首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Redflower ragleaf (Crassocephalum crepidioides) is a weed, as well as a minor vegetable, in tropical and subtropical regions of the world. The influence of environmental factors and seed conditions on the germination and emergence of redflower ragleaf have been evaluated in order to help understand its distribution and to develop effective management strategies. The seeds germinated at a constant temperature in the range of 10–30°C and reached a maximum at 15–20°C. The highest germination rate was recorded at an alternating temperature of 20/15°C (day/night). The seeds germinated over a wide pH range (2–12), with the highest germination rate at between 4 and 10. Germination under saturated and flooded conditions was also high. The germination of seeds from opened (mature) capitula was significantly higher than from partially opened or unopened capitula. The germination of seeds without a pappus was significantly higher than for seeds with a pappus. The germination rate of 1 year old seeds decreased drastically when compared to that of freshly harvested seeds. The seedling emergence rate was ~63% for those seeds placed on the soil surface, but no seedling emerged from a depth of ≥1 cm. These results indicate that redflower ragleaf seeds can germinate in various environmental conditions, but that the percentage that germinates will be different in different environments. Regeneration could be effectively prevented by at least a 1 cm soil covering or by destroying the plant before the capitula open. In contrast, freshly harvested seeds from opened capitula should be sown on the soil surface when redflower ragleaf is to be cultivated as a vegetable.  相似文献   

2.
The effects of maternal salinity and light incubation on the salinity tolerance of the facultative halophyte Anabasis setifera during their germination stages were assessed. Seeds were collected from non-saline habitats in Egypt and saline habitats in the United Arab Emirates(UAE). The seeds of the two populations were germinated in 0, 100, 200, 400, 600 and 800 m M Na Cl, and incubated at 25°C/15°C in both 12-h light and 12-h darkness regimes and continuous darkness. Significantly more seeds germinated in the Egyptian population than in the UAE population. Salinity tolerance was significantly greater with the Egyptian population than with the UAE population, especially under the conditions of higher salinities. The difference in salinity tolerance between the seeds of two populations was attributed to their seed mass. In addition, germination was significantly faster for the Egyptian population than for the UAE population. Most of the saline treated seeds were able to recover their germination when transferred to distilled water, but this depended on their maternal salinity and light incubation. Recovery from higher salinities was significantly better for the seeds under darkness than for those under light in the UAE population, but the reverse was true for the seeds in the Egyptian population. The higher salinity tolerance for the A. setifera seeds from the non-saline Egyptian population and the lower salinity tolerance for the seeds from the saline UAE population cannot explain their natural distribution. Further studies about other possible roles, such as levels of different promoting and inhibiting phytohormones, are needed to understand the importance of salinity as an environmentally induced maternal effect.  相似文献   

3.
Seed germination is a key transitional stage in plant life cycle and is strongly regulated by temperature and light. Therefore, research on the effects of temperature and light on seed germination is extremely meaningful for vegetation restoration, especially in desert ecosystems. Seeds of 28 ephemeral plants collected from the Gurbantunggut Desert of China were incubated at different temperatures (5°C/1°C, 15°C/5°C, 20°C/5°C, 25°C/10°C and 30°C/15°C) in 12-h light/12-h darkness or continuous darkness regimes, and the responses of seed germination to temperature and light and the germination speed were studied in 2016. Results showed that seed germination percentage of the 28 ephemeral plants significantly differed to temperature and light. We classified the studied plants as the following groups based on their responses to temperature: 1 low temperature responsed plants, 12 moderate temperature responsed plants, 7 high temperature responsed plants, 4 non-responsed plants and 5 plants of no germination. It should be noted that Corispermum lehmannianum Bunge is sensitive to both moderate and high temperatures. There were 4 groups of plant in response to light, i.e., 7 light responsed plants, 10 dark responsed plants, 6 light non-responsed plants and 5 plants of no germination. Based on seed germination speed of the 28 ephemeral plants, we divided them into 4 patterns of germination, i.e., very rapid, moderately rapid, moderate and slow. Combining variations of temperature, precipitation and sand dune types in the study area, we suggested that very rapid and moderately rapid germinated plants could be used to moving sand dunes in early spring during vegetation restoration, moderate germinated plants could be used to semi-fixed sand dunes in late autumn, and slow germinated plants could be used to sand plain in summer. Thus, seedling establishment and vegetation restoration would be improved by considering seed germination characteristics of these ephemeral plants in the Gurbantunggut Desert, China.  相似文献   

