首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
To compare the performance of steer calves managed under different stocking rates (SR; 3.7, 6.2, 8.6, and 11.1 steers/ha for 140 d; chi(I1)) and N fertilization rates (112, 224, and 336 kg of N/ha; chi(I2)) in May 1996, 1997, and 1998, 72 steer calves (BW = 231 +/- 2.5 kg) were assigned randomly to one of 12 0.81-ha dallisgrass (51%)/common bermudagrass (32%) pastures. One-third of the fertilizer was applied in the form of ammonium nitrate in May, June, and August to achieve the prescribed totals. Treatments were separated using a polynomial regression equation: gammai = beta0 + beta1chi(I1) + beta2chi(I2) + beta(11)chi2(I1) + beta(12)chi2(I2) + beta(12)chi(i1)chi(i2) + epsilonI, with years as replicates. Within the range of the data, ADG and BW gain per steer were greatest at a stocking rate of 3.7 steers/ha and 336 kg/ha of N. Body weight gain per hectare peaked at 701 kg when cattle were stocked at 8.9 steers/ha and the pasture was fertilized with 336 kg/ha of N. The least cost of production was at a stocking rate of 3.7 steers/ha, with 112 kg/ha of fertilizer N applied, and the greatest cost of production was at a stocking rate of 11.1 steers/ha with 336 kg/ha of fertilizer N applied. Fertilization at 336 kg/ha of N produced the most profitable stocking rate at 7.3 steers/ha and returned 355.64 dollars. The optimal stocking rate for net return was 79, 81, and 82% of that for maximum BW gain per hectare for 112, 224, and 336 kg/ha of N, respectively. Under the assumptions made in the financial analysis, these data show that the economically optimal carrying capacity of similar pastures can be increased with N fertilizer up to at least 336 kg/ha annually.  相似文献   

2.
Over 3 yr, 324 (n=108 per yr) Holstein heifers (226±26 kg; ±SD) ranging in age from 5 to 7 mo were assigned to a 3×2 factorial arrangement of treatments to determine the effects of forage and grazing management system on animal performance, forage availability, and forage quality. The forage treatments were: 1) alfalfa and smooth bromegrass (ALF-BR), 2) birdsfoot trefoil and smooth bromegrass (BFT-BR), or 3) smooth bromegrass plus nitrogen (BR). The grazing management systems were: 1) a four-paddock system in which cattle were rotated based on time (4-p) or 2) a 12-paddock system in which cattle were rotated based on forage availability (12-p). Stocking rate was held constant at 3.75 animals per hectare. The ALF-BR and BR pastures yielded more available forage than BFT-BR pastures (9.86 and 10.04 vs 9.14 metric tons/ha). The ALF-BR and BFT-BR pastures, when compared to BR pastures, supported greater animal average daily gain (0.93 and 0.97 vs 0.83 kg/d) and increased animal gain per hectare (497.8 and 516.4 vs 443.3 kg/d). Legume-grass pastures also had lower neutral detergent fiber content than BR pastures. There were no differences in either animal gain or gain per hectare due to grazing system. Three years after seeding, BFT-BR and ALF-BR had a similar percentage of legume present within their respective pastures. Birdsfoot trefoil appears to be an acceptable substitute for alfalfa in properly managed grass-legume mixed pastures.  相似文献   

3.
Stocking rate is a fundamental variable for managing pastures, and there is a distinct relationship between stocking rate and animal performance for each forage type. This research was conducted to determine the effects of fall stocking rate (SR) and method of establishment of wheat pasture planted into dedicated crop fields on animal performance during the fall and subsequent spring. There was a factorial arrangement of tillage methods used in the establishment of wheat pasture and fall stocking rates. Tillage treatments included 1) CT, seed sown into a prepared seedbed, 2) RT, a single pass with a light disk followed by broadcasting of seed, or 3) NT, direct seeding into the undisturbed stubble of the grazed-out wheat pasture from the previous year. The fixed SR during the fall were 1.9, 2.5, and 3.7 growing beef steers (Bos taurus L.)/ha. In the spring all pastures were grazed at the same fixed SR by steers for graze out. Data were analyzed using the mixed procedure of SAS as a randomized complete block design with field as the experimental unit and year as the block. Forage mass, forage nutritive composition, and animal performance during the fall or spring were not affected (P ≥ 0.14) by tillage method. During the fall grazing season, with increasing SR there were linear (P < 0.01) decreases in BW of steers upon removal from pasture, BW gain per steer, and ADG, whereas grazing-day per hectare and BW gain per hectare increased linearly (P < 0.01) with increasing SR. The carryover effects of fall SR into the spring grazing season decreased (P< 0.01) grazing-day per hectare and tended (P ≤ 0.09) to produce quadratic changes in BW upon removal from pasture and BW gain per hectare. Across the fall and spring grazing seasons, grazing-day per hectare increased linearly (P < 0.01) with greater SR, and BW gain per hectare increased quadratically (P = 0.02) with increased fall SR. A tillage treatment by fall SR interaction (P = 0.10) indicates that although there was no difference (P ≥ 0.12) due to tillage treatment in BW gain per hectare at 1.9 or 2.5 SR, NT fields produced (P ≤ 0.04) more BW gain per hectare than CT or RT at the 3.7 SR. Although increasing SR of growing steers leads to reduced animal performance in the fall and reduced carrying capacity in the spring, NT appears to be capable of withstanding greater fall SR with less impact on total production per hectare than CT or RT.  相似文献   

