共查询到20条相似文献,搜索用时 15 毫秒
1.
烟酸铬对西门塔尔牛瘤胃液pH值和氨态氮浓度的影响 总被引:1,自引:0,他引:1
试验选用4头平均体重(500±20)kg,年龄4岁,装有永久性瘤胃瘘管的西门塔尔牛阉牛,采用4×4拉丁方设计,以混合精料和风干玉米秸秆为基础日粮,研究日粮添加烟酸铬(0、40、801、20 mg/d)对瘤胃液pH值及氨态氮浓度的影响。结果表明:日粮添加烟酸铬对瘤胃pH值无显著差异(P>0.05);80 mg/d组瘤胃液氨态氮浓度显著低于对照组,其他各组间无明显差异(P>0.05)。综合以上结果,烟酸铬适宜添加水平为80 mg/d。 相似文献
2.
Influence of forage diets on ruminal particle size, passage of digesta, feed intake and digestibility by steers 总被引:1,自引:0,他引:1
To assess the influence of forage diets on particle size of digesta in the rumen, three ruminally fistulated steers were fed alfalfa, orchardgrass or switchgrass hays in a 3 x 3 Latin square design. Mean sieve size of ruminal digesta for alfalfa, orchardgrass and switchgrass diets was 671, 652 and 466 microns, respectively. A second experiment examined the influence of ruminal particle size on digesta passage, digestibility and intake. Four ruminally fistulated Angus-Hereford steers were given ad libitum access to different proportions of alfalfa and switchgrass in a 4 x 4 Latin square design. Either a 100% alfalfa, 50% alfalfa:50% switchgrass, 25% alfalfa:75% switchgrass or 100% switchgrass diet was offered once daily. Mean sieve sizes of the ruminal digesta of these diets responded cubically (P less than .01; 1,066, 946, 1,003 and 925 microns, respectively). Mean ruminal turnover times were 24.3, 24.8, 24.7 and 29.8 h, respectively. Dry matter intake increased linearly (P less than .10) as the proportion of legume in the diet increased; no influence of diet on DM digestibility was observed. Passage rate of dosed nylon particles 1, 3 and 5 mm in length was influenced (P less than .01) by size; however, no difference in the passage rates of the nylon particles due to diet was evident. Particle size of ruminal digesta did not respond in a linear manner to the proportion of legume in the diet. A smaller ruminal particle size was not associated with a faster turnover of digesta. 相似文献
3.
Soto-Navarro SA Knight MH Lardy GP Bauer ML Caton JS 《Journal of animal science》2004,82(12):3560-3566
Six Angus crossbred cow-calf pairs (653 +/- 35 kg and 157 +/- 10 kg initial BW for cows and calves, respectively) were used to evaluate the influence of a fiber-based creep feed on intake, ruminal fermentation, digestion characteristics, and microbial efficiency in nursing beef calves. Cow-calf pairs were stratified by calf age and assigned randomly to one of two treatments: control (no supplement) or supplemented. Supplemented calves received 0.9 kg of a 49% soy hulls, 44% wheat middlings, 6% molasses, and 1% limestone supplement (DM basis) daily. All calves were cannulated in the rumen and duodenum and given ad libitum access to chopped brome hay (Bromus inermus L; 7.43% CP, 40.96% ADF, and 63.99% NDF; DM basis). Supplementation was initiated on May 1 (88 +/- 10.3 d calf age). Three sampling periods were conducted throughout the study (June 14 to 25, July 5 to 16, and August 9 to 20). Supplement and forage were offered at 0800 daily. Total, hay, and milk OM intakes of nursing calves were not affected by supplementation (2,014 vs. 2,328 +/- 288.8, 1,486 vs. 1,029 +/- 3,06.9, and 528 vs. 575 +/- 87.0 g/d, respectively). Milk OM intake was less (P < 0.09) in August than in June and July (635, 691, and 345 +/- 110.6 g/d for June, July, and August, respectively). A supplementation x month interaction occurred (P < 0.10) for total-tract OM digestion. Supplementation did not affect (P > 0.40) total-tract OM digestibility during June and August; however, during July, total-tract OM digestibility was lower (P = 0.03) for the control calves. Ruminal ammonia concentration, total VFA, and butyrate molar proportion increased (P < 0.05), whereas acetate proportion decreased (P = 0.01) in supplemented calves. Microbial efficiency was not influenced by supplementation (11.8 vs. 12.0 g/kg of OM truly fermented for control and supplemented calves, respectively). These data indicate that fiber-based supplements can be used as creep feed without negative effects on OM intake, total-tract OM digestibility, and ruminal fermentation characteristics in nursing beef calves. 相似文献
4.