4.
光对入侵性植物黄顶菊种子萌发及植株生长的影响   总被引:2,自引:0,他引:2  
张米茹  李香菊 《植物保护》2010,36(1):99-102
入侵性杂草黄顶菊原产南美,2003年在我国河北省衡水湖首次报道。采用室内控制试验,对光与黄顶菊种子发芽及植株生长的关系进行了研究。结果表明:黄顶菊种子属光敏型,种子需要光刺激才能发芽。但其萌发对光强要求不严,1 000 lx光照强度30 ℃培养6、12 h和24 h转入暗培养,5 d后黄顶菊种子发芽率分别为67.0%、88.0%和95.8%。黄顶菊种子出苗与光照关系密切,播种在土壤表面、0.5 cm和1 cm深土层的种子出苗率分别为96.0%、8.0%和0。随光照强度减弱,植株的生物量及繁殖力显著降低。黄顶菊在35%自然光强下生长时其生物量、结实数比自然光强下分别降低55.0%和55.6%。上述结果为预测黄顶菊的适生区域及制订有效的防除策略提供了科学依据。  相似文献   

5.
Germination of Setaria chevalieri caryopses   总被引:3,自引:0,他引:3  
Germination studies were made on Setaria chevalieri caryopses (seeds). The seeds imbibed readily upon moist incubation. An after-ripening period which followed a cyclic patlern was necessary for maximum germination. Freshly harvested seed germinated in the presence of light, but only very sporadically in the dark. The germination of dark incubated seed was improved if the seeds were subsequently exposed to light. This photodormancy became less pronounced with dry storage. Treatment with red light increased germination. but was reversed by far-red light suggesting that a phytochrome system operates in the seeds. Sodium azide treatments did not stimulate germination in the dark but were effective in the presence of light.  相似文献   

6.
With the aim to investigate if the halophyte Halothamnus iraqensis Botsch. can be suitable for re-vegetation and remediation of salt-affected lands, this study evaluated(1) the effects of photoperiod, thermoperiod, storage period and wings' presence on its seed germination, and(2) the ability of its seeds to have successful germination recovery after salt stress. Germination tests in different photoperiods(12 h light/12 h darkness and total darkness) and thermoperiods(15℃/20℃ and 20℃/25℃) were conducted for seeds collected in 2012, 2013, 2014, 2015 and 2016. The seeds collected in 2016 were sown under different salinity levels(0, 100, 200, 400 and 600 m M Na Cl) to assess the salinity tolerance during the germination. Wings' presence highly inhibited seed germination of this species in both photoperiods and thermoperiods under all salinity level treatments. In addition, the germination recovery occurred well when seeds were deprived of their wings. The photoperiod of 12 h light/12 h darkness and the thermoperiod of 15℃/20℃ were the best conditions for seed germination. Germination percentages of H. iraqensis seeds decreased with the increasing storage duration, especially after three years of the collection. In addition, H. iraqensis seeds were able to germinate under different salinity levels, and their germination percentages decreased with increasing salinity levels. H. iraqensis seeds have the ability to recover their germination after alleviating the salt stress, irrespective of photoperiod, highlighting the halophilous character of this species.  相似文献   