4.
Increased costs of annual establishment of small grain pasture associated with fuel, machinery, and labor are eroding the profitability of stocker cattle enterprises. Interest has therefore increased in development of cool-season perennial grasses that are persistent and high quality. This study occurred on 24 ha (divided into thirty 0.81-ha paddocks) located at the University of Arkansas Division of Agriculture Livestock and Forestry Branch Station, near Batesville. Two tall fescue (Festuca arundinacea Schreb.) cultivars infected with novel endophytes (NE), Jesup infected with AR542 endophyte (Jesup AR542), and HiMag infected with Number 11 endophyte (HM11) were established in September 2002. Jesup AR542 and HM11 were compared with endemic endophyte Kentucky 31 (KY-31) tall fescue; wheat (Triticum aestivum L.) and cereal rye (WR, Secale cereale L.) planted in September 2003, 2004, and 2005; and annual ryegrass [RG, Lolium perenne L. ssp. multiflorum (Lam.) Husnot] planted in September 2004 and 2005. Each year, 3 steers (3.7 steers/ha) were placed on each pasture for fall and winter grazing, and 5 steers (6.2 steers/ha) were placed on each pasture for spring grazing. Animal performance is presented by year in the presence of a year x treatment interaction (P < 0.01). Body weight gain per hectare of steers grazing NE tall fescue was greater (P < 0.01) than those of KY-31 and WR during 2003 to 2004, whereas in 2004 to 2005, BW gain per hectare of steers grazing NE and RG did not differ (P < or = 0.29) and was greater (P < 0.01) than that of WR, which was greater (P < 0.01) than that of KY-31. During 2005 to 2006, BW gain per hectare was greater (P < 0.01) for steers grazing RG than those of NE and WR, which did not differ (P > or = 0.14). Body weight gain per hectare was least (P < 0.01) for steers grazing KY-31. Average net return of NE tall fescue was greater (P < 0.01) than KY-31, but profitability of NE did not consistently differ from cool-season annuals. Across the 3-yr study, NE tall fescue produced net returns per hectare of $219; this level of profitability would require 4 yr for a new planting of NE tall fescue to break even. Novel endophyte tall fescues offer potential benefits related to decreased risk of stand establishment of annual forage crops, longer growing season, and acceptable animal performance.  相似文献   

5.
Awareness of herbivore diet composition is an essential element of rangeland stewardship. Objectives of our experiment were to characterize diet selection by yearling steers and mature ewes grazing native tallgrass prairie, changes in dietary preferences that occurred with advancing season, and overlap in selection patterns between ewes and steers. Eight contiguous native tallgrass pastures (31 ± 3.3 ha) were grazed by yearling beef steers (n = 279 per yr) from 15 April to 15 July for two grazing seasons. Mature ewes (n = 813 per yr) subsequently grazed four of the eight pastures (0.15 ha per ewe) from 1 August to 1 October each year. Beginning 1 May, five fresh fecal pats were collected along four permanent transects per pasture at 2-wk intervals until steers were removed on 15 July. Subsequently, fecal grab samples were collected from 25 designated ewes per pasture on 15 August and 15 September. Microhistological analyses were conducted on fecal samples to estimate dietary botanical composition, using 17 grass, forb, and browse species from the experimental site as reference standards. Botanical composition of pastures was estimated annually in October. Diet selection was evaluated using Kulcyznski’s Similarity Index. The proportions of total graminoids and total forbs in steer diets were not different (P = 0.37) among sampling periods. Steer diets were dominated by graminoids (≥ 88.4% of diets) throughout the experiment. Steers and ewes exhibited strong preference for Bouteloua gracilis, Buchloe dactyloides, Dalea purpurea, and Liatris punctata. Ewes also demonstrated strong preferences for Vernonia baldwinii and Ambrosia artemisiifolia. Steers avoided Lespedeza cuneata and Symphyotrichum ericoides, whereas ewes did not avoid any of the reference standards. Ewes selected approximately equal proportions of graminoids and forbs (58% and 42% of diets, respectively), and proportions did not differ (P = 0.67) between sampling periods. Diet selection by mature ewes and yearling steers overlapped by 65% under the conditions of our experiment.  相似文献   

