首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Despite increasing knowledge of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) as allelochemicals involved in the defense of wheat against pests, relatively little is known about their levels in the rhizosphere and interactions with the soil microbial community. This study quantified DIMBOA and MBOA in the wheat rhizosphere and analyzed the soil microbial community structure. MBOA rather than DIMBAO was found in the wheat rhizosphere, and its concentration varied with cultivars, plant densities, and growth conditions. Wheat could detect the presence of competing weeds and respond by increased MBOA in the rhizosphere. There was a linear positive relationship between the MBOA level in the wheat rhizosphere and soil fungi/bacteria. When DIMBOA was applied to soil, yielding MBOA increased soil fungi. There were different phospholipid fatty acid (PLFA) patterns in soil incubated with DIMBOA and MBOA. These results suggested that DIMBOA and MBOA could affect the soil microbial community structure to their advantage through the change in fungi populations.  相似文献   

2.
3.
The hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the benzoxazolinones benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) have been identified as important allelochemicals in wheat. This study examines the possibility of exploiting the allelopathic properties of wheat as a weed control strategy by cultivating wheat as a precrop and incorporating plant residues into the soil before the next crop is sown. Different wheat varieties were cultivated in field plots during two seasons in both conventional and organic farming systems. Plants were sampled at various growth stages, and their contents of DIMBOA, MBOA, and BOA were determined by chemical analyses. The wheat samples were incorporated into soil, and the effect on germination and growth of 12 different weed species was examined in pot experiments under controlled conditions. In some cases significant effects were obtained, but the results were inconsistent and the effects were not correlated to the content of DIMBOA, MBOA, and BOA in the incorporated wheat plants. ED50 doses of the pure compounds were estimated in dose-response experiments in Petri dishes, and these turned out to be much higher than the predicted maximum concentrations of DIMBOA, MBOA, and BOA in the soil water following incorporation. The study shows that a prerequisite for exploiting the incorporation of wheat residues as a weed control strategy is the development of wheat varieties with an increased content of allelochemicals.  相似文献   

4.
Benzoxazinones, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and benzoxazolinones, such as 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), are biologically active secondary metabolites found in cereals. Because these compounds could be exploited as part of a strategy for reducing the use of synthetic pesticides, ecotoxicological tests were performed recently. In this paper, the transformation of the compounds in the test environment of the ecotoxicological tests was studied. DIMBOA was degraded and partly transformed to MBOA during the period of ecotoxicological testing of the compounds. During testing of MBOA on Poecilus cupreus test media the analysis showed that at the initial concentrations of 2 and 10 mg kg(-1) no MBOA was left after 45 days of testing, but the metabolite 2-amino-phenoxazin-3-one (AMPO) was formed. During testing of BOA on both Folsomia candida and Poecilus cupreus the more biologically active compound 2-amino-phenoxazin-3-one (APO) was formed. Thus, the ecotoxicological test results on MBOA and BOA were partly due to the microbial transformation of the compounds during the time of testing.  相似文献   

5.
To deduce the structure of the large array of compounds arising from the transformation pathway of 6-methoxybenzoxazolin-2-one (MBOA), the combination of isotopic substitution and liquid chromatography analysis with mass spectrometry detection was used as a powerful tool. MBOA is formed in soil when the cereal allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) is exuded from plant material to soil. Degradation experiments were performed in concentrations of 400 microg of benzoxazolinone/g of soil for MBOA and its isotopomer 6-trideuteriomethoxybenzoxazolin-2-one ([D3]-MBOA). Previously identified metabolites 2-amino-7-methoxyphenoxazin-3-one (AMPO) and 2-acetylamino-7-methoxyphenoxazin-3-one (AAMPO) were detected. Furthermore, several novel compounds were detected and provisionally characterized. The environmental impact of these compounds and their long-range effects are yet to be discovered. This is imperative due to the enhanced interest in exploiting the allelopathic properties of cereals as a means of reducing the use of synthetic pesticides.  相似文献   