7.
Spring-produced seeds of Lamium amplexicaule L. were buried in pots of soil in an unheated glasshouse in June 1978, and at 1–2-month intervals, for 27 months, they were exhumed and tested for germination in light and darkness at temperatures simulating those in the habitat from early spring to late autumn. Freshly-matured seeds were dormant, but by autumn 85% or more germinated in light at 15/6, 20/10, 25/15 and 30/15°C but only 7% or less in darkness. During late autumn and winter germination in light decreased at 25/15 and 30/15 °C but not at 15/6 and 20/10 °C, and germination in darkness increased at 15/6 and 20/10 °C. During late winter and early spring germination in light at 15/6 and 20/10 °C decreased, and seeds lost the ability to germinate in darkness. By the second autumn of burial, seeds germinated to near 100% in light at 15/6 to 30/15 °C and to 10–25% in darkness at 15/6 and 20/10 °C. The cycle of germination responses was repeated during the second winter and spring and the third summer of burial. Autumn-produced seeds were dormant when buried in November 1979, but by spring they germinated to 81 and 36% at 15/6 and 20/10 °C, respectively, in light. These seeds afterripened further during summer. The consequence of seasonal changes in germination responses is that (1) seeds can germinate in the habitat in late summer, autumn and spring but not in early- to mid-summer or in late autumn and winter and (2) during both germination seasons, seeds produced during the previous spring(s) and/or autumn(s) can germinate.  相似文献   

8.
Seasonal changes in the germination of buried seeds of Monochoria vaginalis   总被引:4,自引:0,他引:4  
CHEN  & KUO 《Weed Research》1999,39(2):107-115
This study investigates the seasonal variation of germination ability of buried seeds of Monochoria vaginalis (Burm.f.) Presl var. plantaginea Solms. The field-collected seeds were buried in a flooded or an upland field and then exhumed monthly. The exhumed seeds were germinated under four temperature regimes. The seeds exhumed from the flooded soil were dormant at the beginning of burial and proceeded into a conditional dormancy/non-dormancy/conditional dormancy cycle throughout the remaining period of the experiment. The seeds exhumed monthly from the non-flooded soil exhibited an annual dormant cycle, which is dormancy/conditional dormancy/non-dormancy/conditional dormancy/dormancy. At day and night temperatures of 25/20 °C, the exhumed seeds from both the flooded and the upland soil resembled each other in terms of seasonal variation of the germination percentage. In September and October, more seeds exhumed from upland soil failed to germinate under higher temperature than from flooded soil. Strictly avoiding exposure to light during seed exhuming and seed testing prevented the seeds from germinating. A short exposure of the exhumed seeds to light during preparation promoted dark germination when the seeds were at the non-dormant stage. The potential implications of our results for weed management strategies in rice production are discussed.  相似文献   

9.
Several laboratory and glasshouse experiments were conducted to assess seed germination, seedling establishment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.) influenced by temperature and light regimes, and chemical media. Wrinklegrass was a positively photoblastic species, and seed germination was temperature‐dependent and light‐mediated. Seeds soaked in distilled water for 24 h, or oven‐dried at the respective temperature regimes of 15, 20, 25, 30, 35, or 40°C prior to treatment in distilled water and incubated in darkness, failed to germinate. Likewise, no germination prevailed when the seeds were exposed to similar temperature regimes and treated with 0.2 m KNO3, 5% H2O2 or 0.01 m HNO3, and incubated under continuous darkness. Seeds treated with 5% H2O2 at 30°C, or oven‐dried and treated with 0.01% M HNO3 at 35°C registered 10 and 20% germination. Approximately 75 and 90% of the light‐exposed seeds for all treatments germinated in the first three and six days at 25°C. No germination occurred at 15°C in the first three days after treatment. Seeds subjected to 40°C for six days after treatment recorded 36% germination. The optimum temperatures for seed germination were 25–30°C. Seed drying and soaking treatments widened the windows of the optimal temperatures for wrinklegrass germination. The acidic media of KNO3, H2O2 or HNO3 favored seed germination. Less than 5% of seed germination occurred with burial or water inundation at depths exceeding 2 cm. Seed burial or inundation at ≥2 cm depths inhibited seed germination. Seeds sown onto moist paddy soils registered ca. 50% germination. Free‐floating seeds on the water surface registered ca. 98% germination within the first six days after seeding. The mean number of seedlings that survived was inversely proportional to water depths, with close to 100% mortality at the 14 cm depths of inundation. Both plant height and seedling survival were linearly proportional to the amount of root mass of seedlings which penetrated the soil. The weed was a prolific seed producer (ca. 6000 seeds/genet or 18 000 seeds/genet per year). The vegetative and reproductive efforts of each wrinklegrass plant registered values of 0.68 and 0.32, respectively.  相似文献   