6.
This 9-yr study tested steer gains, residual aboveground biomass (AGB) in mid-July and early October, and economic returns and risk for tallgrass prairie grazed annually under season-long stocking (SLS) at 1.62 ha · steer−1 until early October or intensive early stocking (IES) at 0.81 ha · steer−1 until mid-July compared to a composite grazing system. The three-pasture, three-herd “IES+ System” is a 3-yr fixed sequence of SLS, IES, and IES (0.81 ha · steer−1) plus late-season grazing (LSG; 1.62 ha · steer−1) until early October (IES/LSG). All grazing treatments began in late April. Average gains per steer for SLS and SLS in the IES+ System did not differ, but were significantly less than gains for steers that grazed the entire season under IES/LSG. Gains per steer in mid-July under IES alone or in combination with LSG were similar to the same repeated grazing treatments, but were significantly less than those for steers grazed season-long. Gains per hectare under SLS did not differ, but were significantly less than those for IES treatments and the IES+ System. Gain per hectare in July was similar for IES repeated annually and IES/LSG, but there was greater gain per hectare for IES-treated pastures rotated within the system. Residual grass and total aboveground biomass (AGB) in mid-July did not vary among years and was generally greater on SLS than IES. In early October, grass AGB was similar for all treatments except IES/LSG, which had less residual AGB. When pasture rent was charged per head, the IES+ System increased the 20-yr mean return per hectare by $5.98 compared to repeated use of IES, and $8.52 compared to using only SLS. Measures of economic risk were generally intermediate for the IES+ system compared to IES, which consistently had the highest risk, and SLS.  相似文献   

7.
Objectives of this research were to compare animal performance with or without supplementation, compare effectiveness of three intake limiters, and to examine seasonal changes in nutritive value of native range in south-central North Dakota. Treatments included 1) control (CONT; no supplement); 2) hand-fed (HF) supplement, with no chemical limiter; 3) 16% salt (NACL); 4) 5.25% ammonium chloride and ammonium sulfate (AS); and 5) 7% calcium hydroxide (CAOH). Supplements were based on wheat middlings, barley malt sprouts, and soybean hulls and were formulated to provide 40% of the CP intake and 32% of the NEm intake of 350-kg steers. Trials 1 and 2 each used 70 yearling steers (370.8 +/- 0.04 and 327.9 +/- 0.76 kg initial BW for Trials 1 and 2, respectively). In each year, four 28-d periods from the latter half of June through mid-October were used. Steers were stratified by weight and allotted randomly to treatments in 1 of 10 16-ha pastures (two pastures per treatment for each trial). In Trial 1, diet sampling began in the first 28-d period, but supplementation did not begin until the second 28-d period. In Trial 2, supplementation and diet collection began in the first 28-d period. Cation-anion differences (DCAD; Na + K - Cl - S) for NACL, AS, CAOH, and HF supplements were 151, -735, 160, and 166 mEq/ kg, respectively. In Trial 1, no treatment, period, or treatment x period effects for supplement intake were detected (P > or = 0.29). In Trial 2, a treatment x period interaction for supplement intake occurred (P = 0.005) because HF steers were offered a constant amount of supplement daily, whereas steers fed AS, CAOH, and NACL were allowed to consume ad libitum quantities of supplement. Average daily gain in Trial 1 was not affected (P = 0.21) by supplementation. In Trial 2, NACL, AS, and HF treatments had higher (P < or = 0.07) ADG than CONT. In Trial 1, final weights were not affected by supplementation (P = 0.23). In Trial 2, final weights of NACL- and HF-fed steers were greater than for CONT and CAOH steers (P < 0.10). In Trial 2, CONT steer final weights were lower than all supplemented treatments (P < 0.10). For yearling steers grazing native range, use of NACL as a limiter resulted in increased weight gains compared with using either CAOH or AS; however, no limiter that was tested restricted supplement intake as effectively as HF. More research is necessary to determine the optimum limiter level and the effect of forage quality on supplement intake.  相似文献   

