important in field bean (one-third). All the vegetative organs of the plants underwent N remobilisation: shoots contributed to the N supply of seeds from 58% to 85%, roots from 11% to 37%, and nodules less than 8%. Improving grain legume yield requires either reduced N remobilisation or enhanced N supply, thus, a useful strategy is to select cultivars with high post-anthesis N2 fixation or add mineral N at flowering.  相似文献   

14.
The effect of water stress during flowering and grain filling on seed longevity was studied in three pearl millet genotypes,ICTP-8202, ICTP-8203 and MBH-110. The seeds were produced by three pollination methods; open pollination, selfing(individual panicles enclosed in paper bags), and cluster bagging (panicles from 3–4 adjacent plants enclosed in a paper bag), stored in air-tight plastic bottles underambient conditions (20–40°C,30–80%RH) and germination was tested at 12-month'sintervals. The seeds lost germination completely after six years ofstorage in all treatments. Analysis of variance of the estimates of potential seed longevity (i.e. the seed lot constantK i of the seed viabilityequation) showed significant effects of water stress andpollination method (P < 0.01). The interaction between irrigation treatment and method of pollination control was also significant (P < 0.05). Averaged over genotypes and pollination methods,potential longevity was greatest(K i = 2.8) in theirrigated control, and averaged over genotypes and irrigationtreatments, it was greatest (K i= 3.1) in seeds produced by open pollination. Theimplications of these results were discussed in relation to germplasmseed production.  相似文献   

15.
Abstract

Soybean (Glycine max L. Merr.) cultivars differ in their root morphology and their nutrient uptake capabilities. The relation between root growth, P and K uptake, and grain yield was investigated using eight cultivars grown in the field on Raub (Aquic Argiudoll) silt loam which received 49 kg P/ha and 93 kg K/ha. Hobbit (maturity group III, determinate) was among the highest in grain yield, P and K uptakes, and root system length. However, this cultivar was intermediate in its relative efficiency to utilize P and K to produce grain yield; among the most efficient cultivars were Asgrow 3127 (maturity group II) and Williams‐79 (maturity group III). The hay cultivar, Wilson‐6, was the least efficient. It was concluded that even though grain yield was correlated with nutrient uptake, selection for higher yields was not necessarily a selection for higher efficiency in utilization of fertilizer for grain production.  相似文献   

16.
The present experiment comprised seven wheat cultivars, two drought levels (0 and 17% PEG-8000) and four replicates. The seeds of six wheat cultivars (Al-lugaimi, Bonus, Kronos, Yecora-rojo, Irena and Sama) were supplied by the King Saud University, Riyaz, Saudi Arabia, whereas S-24 was obtained from the Department of Botany, University of Agriculture, Faisalabad. The seeds were allowed to germinate and grow for 20 days in medium having full-strength Hoagland's nutrient solution or Hoagland's solution with 17% PEG-8000. For the appraisal of drought tolerance, various physiological traits such as gas-exchange attributes (A, E, Ci, gs , and A/E), leaf water relations (ψw, ψs and ψp) and the activities of key antioxidant enzymes (SOD, POD and CAT) were determined. On the basis of biomass and gas-exchange attributes (A, E, and gs ), cultivars Al-lugaimi and Sama were found to be drought tolerant, cultivars Yecora-rojo and Irena moderately drought tolerant, and cultivars S-24, Bonus and Kronos drought sensitive. However, plant osmotic adjustment and the activities of potential antioxidant enzymes (SOD, POD and CAT) were not found to be associated with drought tolerance of the different wheat cultivars.  相似文献   

17.
The effects of nickel (Ni) on growth, leaf water status, and mineral nutrient concentration were studied in two wheat (Triticum durum Desf.) cultivars with different sensitivity to water stress: ‘Adamello’ [drought sensitive (DS)] and ‘Ofanto’ [drought tolerant, (DT)]. The DT cultivar showed a higher Ni absorption capacity: ‘Ofanto’ seedlings grown in the presence of 35 μM Ni had a 3.5 times greater concentration of Ni in roots than did ‘Adamello’. Despite the greater Ni tissue content, the DT cultivar exhibited better growth and nutritional status when compared to the DS cultivar. In the DS cultivar the concentration of chlorophyll a and b was reduced by Ni treatment. Chlorophyll a concentration decreased in the DT cultivar, but to a lesser extent than in the DS cultivar; chlorophyll b was not altered by Ni level in the DT cultivar. Nickel caused a decrease in the water potential (ψw) and relative water content (RWC) in both cultivars, but these decreases were greater in the DS cultivar. The antioxidative defense enzymes, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase, showed increased activity in Ni‐treated DS seedlings; this increase in activity was not observed in the DT seedlings. These data suggest that different wheat genotypes may markedly differ in Ni uptake and sensitivity and that a enhanced capacity to counteract Ni stress may be associated with drought resistance.  相似文献   