Cantalapiedra-Hijar G Yáñez-Ruiz DR Martín-García AI Molina-Alcaide E 《Journal of animal science》2009,87(2):622-631
The effects of forage type and forage:concentrate ratio (F:C) on apparent nutrient digestibility, ruminal fermentation, and microbial growth were investigated in goats. A comparison between liquid (LAB) and solid (SAB)-associated bacteria to estimate microbial N flow (MNF) from urinary purine derivative excretion was also examined. Treatments were a 2 x 2 factorial arrangement of forage type (grass hay vs. alfalfa hay) and high vs. low F:C (70:30 and 30:70, respectively). Four ruminally cannulated goats were fed, at maintenance intake, 4 experimental diets according to a 4 x 4 Latin square design. High-concentrate diets resulted in greater (P < 0.001) nutrient digestibility except for ADF. However, CP digestibility increased (P < 0.001) only for the high-concentrate diets including grass hay. Likewise, N retention, ruminal NH(3)-N concentration, and urinary excretion of purine derivatives increased (P < 0.05) with increasing concentrate in animals fed diets based on grass hay (0.23 vs. 0.13 g of retained N/g of digested N, 30.1 vs. 12.9 mg of NH(3)-N/100 mL, and 11.5 vs. 8.40 mmol/d, respectively), but not (P > 0.05) when diets included alfalfa hay. Total protozoa numbers and holotricha proportion were greater and less (P < 0.001), respectively, in high- than in low-concentrate diets. The F:C affected (P < 0.001) ruminal pH but not total VFA concentration (P = 0.12). Ammonia-N concentration was similar (P = 0.13) over time, whereas pH, VFA concentration, and protozoa numbers differed (P < 0.001) among diets. Estimated MNF was strongly influenced by using either the purine bases:N ratio obtained in our experimental conditions or values reported in the literature for small ruminants. There was a F:C effect (P = 0.006) on MNF estimated from LAB but not from SAB. The effect of F:C shifting from 70:30 to 30:70 in goat diets depends on the type of forage used. The MNF measured in goats fed different diets was influenced by the bacterial pellet (LAB or SAB). In addition, the purine bases:N ratio values found were different from those reported in the literature, which underlines the need for these variables to be analyzed directly in pellets isolated from specific animals and experimental conditions. 相似文献
5.
Marco Tulio C. Almeida Josimari R. Paschoaloto Henrique L. Perez Vanessa B. Carvalho Antonio C. Homem Junior Vanessa R. Favaro Hugh T. Blair Jane M. B. Ezequiel 《Journal of animal physiology and animal nutrition》2019,103(4):988-996
The effects of adding crude glycerine with sodium monensin or essential oils to beef cattle diets on the intake, degradability of DM and nutrients, rumen concentration of volatile fatty acids (VFA) and in vitro gas production were evaluated. Five ruminally cannulated Nellore steers were randomly assigned to a 5 × 5 Latin square design. The treatments were as follows: CONT, without crude glycerine and additives; EO, with essential oils and without crude glycerine; MON, with sodium monensin and without crude glycerine; EOG, with essential oils and crude glycerine; MONG, with sodium monensin and crude glycerine. Treatments with essential oil and sodium monensin increased the NDF and STC intake and the DM degradability. When crude glycerine was combined with either sodium monensin or essential oil, there was a reduction in DM, NDF and STC intake and an increase in DM and CP degradability of the diets. The adding crude glycerine to essential oil diets reduced the CH4 production. Sodium monensin treatments reduced DM and NDF intake and the production of total gas, CH4, total VFA and acetic acid concentration. In conclusion, the adding crude glycerine (200 g/kg DM) with either sodium monensin (0.03 g/kg DM) or essential oil (0.5 g/kg DM) can be utilized in diets for Nellore cattle without causing detrimental effects on feed intake and improving the DM degradability. 相似文献
6.