8.
The objective of this trial was to determine if daily supplementation of flaxseed for 85 d to steers finished on grasslands of the northern Great Plains would influence growth and carcass characteristics or the fatty acid profile, tenderness, and sensory characteristics of beef steaks. Eighteen Angus yearling steers (initial BW 399 ± 21 kg) were randomly divided into 3 groups. Steers in treatment 1 (FLX; n = 6) received a daily supplement of ground flaxseed (0.20% of BW), whereas steers in treatment 2 (CSBM; n = 6) received a daily supplement of ground corn and soybean meal (0.28% of BW), with contents of CP and TDN being similar to the supplement for FLX. Control steers (CONT; n = 6) were not supplemented. Treatments were given to each individual steer in side-by-side stalls and were fed from mid-August to November 7, 2007, the day before slaughter. All steers grazed growing forage from early May through the first week of November. Growth rate of steers fed FLX was 25% greater (P < 0.01) than that of steers fed CONT, but was similar (P = 0.45) to that of steers fed CSBM. No differences were observed for carcass characteristics (P ≥ 0.14), tenderness (Warner-Bratzler shear force; P ≥ 0.24), or sensory attributes (P ≥ 0.40) except for a slight off-flavor detected in steaks from steers fed FLX compared with CONT (7.4 vs. 7.8, respectively, with 8 indicating no off-flavor and 1 indicating extreme off-flavor; P = 0.07) and CSBM (7.9; P = 0.01). The n-3 fatty acids α-linolenic acid and eicosapentaenoic acid were 62 and 22% greater, respectively, in beef from steers fed FLX compared with those fed CONT (P < 0.001). The ratio of n-6 to n-3 fatty acids was smaller (P < 0.001) in beef from steers fed FLX compared with the ratios in beef from steers fed CONT and CSBM. Daily supplementation of flaxseed to steers grazing growing vegetation on the northern Great Plains may improve growth rate and enhance the n-3 fatty acid profile of the steaks.  相似文献   

9.
Despite potential benefits, limitations of individual tropical legumes have restricted development of sustainable grass-legume pastures in tropical and subtropical regions. Sowing mixtures of complementary legumes may overcome limitations of individual species. Responses of yearling steers grazing a mixture of three tropical legumes with bahiagrass (Paspalum notatum Flugge) were evaluated at three stocking rates under continuous grazing. Carpon desmodium (Desmodium heterocarpon [L.] DC.), which is persistent under grazing but often difficult to establish, was combined with the short-lived legumes aeschynomene (Aeschynomene americana L.) and phasey bean (Macroptilium lathyroides [L.] Urb.). Diet composition, as determined by microhistological analysis of fecal samples, and animal performance were evaluated in three grazing periods: summer 1987 and spring 1988 (2.0, 3.5, and 5.0 steers/ha) and summer 1988 (3.0, 5.3, and 7.5 steers/ha). Stocking rate did not affect percentage of the selectively grazed legumes, aeschynomene and phasey bean, in the diet. Average daily gain decreased linearly (P less than .05) with increased stocking rate, as is typical for grass pastures. Aeschynomene and phasey bean contributed to diets during the first summer, and carpon desmodium contribution was greater in the second summer. These results indicate that this pasture mixture can provide legume herbage from aeschynomene and phasey bean in the year of sowing and from carpon desmodium thereafter. Over the range of grazing pressures obtained, legume responses were generally consistent; thus, optimizing stocking rate for gain per hectare or for economic returns can be targeted without additional constraints to maintain the contribution of these legumes to grazing livestock.  相似文献   

10.
Grazing studies were conducted to determine cattle growth performance, evaluate toxicosis, and compare grazing behavior in stocker cattle grazing nonergot alkaloid-producing endophyte-infected (AR542 or AR502), endophyte-free (E-), or wild-type toxic endophyte-infected (E+) Jesup, Georgia-5, and Kentucky-31 tall fescue. Replicated 0.81-ha tall fescue paddocks were established at the Central Georgia Branch Station at Eatonton and the Northwest Georgia Branch Station at Calhoun during October 1998 and were stocked with beef cattle for autumn and spring periods from fall 1999 through spring 2002. Mean ergot alkaloid concentrations were higher (P < 0.01) on E+ pastures than the other treatments at both locations. At Calhoun and Eatonton, post-treatment serum prolactin concentrations were decreased (P < 0.01) on E+ compared with AR542, AR502, and E- tall fescue. Cattle on AR542, AR502, and E- pastures had lower (P < 0.05) post-treatment rectal temperatures than cattle grazing E+ tall fescue during spring at Eatonton and Calhoun. Calf ADG was higher (P < 0.05) on AR542, AR502, and E- as compared with E+ tall fescue during autumn and spring grazing at Eatonton, and at Calhoun, cattle on E+ pastures had lower (P < 0.05) ADG in both autumn and spring. Gain/hectare was higher (P < 0.05) on AR542, AR502, and E- than on E+ during autumn at Eatonton and during spring at both locations. In autumn at Calhoun, gain/hectare was greater (P < 0.05) on AR502 and E- compared with E+ tall fescue. During April, May, and June, cattle grazing E+ pastures at Eatonton spent more (P < 0.01) time idling, more (P < 0.01) time standing, and used more (P < 0.01) water than cattle on AR542 and E- tall fescue. Daily prehensions and biting rate were each higher (P < 0.01) on AR542 and E- tall fescue than E+ tall fescue in both grazing seasons. There were no differences among pasture treatments for bite size in either spring (P = 0.50) or autumn (P = 0.34). Steers grazing E+ pastures had lower DMI than steers grazing AR542 and E- pastures during spring (P < 0.10) and lower DMI than steers grazing E- pastures during autumn (P < 0.05). Daily steer water usage was decreased (P < 0.10) in E+ pastures compared with AR542 and E- pastures during late fall. These results indicate that nonergot alkaloid-producing endophyte technology is a promising option for alleviating tall fescue toxicosis in stocker cattle.  相似文献   

