首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 109 毫秒
1.
2.
Glomerula filtration rate (GFR), plasma creatinine concentration (CR), and plasma urea nitrogen concentration (BUN) were measured in 129 adult dogs with reduced renal mass. A preliminary examination of the relationship between CR and GFR was conducted, and the inverse model (GFR vs. 1/CR) was chosen for further evaluation. The slope of the regression of GFR on 1/CR which was computed from actual data was not statistically different from a theoretical regression line generated from the clearance equation.
Evaluation of subsets of the population revealed no significant difference between male ( n = 69) and female (n = 60) dogs on the slope of the regression equations. Diets differing in protein concentration (16% protein, n = 35: 21% protein, n = 75: 32% protein, n = 19) did not cause a significant difference in the slope of the regression equations.
The regression equation and the confidence intervals generated in this study may be used to predict a probable range of GFR values from CR in individual dogs. Such values may be useful in adjusting drug dosages in dogs with renal disease. However, since the derived equation did not differ significantly from the theoretical inverse relationship between GFR and CR, it remains to be established whether the equation is advantageous.  相似文献   

3.
OBJECTIVE: To investigate renal function in clinically normal dogs when awake and during anesthesia with medetomidine; xylazine, ketamine, and halothane (XKH) combination; or propofol. ANIMALS: 10 adult female Beagles. PROCEDURES: At intervals of 15 days, dogs were administered medetomidine (0.05 mg/kg, IV); XKH combination (xylazine [1 mg/kg, IV], ketamine [5 mg/kg, IV], and halothane [1% end-tidal concentration]); or propofol (6 mg/kg, IV) to induce anesthesia or no treatment. Glomerular filtration rate was assessed on the basis of renal uptake (RU; determined via renal scintigraphy) and plasma clearance (CL) of technetium 99m-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA). RESULTS: In awake dogs, mean +/- SEM RU was 9.7 +/- 0.4% and CL was 3.86 +/- 0.23 mL/min/ kg. Renal uptake and CL of (99m)Tc-DTPA were not significantly modified by administration of XKH (RU, 11.4 +/- 0.9%; CL, 4.6 +/- 0.32 mL/min/kg) or propofol (RU, 9.7 +/- 0.3%; CL, 3.78 +/- 0.37 mL/min/kg). Half-life elimination time of plasma (99m)Tc-DTPA decreased significantly in XKH-anesthetized dogs, compared with the value in awake dogs (14.4 minutes and 28.9 minutes, respectively). However, glomerular filtration rate was significantly decreased by administration of medetomidine (RU, 3.9 +/- 0.1%), and the time to maximum kidney activity was significantly increased (867 +/- 56 seconds vs 181 +/- 11 seconds without anesthesia). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that anesthesia with propofol or an XKH combination did not alter renal function in healthy Beagles, but anesthesia with medetomidine decreased early RU of (99m)Tc-DTPA.  相似文献   

4.
5.
Renal mass was surgically reduced in 78 dogs by uninephrectomy or by combined renal infarction and uninephrectomy. Renal clearance of inulin and renal clearance of exogenous creatinine were determined simultaneously, and the creatinine to inulin clearance (C/I) ratio was calculated. Clearance procedures were performed 2 to 3 months after reduction of renal mass, and were repeated at intervals thereafter. Overall, the C/I ratio was 1.008 +/- 0.007 for 192 determinations, with a highly significant correlation (R2 = 0.994, P less than 0.0001) between creatinine clearance and inulin clearance. There was no significant effect of gender of dogs, time after partial renal ablation, or dietary protein intake on C/I ratios. Degree of renal ablation did not affect C/I ratios. The results indicated that exogenous creatinine clearance is a valid measure of glomerular filtration rate in both male and female dogs with reduced renal mass.  相似文献   

6.
Glomerular filtration rate (GFR), renal plasma flow (RPF), and the endogenous creatinine clearance (CCr) rate were determined in 13 captive cheetahs, Acinonyx jubatus jubatus (seven females and six males, 1.5-7.5 yr of age, x = 5.02 yr), during general anesthesia with Telazol and isoflurane by measuring the urinary clearances of inulin, para-aminohipppuric acid, and endogenous creatinine, respectively. Methods to determine GFR, RPF, and endogenous CCr in captive cheetahs were evaluated, and the relationship between GFR and CCr for this species was determined. The GFR and the RPF were stable during the procedure, with mean values of 1.59+/-0.17 ml/min/kg body weight and 5.12+/-1.15 ml/min/kg body weight, respectively. Although the mean value for CCr (1.47+/-0.20 ml/min/kg body weight) was significantly less than the corresponding value for GFR, the mean difference (0.11+/-0.02 ml/min/kg weight) between the two measurements was slight, and the values were highly correlated (R2 = 0.928; P < 0.0001). The measurement of CCr in cheetahs should provide a reliable estimate of GFR, facilitating the early detection of renal disease in this species.  相似文献   

7.
8.
9.
Established renal function tests for the quantitative determination of the glomerular filtration rate (GFR) in small animals by means of an exogenous clearance marker like creatinine are based on the intravenous or subcutaneous administration of the marker. In order to simplify performing the test, the suitability of the peroral administration of the marker substance was tested. Exogenous creatinine was administered to 17 Beagle dogs successively by the peroral (dose: 4 g/m2 BSA) and the subcutaneous route (dose: 2 g/m2 BSA). Both routes were tested sequentially in fasted and fed animals. In addition to the peroral administration of creatinine, the absorption marker D-Xylose (dose: 0.5 g/kg body weight) was given per os. Pharmacokinetic parameters were calculated based on serum concentration--time data of both markers. Maximum serum concentrations of the exogenous creatinine (C(max) = 1284 +/- 173 micromol/l) were observed 92 +/- 19 min post-dose (t(max)) in fasted dogs after peroral administration of creatinine. C(max) (956 +/- 209 micromol/l) and t(max) (67 +/- 13 min) were statistically significantly reduced in fed animals. The exogenous plasma clearance of creatinine was about 1/3 lower in fasted animals (94 +/- 15 ml/min/m2) than in fed ones (134 +/- 28 ml/min/m2). The apparent terminal disposition half-life of the exogenous creatinine showed mean values of about 170 min (fasted) and 200 min (fed). After peroral administration of D-Xylose, fasted animals showed higher C(max) (3.9 +/- 0.99 mmol/l) and t(max) values (60 +/- 18 min) than fed dogs (C(max) = 2.2 +/- 0.55 mmol/l, t(max) = 40 +/- 15 min). C(max) and t(max) did not differ between fed and fasted dogs after subcutaneous administration of creatinine. Creatinine clearance was again higher in fed (124 +/- 12.8 ml/min/m2) than in fasted dogs (104 +/- 9.0 ml/min/m2) after subcutaneous administration of the marker. The terminal disposition half-live was, however, similar with about 130-140 min. The route of administration (peroral vs. subcutaneous) did not influence the calculated clearance (no statistical significance when p < 0.01 is required). Creatinine in a dose of 4 g/m2 BSA can be administered by the peroral route of administration for assessing the GFR. For the quantitative determination of GFR standardized condition are required, i.e. animals have to be fasted for > or = 6 hours.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号