A L Goetsch Z B Johnson D L Galloway L A Forster A C Brake W Sun K M Landis M L Lagasse K L Hall A L Jones 《Journal of animal science》1991,69(6):2634-2645
Holstein steer calves (101 to 350 kg BW) consumed bermudagrass hay ad libitum without or with supplemental ground corn up to 1.0% of BW. As BW increased, total DMI increased quadratically (-2.459 + .05448 [BW]-.000073 [BW2] + .540 [corn DMI]; R2 = .83, sy.x = .655). Each kilogram of corn DM decreased bermudagrass DMI by .46 kg. Total digestible OM intake (kg) increased with BW and corn supplementation (.314 + .0127 [BW] + .441 [corn OM intake]; R2 = .79, sy.x = .444). Feed intake level accounted for approximately 2.5 times more variability in total digestible OM intake than digestion did. Corn supplementation decreased digestion of bermudagrass NDF (62.50 - 8.468 [corn DMI, % BW]; R2 = .13, sy.x = 8.121), with a similar decrease across BW. Increasing bermudagrass DMI (% of BW) decreased bermudagrass NDF digestion slightly, but variation accounted for was only 33% of that attributable to corn DMI (% of BW). Concentrations of common fiber fractions (NDF, ADF, cellulose, hemicellulose, and ADL) in bermudagrass explained very little variation in feed intake and digestion, indicating considerable influence of other factors. Bermudagrass intake and digestion were not related, and no substantial interactions were observed among steer BW, corn level, and bermudagrass composition. 相似文献
7.
An in vitro study was performed to describe the effect of addition of acid products to liquid feed on the course of fermentation. A standard grower diet with added extra lysine, methionine, and threonine was formulated. Three experimental treatments were prepared: the grower diet, ‘Control’; the grower diet + 4.8 g solid acidifier Boliflor® FA 2300S/kg liquid feed, ‘FA2300S’; and the grower diet + 2.0 g formic acid/kg liquid feed, ‘Formic’. Feed and water (1 to 2.75) were incubated in bioreactors with a volume of 1 l at 20 °C. A sample was taken after 0, 6, 24, and 48 h of incubation. After 48, 55, 72, 79, and 96 h of incubation, 90% of the mixture was removed and replaced with fresh feed and water. A sample was taken at 96, 102, and 108 h of incubation. Enterobacteriaceae counts were highest in the ‘Control’ diet and lowest in the ‘Formic’ diet at all sampling times. From 96 to 108 h of incubation, 5–19% total lysine, threonine, and methionine, and 26–42% free lysine, threonine, and methionine disappeared. Addition of 2.0 g formic acid or 4.8 g Boliflor® FA 2300S per kg pig liquid feed impeded a blooming of Enterobacteriaceae during the first hours of fermentation but had no effect on amino acid degradation. A disappearance of, mainly, free amino acids occurred during fermentation of liquid feed as prepared in the present study. 相似文献
8.
Hajime KUMAGAI Shuichiro KUMAGAE Katsunosuke MITANI Tsuyoshi ENDO 《Animal Science Journal》2004,75(3):219-224
To study the effects of supplementary probiotics on dry matter intake (DMI), daily gain (DG), digestibility, ruminal pH, and fecal microbial populations and metabolites in ruminants, two reversal trials were conducted by using four Suffolk ewes fitted with rumen cannula. The ewes were fed with oat hay and with concentrate and oat hay in the ratio of 60 : 40 in experiments 1 and 2, respectively. The ewes in the treatment groups were supplemented with 10 g/day/head probiotics for 49 days. Fresh fecal samples were collected to measure microbial populations and metabolites. On days 43–47 total feces was collected to measure digestibility, and on the days 48 and 49 ruminal pH was measured. No significant difference of DMI, DG, dry matter digestibility, and ruminal pH was observed between the control and treatment groups. The probiotics treatment tended to increase crude fiber (P = 0.11) and organic cell wall digestibility (P = 0.18). In the final week, probiotics treatment significantly increased the fecal population of Bacilli (P < 0.05) and mold (P < 0.01) in experiment 1 and 2, respectively. No significant difference of fecal VFA and ammonia concentrations between the control and treatment groups was observed. The supplementary probiotics changed population of some microbial strains in the feces and possibly the large intestine of ewes. 相似文献
9.