11.
Four nonlactating Holstein cows (593 kg) with ruminal cannulas were fed bromegrass hay that was fertilized with 0 or 89 kg of N/ha and harvested in the late-boot or full-head stage of maturity. Total tract apparent digestibility of N was less for full-head than for late-boot bromegrass (48 vs 64%; P less than .01) and was greater for N-fertilized than for unfertilized bromegrass (60 vs 52%, P less than .01). True N digestibility was greater (P less than .01) by cows fed late-boot hay than by those fed full-head bromegrass (85 vs 81%). Maturity did not affect N retention. Nitrogen fertilization increased N retained, both grams per day (70 vs 20; P less than .01) and as a percentage of N intake (P less than .01). Nitrogen and amino acid disappearance kinetics were determined in situ. Rate constants for N disappearance within rapidly and slowly degraded pools were not different among treatments, but because late-boot had a larger proportion of N in the rapidly degraded pool, overall disappearance rate for N was faster (P less than .05) for late-boot than for full-head bromegrass (12.0 vs 7.1 %/h). Treatment effects observed for individual amino acids were similar to those found for N. Both composition and kinetic data were needed to explain differences in N digestion and balance. Distribution of N within the forage had profound effects on the N economy of the cows.  相似文献   

12.
Our objective was to compare the performance of weaned steer calves managed with intensive-early stocking (IES; 12.4 steers per ha for 70 d) or season-long stocking (SLS; 6.2 steers per ha for 140 d) with and without supplementation (2 × 2 factorial). Beginning on May 15, 90 steers (BW = 217 ± 0.8 kg) were randomly assigned to one of 12 common bermudagrass (Cynodon dactylon [L.] Pers.) pastures (0.81 ha each) fertilized with 168 kg of nitrogen/ha. One of the following four treatments was randomly applied to three pastures: i) SLS plus no supplement, ii) SLS plus 0.45 kg/steer of ground corn daily, iii) IES plus no supplement, and iv) IES plus 0.45 kg/steer of ground corn daily. Steers on IES were lighter (P=0.01) than SLS steers on d 70. By d 140, SLS steers supplemented with corn were 33 kg heavier (P=0.02) than nonsupplemented steers. When using SLS, corn increased the BW gain 0.5 kg/kg of corn fed; however, when IES was used, there was no benefit from corn supplementation. Total BW gain/ha did not differ (P>0.17) among treatments, but SLS with corn supplementation could have the potential to produce more BW gain/ha compared to the other treatments. Grazing systems did not affect feedlot ADG (P>0.53), but IES (175 d on feed) steers did have a higher (P<0.01) feedlot total BW gain than the SLS steers (154 d on feed). Using IES positively affected (P<0.08) dressing percentage and longissimus area compared to SLS; however, these differences in carcass characteristics were probably the result of the longer feeding period.  相似文献   