10.
Italian ryegrass ( Lolium multiflorum Lam.) is an exotic winter annual weed that recently has seriously infested wheat fields in central Japan. To understand the influence of tillage systems on the germination ecology and seedbank dynamics of naturalized Italian ryegrass, we compared the fate of the seeds that were after-ripened in the soil with that of the seeds on the soil surface, and then examined the germination characteristics of the seeds retrieved from both treatments by germination tests in both a light/dark (12 h photoperiod) condition and in constant darkness. The seedling emergence was greater initially for the seeds after-ripened on the soil surface than for the seeds in the soil. The component of emergent seeds after-ripened on the soil surface increased as time passed during the summer, whereas that of emergent seeds in the soil scarcely increased. This contrasting emergence was, in part, attributable to the ability of the seeds to germinate at higher temperatures in the light/dark condition than in constant darkness. These results suggest that untilled systems, which leave many seeds on the soil surface, might promote the rapid depletion of Italian ryegrass seeds through germination before wheat sowing in early winter. In contrast, seed burial by tillage might inhibit the germination of the seeds and form a large transient seed bank available to germinate during the wheat-growing season.  相似文献   

11.
Understanding variability in seed germination among populations is essential for planning an effective germplasm collection for restoration and conservation purposes.The knowledge of germination and dormancy patterns among populations of desert grasses is crucial for determining the potential of the species and populations to be used for restoration and conservation as well as forage production.Variability in seed germination of Panicum turgidum Forssk and Pennisetum divisum(Gmel.)Henr.in the desert of Kuwait was evaluated in different populations in May 2017.Experiment of seed germination(25 seeds and 4 replicates)was conducted for each population at night/day temperatures of 15℃/20℃and 20℃/30℃under the following light condition:continuous darkness or 12 h/12 h light/dark.Results showed that seed masses of both species strongly varied according to their seed provenances,and both species produced heavier seeds in population with a higher soil electrical conductivity.Seed germination percentage considerably varied between two species,and the variation in P.turgidum was greater(17%–49%)than that of P.divisum(72%–93%).Germination percentage in P.turgidum was greater at high temperature(20℃/30℃)than at low temperature(15℃/20℃).However,temperature regimes had no effect on germination percentage of P.divisum seeds.Mean germination time of both species exhibited significant inter-population variability.This result is especially relevant to assure the selection of the best population of each species and the regeneration success of the species.Besides this,inter-population variability also provides valuable information for enhancing our understanding of the mechanisms that regulate seed germination and how they might be related to seed provenance.  相似文献   

12.
Senecio vulgaris is a common weed of agriculture in the UK, but is also of food value to invertebrates and birds. Thus, it may be beneficial to retain it within agricultural ecosystems to enhance overall biodiversity. A less intensive approach to weed management requires a sound understanding of weed population dynamics so as to avoid unacceptable population growth. Experiments were carried out in 2003 and 2004 to assess seed production, and subsequent germination, by S. vulgaris growing alone, in winter wheat, or in winter field beans. Plant and seed samples were collected during May and June. There was a strong allometric relationship between capsule number and plant weight, irrespective of the year or the presence of crop competition. Numbers of seeds/capsule varied slightly from 51 to 66 seeds per capsule. Plants growing alone were estimated to produce 8471 to 12 887 seeds per plant, whilst those in wheat only 923 to 2156. Germination tests in Petri dishes in incubators showed that virtually all seeds were viable and germinated under daily alternating light:dark conditions within 10 days. Seeds in continuous dark germinated less readily, reaching only 30% after 21 days. On the basis of this and other published work, it would appear that the retention of S. vulgaris in arable fields will not pose a major threat to the long-term viability of crop production.  相似文献   