Thirty-two beef cows (467 kg) were individually fed native grass hay and supplement for two 14-d periods in each of 2 yr. Supplement treatments and amounts fed (kilograms/day) were negative control (NC), 0, or equal amounts of protein from soybean meal (SBM), .7; a blend of soybean meal and corn gluten feed (SBM/CGF), 1.0; or corn gluten feed (CGF) 1.6. Cows received supplement at 0645 and had ad libitum access to native grass hay from 0700 to 1130 and from 1530 to 2000. Compared with NC, all protein supplements increased (P less than .05) ruminal NH3, propionate and butyrate concentrations at 4 and 25 h postfeeding. Ruminal fluid pH, total VFA and acetate concentrations at 4 and 35 h postfeeding were not affected by supplements. All supplements increased (P less than .01) hay intake as well as hay, acid detergent fiber (ADF) and total diet dry matter (DM) digestibility. Compared to supplemental SBM, feeding CGF reduced (P less than .01) hay intake. Calculated daily intakes of metabolizable energy (ME) were 12, 17, 18, and 17 Mcal for NC, SBM, SBM/CGF and CGF, respectively. Hay intake, DM and ADF digestibility and ME intakes tended to be higher for SBM/CGF than for the average of SBM and CGF fed alone. Intakes of digestible DM and ADF were not altered by protein supplements, suggesting that intake responses were due to increased diet digestibility. Corn gluten feed appears to be an effective source of supplemental protein and energy for cows consuming low-quality roughage. 相似文献
10.
Keiko Nishimura Kazuhiro Kurosu Fuminori Terada Hitoshi Mizuguchi Shigeru Sato Shiro Kushibiki 《Animal Science Journal》2019,90(2):189-195
The effect of wood kraft pulp (KP) feed on dietary digestibility, ruminal fluid pH, rumen fermentation characteristics, and milk production performance in lactating dairy cows was examined. Four lactating dairy cows were used for the feeding experiment by the cross‐over design. The control group and KP group were set up as treatments. The control group was fed total mixed ration (TMR) (40% roughage and 60% concentrate) and the KP group was fed TMR containing 12% KP that replaced half of the rolled corn in the control diet. The dry matter intake, digestibility of the feed components, and milk yield were not significantly different between control group and KP group. The number of times that the ruminal fluid pH was below 6.1 tended to decrease in the KP group compared to the control group (p < 0.10). The acetic acid ratio in the ruminal fluid of the KP group increased compared to the control group (p < 0.05) and the propionic acid ratio in the ruminal fluid of the KP group decreased compared to the control group (p < 0.05). The acetate:propionate acid ratio was increased in the KP group compared with the control group (p < 0.05). Lipopolysaccharide levels in the ruminal fluid of the KP group tended to decrease compared to the control group (p < 0.10). Based on these results, it was indicated that the use of KP feed for lactating dairy cows induced the same rumen fermentation characteristics as those in cows given a large amount of roughage without depressing milk productivity. Therefore, KP could be a valuable feed resource substitute for grains, which would also reduce the risk for subacute rumen acidosis. 相似文献
11.
12.