13.
Factors associated with fat necrosis in cows and tall-fescue summer toxicosis in steers were studied. In the cow study, fescue pastures were fertilized, using 3 rates of N: high N (703 to 483 kg and 0 kg of N/ha/year from broiler litter in 1972 to 1974 and 1975, respectively), moderate N, and low N (224 and 74 kg of N/ha/yr from NH4NO3, 1972 to 1975, respectively). Bermuda grass pastures were fertilized at 2 rates of N: moderate N and low N (280 and 20 kg of N/ha/year from NH4NO3, 1972 to 1975, respectively). Fat necrosis developed only in cows grazing tall fescue, with an occurrence of 60%, 8%, and 3% for high-N, moderate-N, and low-N pastures, respectively. Cows grazing the high-N fescue, and to some extent those grazing the moderate-N fescue, had clinical signs of summer fescue toxicosis. Plasma cholesterol concentrations were lowest in cattle grazing the high-N fescue, averaging 114 mg/dl, followed by 134 and 127 mg/dl in cattle grazing the moderate-N and low-N fescue, respectively. In the steer grazing study, 24 paddocks of 0.49 ha each were seeded with tall-fescue lines G1-307 or G1-306 or with tall-fescue cultivars, KY-31 or Kenhy. All paddocks were fertilized with 170 kg of N/ha/year. Serum cholesterol concentrations were lower in steers grazing on G1-307 than in steers grazing on G1-306 or cultivars. Serum total lipids followed a similar trend, with a positive correlation (r = 0.49) between cholesterol and total lipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To evaluate the effects of balancing total diet degradable intake protein with dietary total digestible nutrients (TDN), we conducted two studies during 2 yr with 100 (302 +/- 8 kg initial BW) mixed-breed yearling steers and 12 ruminally cannulated steers (526 +/- 28 kg). Steers individually received one of four supplements 5 d/wk while grazing dormant native tallgrass prairie. Supplements included: 1) corn and soybean meal, balanced for total diet degradable intake protein in relation to total diet TDN (CRSBM), 2) corn and soybean hulls, equal in supplemental TDN to CRSBM (CORN), 3) soybean meal, equal in supplemental degradable intake protein to CRSBM (SBM), or 4) a cottonseed hull-based control supplement (CONT). At each feeding (5 d/wk), steers consumed 13.6, 13.6, or 4.2 g of dry matter/kg of body weight, or 178 g of DM, respectively, of supplement. Steers fed CRSBM had greater (P < 0.01) average daily gain than cattle fed CORN or SBM. Feeding soybean meal (CRSBM, SBM) resulted in improved (P < 0.01) efficiency of supplement. Grazing time, intensity, and harvesting efficiency were reduced (P < 0.05) by corn supplementation (CRSBM and CORN), whereas the number of grazing bouts per day was increased (P < 0.08). Intake and digestibility of forage organic matter were reduced (P < 0.01) for steers supplemented with corn (CORN and CRSBM) vs cattle not fed corn (SBM and CONT). Total diet digestibility (P < 0.12) and digestible organic matter intake (P < 0.01) were greater for CRSBM-fed steers than for cattle fed either CORN or SBM. Steers fed CRSBM had greater (P < 0.01) fecal nitrogen and serum insulin than cattle fed CORN or SBM. Corn-fed cattle had lesser (P < 0.01) fecal pH and ADF concentrations than steers not consuming grain. Cattle fed supplements with soybean meal (CRSBM and SBM) had greater (P < 0.01) serum urea nitrogen than steers fed supplements without soybean meal (CORN, CONT). Supplemented steers grazing dormant tallgrass prairie had a greater rate of gain, with the greatest response in animal performance occurring when grain supplements were balanced for total diet degradable intake protein in relation to total diet TDN. These results lead us to suggest that grain-supplemented cattle grazing dormant tallgrass prairie require a balance of total diet degradable intake protein in relation to total diet TDN to optimize animal performance.  相似文献   

15.
Our objective was to compare the performance of weaned steer calves managed with intensive-early stocking (IES; 12.4 steers per ha for 70 d) or season-long stocking (SLS; 6.2 steers per ha for 140 d) with and without supplementation (2 x 2 factorial). Beginning on May 15, 90 steers (BW = 217 ± 0.8 kg) were randomly assigned to one of 12 common bermudagrass (Cynodon dactylon [L.] Pers.) pastures (0.81 ha each) fertilized with 168 kg of nitrogen/ ha. One of the following four treatments was randomly applied to three pastures: i) SLS plus no supplement, ii) SLS plus 0.45 kg/steer of ground corn daily, iii) IES plus no supplement, and iv) IES plus 0.45 kg/steer of ground corn daily. Steers on IES were lighter (P=0.01) than SLS steers on d 70. By d 140, SLS steers supplemented with corn were 33 kg heavier (P=0.02) than nonsupplemented steers. When using SLS, corn increased the BW gain 0.5 kg/kg of corn fed; however, when IES was used, there was no benefit from corn supplementation. Total BW gain/ha did not differ (P>0.17) among treatments, but SLS with corn supplementation could have the potential to produce more BW gain/ ha compared to the other treatments. Grazing systems did not affect feedlot ADG (P>0.53), but IES (175 d on feed) steers did have a higher (P<0.01) feedlot total BW gain than the SLS steers (154 d on feed). Using IES positively affected (P<0.08) dressing percentage and longissimus area compared to SLS; however, these differences in carcass characteristics were probably the result of the longer feeding period.  相似文献   