13.
Germination of freshly harvested seeds of Commelina benghalensis L. varied from 0–3% for small aerial seeds, 20–35% for large aerial seeds and from 33% for small underground seeds to 90% for large underground seeds. Innate dormancy of all seed types was completely overcome by clipping the seed coat. Exposure to 90°C dry heat for 2 h was also effective in increasing germination of the three strongly dormant seed types. Optimum temperature for germination varied with the different seed types. Periods of likely major weed infestation from the four seed types were predicted using soil temperature data. Exposure to light increased germination but was not essential and underground seeds responded more to light than aerial seeds. Optimum depth of emergence for the four seed types was from 0 to 50 mm and there was a positive correlation between maximum depth of emergence and seed weight.  相似文献   

14.
Incubation in gibberellin A3 (GA3) or a 1 h immersion pretreatment with 800 mm sodium hypochlorite (NaOCl) both promoted 20% germination of freshly harvested dormant wild oat (Avena fatua L.) seeds that had been imbibed on water for 10 days. GA3 immediately following 1 h NaOCl immersion pretreatment induced maximum germination. Moist storage (MS) after NaOCl immersion pretreatment resulted in less germination on transference of the seeds to GA3, indicating that GA3 responsiveness was lost during MS. These seeds required a repeal NaOCl immersion plus a GA3 treatment to induce maximum germination. However, GA3 still gave maximum germination if the seeds were stored dry after initial NaOCl immersion. Seeds with water-induced dormancy responded similarly to freshly harvested dormant seeds when treated with NaOCl, MS, or GA3. Seeds afterripened a longer time had a reduced requirement for exogenous GA3 in the breaking of dormancy indicating that the depth of the GA3-dependent dormancy decreased with duration of after-ripening. Dormant dehulled seeds with a brief NaOCl pretreatment germinated about 30% on water but gave maximum germination when incubated on GA3, an effect that persisted even after 21 days of MS. This effect, coupled with the previous findings, suggested that the NaOCl treatment weakened membrane barriers of the seed coat through a scarification-like effect, similar to the effects of piercing and acid immersion, and thereby produced increased sensitivity to the presence of GA3. The loss of responsiveness to GA3 in NaOCl-treated seeds during MS may involve the restoration of integrity of the seed coverings, a process occurring only in the imbibed state, and, presumably, most rapidly in freshly harvested, intact seeds.  相似文献   

15.
Dormancy release was studied in four populations of annual ryegrass (Lolium rigidum) seeds to determine whether loss of dormancy in the field can be predicted from temperature alone or whether seed water content (WC) must also be considered. Freshly matured seeds were after‐ripened at the northern and southern extremes of the Western Australian cereal cropping region and at constant 37°C. Seed WC was allowed to fluctuate with prevailing humidity, but full hydration was avoided by excluding rainfall. Dormancy was measured regularly during after‐ripening by germinating seeds with 12‐hourly light or in darkness. Germination was lower in darkness than in light/dark and dormancy release was slower when germination was tested in darkness. Seeds were consistently drier, and dormancy release was slower, during after‐ripening at 37°C than under field conditions. However, within each population, the rate of dormancy release in the field (north and south) in terms of thermal time was unaffected by after‐ripening site. While low seed WC slowed dormancy release in seeds held at 37°C, dormancy release in seeds after‐ripened under Western Australian field conditions was adequately described by thermal after‐ripening time, without the need to account for changes in WC elicited by fluctuating environmental humidity.  相似文献   

16.
For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of -0.05, -0.16, -0.33, -0.56, -0.85 and -1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (-0.05 and -0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at -0.85 and -1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.  相似文献   

17.
Seeds of Poa annua from original collections in Louisiana, Maryland and Wisconsin were grown together in Louisiana over a 3-year period. The freshly harvested seeds and samples stored in moist soil at 30°C were tested for germination at a range of temperatures to compare dormancy and germination characteristics. Seeds of the Louisiana population were dormant over the germination temperature range of 5–25°C, and imbibed storage for 2 weeks did not break dormancy. Freshly harvested seeds of the Maryland population germinated well (78%) at 10°C. With 1 week of imbibed storage at 30°C, germination was good over the range from 5 to 15°C and near 50% at 20°C. Storage for 2 weeks had little further effect. Freshly harvested seeds of two Wisconsin populations germinated above 50% throughout the range of temperatures, and imbibed storage for 2 weeks at 30°C had no effect on germination. The variations in the dormancy of freshly harvested seeds and the varying responses of dormancy breaking from storing imbibed seeds at 30°C suggests that these populations have adapted to avoid high summer temperatures in Louisiana and Maryland but to grow as a summer annual in Wisconsin.  相似文献   