A trial was conducted with 60 steers (257 kg) to determine the influence of prefast feed intake on recovery from feed and water deprivation. For 3 d, steers were fed a 35% roughage diet at 1 (LI) or 1.75% (MI) of body weight or ad libitum (AL). Steers were then deprived of feed and water for 24 h, limit-fed and watered for 24 h, deprived of feed and water for 48 h and then allowed ad libitum feed and water consumption for 2 wk. A fourth group of control steers was fed at 1.75% of body weight during the alimentation period and was not fasted. Realimentation feed intake was positively related to prefast feed intake, with the order of realimentation feed intake being AL greater than MI greater than LI (P less than .05). During deprivation, rumen volume declined (P less than .05) in AL-fed steers, but was not affected in LI and MI steers. Blood hemoglobin and serum urea-N increased during deprivation in all fasted groups. Prefast serum cholesterol levels were inversely related to prefast energy intake. During deprivation, rumen fluid total volatile fatty acid (VFA) concentrations and propionate and butyrate molar proportions declined (P less than .05) and acetate, isobutyrate and valerate + isovalerate molar proportions increased (P less than .05). Results of this study indicate that an increased prefast feed intake will provide a greater reserve of energy, water and electrolytes to the steer during deprivation and result in a shorter postfast adaptation period. 相似文献
13.
Fu‐Gui Jiang Xue‐Yan Lin Zhen‐Gui Yan Zhi‐Yong Hu Yun Wang Zhong‐Hua Wang 《Animal Science Journal》2019,90(3):382-392
The present study investigated the effects of dietary forage source (quality) and particle size on chewing activity, saliva secretion, and ruminal pH. Twelve multiparous lactating Holstein cows, four of which were ruminally cannulated, were used in a replicated 4 × 4 Latin square experimental design with a 2 × 2 factorial arrangement of treatments. Cows fed wild‐rye hay diets had longer daily eating times than cows fed oaten hay diets. Treatments had no effect on ruminating time; therefore, resting time varied inversely to eating time. Neither the rate nor the amount of saliva secretion while eating, ruminating, or resting was affected by diet, resulting in similar total daily saliva secretions across treatments (231 L/day). Total volatile fatty acids (VFAs) in the ruminal fluid from animals fed oaten hay diets were higher than those from animals fed wild‐rye hay diets; further, VFAs increased with decreasing forage particle size (FPS). Consistent with elevated VFA concentrations, reducing FPS and including oaten hay in the diet decreased mean ruminal pH and increased the daily time of ruminal pH under 5.8. Results of this study suggest that forage source and particle size affect ruminal pH might be via variations in VFA production rather than increased salivary recycling of buffering substrates. 相似文献
14.
Mohammed N Lila ZA Ajisaka N Hara K Mikuni K Hara K Kanda S Itabashi H 《Journal of animal physiology and animal nutrition》2004,88(5-6):188-195
The objective of this study was to evaluate the effects of different concentrations of l-malate (0, 5, 10 and 20 mm), 2-iodopropane-beta-cyclodextrin complex (CD-IP) (0, 0.1, 0.2 and 0.4 mm) and a combination of malate (10 and 20 mm) plus CD-IP (0.2 and 0.4 mm) on methane production from corn starch. Ruminal fluid was collected from dairy cows, mixed with phosphate buffer (1 : 2) and incubated (30 ml) anaerobically at 38 degrees C for 6 h with or without additives. Fermentation of corn starch in the presence of malate resulted in an increase (p < 0.05) in pH of the medium, total volatile fatty acid (VFA), total gas production and molar proportion of propionate. Acetate and ammonia-N concentration were unchanged. Methane production was decreased (p < 0.05) (15.5 to 20.4%). Addition of CD-IP in corn starch resulted in an increase (p < 0.05) in total VFA and molar proportion of propionate. Acetate, pH and ammonia-N concentration of the medium were decreased (p < 0.05). Total gas production was unchanged. Methane production was decreased (p < 0.05) (25.2 to 97.1%) and hydrogen production was increased (p < 0.05). Addition of l-malate to CD-IP resulted in an increase (p < 0.05) in total VFA, total gas production and molar proportion of propionate. Acetate and ammonia-N concentration were decreased (p < 0.05). No effects were observed on medium pH. Methane production was decreased (p < 0.05) (49.5 to 97.1%). Hydrogen production was also decreased (p < 0.05) (54.5 to 64.1%) compared with those of CD-IP alone. Therefore, these additives may be used as supplements to inhibit methane production as well as to improve rumen fermentation and animal performance. 相似文献
15.