16.
Alfalfa (Medicago sativa L.) persistence and forage and cow-calf production were evaluated on pastures containing smooth bromegrass with or without grazing-tolerant or hay-type alfalfa cultivars rotationally stocked in either a season-long or complementary system. In 1997, six 2.02-ha pastures were seeded with smooth bromegrass, a mixture of a grazing-tolerant alfalfa (Amerigraze variety) and smooth brome-grass, or a mixture of a hay-type alfalfa (Affinity variety) and smooth bromegrass to be used in season-long stocking systems. Four 2.02-ha pastures were seeded with smooth bromegrass on 1.21 ha of each pasture, and mixtures of either the grazing-tolerant or hay-type alfalfa cultivars and smooth bromegrass on the 0.81 ha of each pasture to be used in complementary stocking systems. All 10 pastures were divided into 10 paddocks and rotationally strip-stocked at 1.98 cow-calf units/ha with crossbred cows and calves for 120 and 141 d starting May 18, 1998 (yr 1), and May 6, 1999 (yr 2), respectively. Each year, first harvest forage was harvested as hay from 40% of all 10 pastures, this being the portions of the pasture seeded with the alfalfa-smooth brome-grass mixtures for pastures with the complementary stocking systems. In yr 1 and 2, the remaining 60% of each pasture was grazed for the first 44 and 54 d, and 100% of each pasture was grazed on d 45 to 120 and d 55 to 141, respectively. Proportions of alfalfa in the live dry matter of pastures seeded with the grazing-tolerant and hay-type alfalfa cultivars decreased by 70 and 55% in paddocks stocked season-long and by 60 and 42% in paddocks used for complementary stocking (alfalfa cultivar, P < 0.05; stocking system, P < 0.05) in yr 1, but decreased by 72% across cultivars and stocking systems in yr 2. Total (P < 0.08) forage masses in September of yr 1 and in August of yr 2 were greater in pastures in which alfalfa paddocks were stocked season-long than in those with complementary alfalfa stocking. Grazing of alfalfa in grass mixtures increased calf and total cow/calf weight gains in comparison with grazing of smooth bromegrass, but alfalfa persistence, measured as a proportion of the live dry matter, was not affected by alfalfa cultivar.  相似文献   

17.
Live weight gains of light and heavy calves grazing Plains Old World bluestem at three stocking rates were evaluated during the summers of 1997 and 1998. Initial weights of mixed-breed light-weight steers (LHT) were 141 SD = 17 kg (n = 214) in 1997 and 160 SD = 23 kg (n = 193) in 1998. Initial weights of mixed-breed heavy steers (HWT) were 265 SD = 17 kg (n = 115) in 1997 and 248 SD = 13 kg (n = 126) in 1998. Initial stocking rates for both sizes of steers were as follows: light, 392 kg of live weight/ha; moderate, 504 kg of live weight/ha (increased to 616 kg live weight/ha in 1998); and heavy, 840 kg of live weight/ ha. Averaged gain and gain/hectare are reported as stocking rate by steer type within year. Heavy steers had greater ADG than LHT steers during both years. Forage intake, expressed as a percentage of BW, was greater (P = 0.05) for LHT (3.1%) than for HWT (2.8%) calves. Grazing time (min/d; 1998 only) was greater (P = 0.05) for LHT (665) than for HWT (624) steers. Forage CP and in vivo digestible organic matter (DOM) were slightly greater (P < 0.05) in pastures grazed by HWT vs LHT cattle. Gain/hectare was greater (P < 0.05) for LHT than for HWT calves at all three stocking rates during both years. A linear decline in ADG was observed (P < 0.07) as stocking rates increased for HWT steers in 1997 and LHT steers in 1998. However, ADG did not decline with increasing stocking rate for LHT calves during 1997 or HWT calves during 1998. Forage intake was not different among stocking rates in either 1997 or 1998. Grazing time was greatest (P < 0.05) for steers in the moderate and heavy stocking rates. Forage in vivo DOM decreased (P < 0.05) as stocking rate increased. Both LHT and HWT steers had lower (P < 0.05) ADG at all three stocking rates during 1998 compared with 1997. Despite lower ADG, LHT steers had greater gain/hectare than HWT steers during both 1997 and 1998.  相似文献   