18.
短毛柽柳(Tamarix karelinii)是分布于盐渍化沙地和重盐碱地的灌木。为了阐明短毛柽柳种子的萌发特性,设置不同的温周期、储藏时间和盐分梯度,采用室内控制实验研究这些因子对种子萌发的影响。结果表明:1短毛柽柳种子在4个温周期中均具有高的萌发率,并且温周期温度越高,种子的萌发速率越快。2室温贮藏1个月显著提高种子的萌发速率,在贮藏6个月内,种子的最终萌发率都能达到100%。3≤0.8 mol·L~(-1)的Na Cl溶液对种子的最终萌发率无显著影响,而≥1.0 mol·L~(-1)的溶液则抑制种子的萌发,且随着浓度的增加,种子的最终萌发率呈下降趋势,直至为0。将1.0~4.0 mol·L~(-1)溶液中没有萌发的种子,转移至蒸馏水继续培养后,仍有71.67%~28.00%的种子恢复萌发率,表明种子具有较强的耐盐性。对短毛柽柳种子萌发特性的研究,为短毛柽柳的种苗培育提供基础资料。  相似文献   

19.
Seeds of Setaria glauca (L.) Beauv. buried in soil and exposed to natural temperature cycles exhibited seasonal changes in temperature, but generally not light; dark requirements for germination. Seeds were dormant at maturity in late September and October (autumn), and during burial from October to January they entered conditional dormancy, germinating up to ≥60% in light and darkness at daily thermoperiods of 25/15,30/15 and 35/20^C by January. During burial from February to May or June, seeds became non-dormant and germinated up to 68–100% in light and darkness at 15/6,20/10,25/15,30/15 and 35/20^C in May or June. At maximum yearly temperatures in June or July–August, 65–89% of the seeds entered conditional dormancy (germinating at 30/15 and 35/20, but not at 15/6,20/10 and 25/15^C), and the others entered dormancy (not germinating at any thermoperiod). Thus, most buried seeds had an annual conditional dormancy/non-dormancy cycle, but some had an annual dormancy/non-dormancy cycle. Except for seeds buried in 1990 that lost the ability to germinate in darkness at all thermoperiods the first summer of burial, seeds incubated in light and in darkness exhibited the same patterns of seasonal changes in germination responses. Although conditionally dormant and non-dormant seeds germinated to high percentages in darkness in Petri dishes, seedlings were found only in bags of seeds exhumed in April and May 1983, indicating that some factor(s) associated with the burial environment other than darkness prevented germination of buried seeds.  相似文献   

20.
The timing of seed germination may determine the success of a weed species in an agroecosystem, and its expression is modulated by environmental conditions, but also by seed physiology and anatomy. The aims of this study were to investigate the roles of light, pericarp, dry storage and cold stratification on seed dormancy and germination in feral radish, a troublesome agricultural weed in temperate zones of the Americas that reduces crop yields. To this end, we used isolated intact pods and extracted seeds to test germination over time under contrasting temperature, light and storage conditions. Here, we showed that fresh seeds were non‐dormant, but that light and the presence of the pericarp reduced germination, especially under low temperatures. The pericarp reduced the final water content absorbed by seeds inside pods and decreased absorption/dehydration rates. The pericarp showed several small lignified cell layers in the endocarp, and x‐ray images displayed the lack of space between the partially embedded seed and the endocarp. Dry storage and cold stratification were ineffective in breaking the dormancy imposed by the pericarp. The apparent requirement for darkness and the mechanical restriction of the pericarp may have the potential to induce dormancy, spreading the timing of seed germination over a more extended period and hindering the control of feral radish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号