18.
Wheat starches isolated from seeds harvested between 7 and 49 days after anthesis (DAA) were fractionated into large (>8 μm) and small (<8 μm) granules and studied for starch structure and architecture. Starch granules at 7 DAA possessed unimodal size distribution, whereas it was bimodal at later maturity stages. The apparent amylose fraction of starch granules at early maturity (7 and 14 DAA) consisted of intermediate‐type materials, whereas starch at later maturity stages (28 and 49 DAA) contained branched amylose. Wide‐angle X‐ray scattering (WAXS) revealed a well‐developed polymorphic structure already at 7 DAA. Although the presence of a small proportion of B‐type crystallites mixed with A‐type crystallites was observed in the X‐ray diffractogram of starches at early maturation (7 and 14 DAA), it was masked by the A‐type crystallites at later maturity stages. However, the large granules had a higher proportion of B‐type crystallites and lower relative crystallinity (RC) than their small‐granule counterpart. The iodine absorption properties of the starch granules demonstrated different levels of mobility of the starch polymers at different stages of maturity and the mobility of more glucan polymers in the large granule population compared with the small granules at the same maturity stage. Iodine did not change the characteristic A‐type crystalline pattern of starch, but it increased RC. Changes in peak width at half height based on WAXS data further suggested the possible interaction of iodine with amylopectin intercluster chain segments and branch chains in formation of inclusion complexes.  相似文献   

19.
The availability of nitrogen (N) contained in crop residues for a following crop may vary with cultivar, depending on root traits and the interaction between roots and soil. We used a pot experiment to investigate the effects of six spring wheat (Triticum aestivum L.) cultivars (three old varieties introduced before mid last century and three modern varieties) and N fertilization on the ability of wheat to acquire N from maize (Zea mays L.) straw added to soil. Wheat was grown in a soil where 15N‐labeled maize straw had been incorporated with or without N fertilization. Higher grain yield in three modern and one old cultivar was ascribed to preferred allocation of photosynthate to aboveground plant parts and from vegetative organs to grains. Root biomass, root length density and root surface area were all smaller in modern than in old cultivars at both anthesis and maturity. Root mean diameter was generally similar between modern and old cultivars at anthesis but was greater in modern than in old cultivars at maturity. There were cultivar differences in N uptake from incorporated maize straw and the other N sources (soil and fertilizer). However, these differences were not related to variation in the measured root parameters among the six cultivars. At anthesis, total N uptake efficiencies by roots (total N uptake per root weight or root length) were greater in modern than in old cultivars within each fertilization level. At maturity, averaged over fertilization levels, the total N uptake efficiencies by roots were 292?336 mg N g?1 roots or 3.2?4.0 mg N m?1 roots for three modern cultivars, in contrast to 132?213 mg N g?1 roots or 0.93?1.6 mg N m?1 roots for three old cultivars. Fertilization enhanced the utilization of N from maize straw by all cultivars, but root N uptake efficiencies were less affected. We concluded that modern spring wheat cultivars had higher root N uptake efficiency than old cultivars.  相似文献   

20.
Antioxidant activity, total phenolic content, anthocyanin content, and six other fruit characters including titratable acid concentration, soluble solids, firmness, and percentage of bruised berries were determined for nine blueberry (Vaccinium L. sp.) cultivars at harvest and at various postharvest intervals after storage at 5 degrees C. Berries from MSU-58, Brigitta, and Legacy stored successfully for 7 weeks, Bluegold stored for 3-5 weeks, Bluecrop, Elliott, and Nelson stored for 3 weeks, and Jersey and Little Giant stored for fewer than 3 weeks. During the time they retained marketable quality, one cultivar (MSU-58) demonstrated a 29% increase in antioxidant activity. None of the cultivars showed a significant decrease from the harvest antioxidant activity value during storage. Antioxidant activity, total phenolic content, and anthocyanin content were strongly correlated with each other (r = 0.87-0.99, P < 0.01). All three parameters were moderately correlated with soluble solids (r = 0.47, P < or =0.05; r = 0.44, P < or = 0.05; and r = 0.64, P < or = 0.01, respectively), and antioxidant activity and total phenolic content were both moderately correlated with pH (r = 0.53 and 0.49, respectively; P < or = 0.05). However, antioxidant activity, total phenolic content, and anthocyanin content showed no correlation with firmness, percent severely bruised berries, or weight loss. Antioxidant activity and total phenolic content at harvest both correlated with titratable acidity at harvest (r = 0.68, P < or = 0.05 and r = 0.70, P < or = 0.05, respectively) on a cultivar mean basis. Berries from Elliott were also harvested from plants at two levels of bush ripeness (30-50% and 60-80% ripe berries on plants) and separated into three fruit maturity classes on the basis of percent blue color. The level of bush ripeness had no significant effect on antioxidant activity, total phenolic content, or anthocyanin content; however, fruit maturity had a significant effect on antioxidant activity, total phenolic content, and anthocyanin content, and bush ripeness x fruit maturity interactions were significant for these three traits. Berries with 50-75% blue coloration harvested from bushes with 60-80% mature fruit showed a significant increase in antioxidant activity, total phenolic content, and anthocyanin content during the first 3 weeks in storage. Our results demonstrate that increases in antioxidant activity, total phenolic content, and anthocyanin content may occur in the blueberry during cold storage and are cultivar-dependent. The increases that occur in immature fruit, such as in Elliott, may be advantageous for producers who wish to delay marketing of the fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号