18.
Pastures of Bermudagrass (Cynodon dactylon, BG), Caucasian bluestem (Bothriochloa caucasica, CBS), and gamagrass (Tripsacum dactyloides, GG) were evaluated from the perspectives of forage composition, selection during grazing, and N metabolism in beef steers. All pastures were fertilized with 78 kg/ha of N approximately 60 and 30 d before sample collection. In 2000 and 2001, 12 steers (250 kg of BW) were blocked based on BW and then assigned randomly to a replicated, randomized complete block design, with 2 pastures of each forage and 2 steers per pasture. Three other steers with esophageal fistulas were used to collect masticate samples to represent intake preferences. Herbage mass was >1,900 kg/ha. After at least 14 d of adaptation, urine and blood samples were collected for determination of serum urea N and percentage of urinary N in the form of urea. One steer per pasture (6 steers per year) was infused i.v. with (15,15)N urea for 50 h before collecting urine for 6 h to measure urea N enrichment, urea entry rate, urinary urea excretion, gut urea recycling, and return of urea N to the ornithine cycle. The canopy leaf:stem DM ratio differed (P = 0.01) among BG (0.50), CBS (1.01), and GG (4.00). Caucasian bluestem had less CP (% of DM) than GG or BG in the canopy (9.6 vs. 12.0 or 12.3, P = 0.07) and in the masticate (9.8 vs. 14.7 or 13.9, P = 0.04). Bermudagrass had less true protein (% of CP) than CBS or GG in the canopy (72.9 vs. 83.3 or 83.0, P = 0.07) and in the masticate (73.7 vs. 85.8 or 88.0, P = 0.04). Compared with GG and BG, CBS had less serum urea N (10.1 or 12.2 vs. 2.5 mM, P = 0.01), urea entry rate (353 or 391 vs. 209 mmol of N/h, P = 0.07), and urinary urea excretion (105 or 95 vs. 18 mmol of N/h, P = 0.04), and a greater return of urea N to the ornithine cycle as a proportion of gut urea recycling (0.109 or 0.118 vs. 0.231, P = 0.02). Urea production and recycling in these steers responded more to the N concentration in the grasses than to differences in plant protein fractions. There was no evidence of improved N capture by the steers due to changes in the leaf:stem ratio among the grasses at the herbage mass evaluated.  相似文献   

19.
This study investigated the performance of steers grazing rhizomatous birdsfoot trefoil (Lotus corniculatus L.) (RBFT) compared to nonrhizomatous birdsfoot trefoil (BFT) in pure stands or when interseeded with endophyte-free tall fescue (Festuca arundinacea Schreb.; TF). Five forage treatments of RBFT, BFT, TF, RBFT+TF, and BFT+TF (four replicate paddocks per treatment) were continuously stocked in spring and fall of 1998 and spring of 1999. Grazing for individual treatments was terminated when pasture mass fell below 900 kg/ha. Average daily gain was greatest (P < 0.10) in pure stands of BFT and RBFT, but total forage production, and thus grazing days, for these treatments was low. Average daily gain for steers grazing BFT+TF and RBFT+TF treatments was not different from (spring and fall 1998) or greater (P < 0.10) (spring 1999) than that for TF. Total forage production of BFT+TF and RBFT+TF was greater (P < 0.10) than that of TF in spring 1998. In fall 1998, BFT+TF produced more (P < 0.10) total forage than either RBFT+TF or TF, and in spring 1999, RBFT+TF had less (P < 0.10) total forage than TF or BFT+TF. Total steer days on mixed pastures were greater (P < 0.10) than that for TF in spring and fall 1998 but not different from those for TF in spring 1999. In all three trials total weight gain/hectare was greater (P < 0.10) for RBFT+TF and BFT+TF than for TF. The RBFT+TF and BFT +TF had greater (P < 0.05) CP than TF in spring and fall 1998 and less (P < 0.05) NDF and ADF in fall 1998. We concluded that either RBFT or BFT could be interseeded with tall fescue to enhance ADG and total steer days.  相似文献   

20.
Dallisgrass (Paspalum dilatatum) is well adapted to the Black Belt physiographic region of the southeastern United States, and information on its productivity and nutritive quality as influenced by grazing management is needed. In a 2-yr grazing experiment, replicate 0.40-ha paddocks in established dallisgrass pasture were continuously stocked, or replicate 0.40-ha paddocks were subdivided into two 0.20-ha (RS2), three 0.13-ha (RS3), or four 0.10-ha (RS4) cells and rotationally stocked with yearling beef steers. Individual cells within the RS2, RS3, and RS4 treatments were stocked for 7 d followed by 7, 14, or 21 d of rest, respectively. In 2007, 3 Angus × Simmental crossbred steers (initial BW, 354 ± 6 kg) were assigned randomly to each paddock on July 16; in 2008, 3 Angus × Simmental crossbred steers (initial BW, 310 ± 6 kg) were assigned randomly to each paddock on July 14. In 2007, there was no effect (P = 0.25) of stocking treatment on ADG. Steers grazing RS4, RS2, and continuously stocked paddocks had 106 (P = 0.01), 86 (P = 0.03), and 83 (P = 0.03) kg greater total BW gain per ha, respectively, than steers grazing RS3 paddocks. In 2008, there were no differences among treatments in ADG (P = 0.43) or total BW gain per ha (P = 0.90). Correlation and regression analyses revealed positive associations between steer performance and forage concentration of CP, areal mass (kg/ha) of forage DM, and areal mass of forage CP. Results indicate that productivity and quality of dallisgrass for stocker cattle production were comparable between continuous and rotational-stocking methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号