The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers. 相似文献
16.
17.
A quantitative method of analysis for 2-aminoethylphosphonic acid (AEP) was developed using reverse-phase HPLC. The detection limit for AEP was 15 nM, and the detector response (peak area) was linear from AEP levels up to 100 microM (R = .99). Mean recovery of AEP added to strained ruminal fluid from faunated sheep was 98.2%. When AEP was added to a fermentation mixture at a concentration of 22.6 micrograms/ml, 78% disappeared during a 24-h incubation. 2-Aminoethylphosphonic acid was readily detected in preparations of mixed ruminal ciliate protozoa as well as in mixed and pure strains of ruminal bacteria, feedstuffs, and ruminal fluid and duodenal digesta from defaunated sheep. The occurrence of AEP in feed and bacterial hydrolysates was confirmed by organic phosphorus analyses. The concentration of AEP in mixed ruminal protozoa was three times greater than its concentration in mixed ruminal bacteria (4,304 vs 1,383 micrograms/g DM, respectively). The AEP values for pure ruminal bacterial cultures ranged from 733 micrograms/g DM in Bacteroides succinogenes B21a to 1,166 micrograms/g DM in Butyrivibrio fibrisolvens H17c. Ruminal fluid and duodenal digesta from defaunated sheep contained AEP concentrations of 30 micrograms/ml and 90 micrograms/g DM, respectively. The concentration of AEP in feedstuffs ranged from 25 micrograms/g DM in wheat straw to 263 micrograms/g DM in oats. Because AEP occurrence is not limited to ruminal ciliate protozoa, it is of little value as a marker for protozoal presence in or passage out of the rumen. 相似文献
18.
X. H. Zhao C. J. Liu Y. Liu C. Y. Li J. H. Yao 《Journal of animal physiology and animal nutrition》2013,97(6):1161-1169
A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent–soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15‐day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia‐N and increased the growth of the solid‐associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. 相似文献
19.
20.
Effects of bacterial direct-fed microbials on ruminal fermentation,blood variables,and the microbial populations of feedlot cattle 总被引:10,自引:0,他引:10
A study was conducted to determine whether bacterial direct-fed microbials (DFM) could be used to minimize the risk of acidosis in feedlot cattle receiving high concentrate diets. Six ruminally cannulated steers, previously adapted to a high concentrate diet, were used in a double 3 x 3 Latin square to study the effects of DFM on feed intake, ruminal pH, and ruminal and blood characteristics. Steers were provided ad libitum access to a diet containing steam-rolled barley, barley silage, and a protein-mineral supplement at 87, 9, and 4% (DM basis), respectively. Treatments were as follows: control, Propionibacterium P15 (P15), and Propionibacterium P15 and Enterococcus faecium EF212 (PE). The bacterial treatments (10(9) cfu/g) plus whey powder carrier, or whey powder alone for control, were top-dressed once daily at the time of feeding (10 g/[steer/d]). Periods consisted of 2 wk of adaptation and 1 wk of measurements. Ruminal pH was continuously measured for 6 d using indwelling electrodes. Dry matter intake and ruminal pH (mean, minimum, hours, and area pH < 5.8 or < 5.5) were not affected by treatment (P > 0.05). However, supplementation with P15 increased protozoal numbers (P < 0.05) with a concomitant increase in ruminal NH3 concentration (P < 0.01) and a decrease in the number of amylolytic bacteria (P < 0.05) compared with the control. Streptococcus bovis, enumerated using a selective medium, was numerically reduced with supplementation of PE. Although blood pH and blood glucose were not affected by DFM supplementation, steers fed PE had numerically lower concentrations of blood CO2 than control steers, which is consistent with a reduced risk of metabolic acidosis. Although the bacterial DFM used in this study did not induce changes in DMI or ruminal and blood pH, some rumen and blood variables indicated that the bacterial DFM used in this study may decrease the risk of acidosis in feedlot cattle. 相似文献