6.
Three varieties of winter wheat (Triticum aestivum) were grown in both conventional and organic farming systems. The contents of the benzoxazinone derivatives 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-beta-d-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc), 6-methoxybenzoxazolin-2-one (MBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), benzoxazolin-2-one (BOA), and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) were analyzed at five growth stages (BBCH 9-10, 12, 21, 31, and 53). Major differences were found between the varieties, with Stakado exhibiting the highest contents. In contrast, only minor and erratic differences were found between the two farming systems, suggesting that the inherent differences in the content of benzoxazinone derivatives of the varieties were not significantly affected by the use of pesticides and synthetic fertilizers. The concentration of benzoxazinone derivatives in the foliage was considerably higher at the early growth stages than later in the growing season, with DIMBOA being the most abundant of the benzoxazinone derivatives. An increase in the concentration was observed in early spring compared to late autumn, suggesting that plants synthesized benzoxazinone derivatives at the commencement of growth in early spring. The concentrations in the roots were considerably lower than in the foliage at the early growth stages but remained relatively constant over time, resulting in a higher concentration than in the foliage at the late growth stages. The results are discussed in relation to previous findings that predominantly originate from experiments done under controlled conditions in either growth cabinets or greenhouses.  相似文献   

7.
The joint action of binary and ternary mixtures of benzoxazinone derivatives and phenolic acids was studied using the additive dose model (ADM) as reference model. The activity of fixed-ratio mixtures of phenolic acids [ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), and p-hydroxybenzoic acid (HBA)] and benzoxazinone derivatives [2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolin-2-one (MBOA), benzoxazolin-2-one (BOA), 2-aminophenol (AP), and N-(2-hydroxyphenyl)acetamide (HPAA)] on Lolium perenne and Myosotis arvensis root growth was assessed in Petri dishes. Root length was recorded 6 days after seeding, and EC(50) and EC(90) values were estimated using nonlinear regression analyses. The benzoxazinone derivatives were found to be more phytotoxic than the phenolic acids, particularly on M. arvensis. Binary mixtures of phenolic acids responded predominantly additively on both plant species. Deviations from additivity were species-specific with antagonistic responses on L. perenne and synergistic responses on M. arvensis. Similarly, binary mixtures of benzoxazinone derivatives also followed the ADM, although synergistic responses were observed for BOA + AP and BOA + HPAA. Binary and ternary mixtures of benzoxazinone derivatives and phenolic acids responded primarily antagonistically; however, a significant synergistic performance was observed with DIMBOA + FA and DIMBOA + VA on L. perenne. These results do not support the assumption that allelopathic effects of wheat can be attributed to synergistic effects of otherwise weakly active allelopathic compounds, and it is suggested that future research be directed toward identifying and studying the effects of other potential allelochemicals including the degradation products of the most abundant wheat allelochemicals.  相似文献   

8.
9.
Before natural plant allelochemicals can be exploited as biological pesticides against weeds and for disease control, more than the effect on target organisms needs to be known. This study presents results of aquatic biotests using four organisms, namely, a water flea, a freshwater alga, a soil alga, and a luminescent bacterium. The tested substances were 10 benzoxazinone derivatives, 3 of them known to be wheat allelochemicals, benzoxazolin-2(3H)-one (BOA), 6-methoxybenzoxazolin-2(3H)-one (MBOA), and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA), and 7 identified degradation intermediates and metabolites. For comparison, two commercial pesticide formulations (BAS, Betanal) were tested by applying the same set of biotests. The data set produced could be seen as an ecotoxicological evaluation for effects of allelochemicals against nontarget organisms and as a base for further risk assessment.  相似文献   

10.
The 2-beta-O-D-glucoside of the cyclic arylhydroxamic acid 2, 4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) that occurs in large amounts in young maize shoots (Zea mays L.) is converted enzymatically to its aglycone upon tissue damage. The aglycone DIMBOA possesses strong biologically activity toward various organisms whereas the glucoside is almost biologically inactive. A simple procedure yielding DIMBOA in gram quantities, from 7-day-old maize seedlings, was developed by using solid-phase extraction.  相似文献   

11.
Benzoxazinoids are metabolites occurring in a restricted group of plant species including crops such as rye, wheat, and maize. Focus on the analysis of benzoxazinoid metabolites has typically been due to their importance to plant biochemistry and physiology as highly bioactive molecules that plants use as alleochemicals to defend themselves against predators and infections. However, the potential dietary contribution of these compounds has not been addressed. This study conducted a detailed qualitative characterization of benzoxazinoid metabolites present in the whole grain rye and processed fractions of rye bran, and their presence was also detected in whole grain wheat samples. Several novel benzoxazinoid metabolites of the hydroxamic acids (2,4-dihydroxy-1,4-benzoxazin-3-one, DIBOA; 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, DIMBOA), lactams (2-hydroxy-1,4-benzoxazin-3-one, HBOA), and benzoxazolinones (1,3-benzoxazol-2-one, BOA) were identified, including double-hexose derivatives of DIBOA, DIMBOA, and HBOA. This paper presents an important addition to the information on the phytochemical composition of rye and wheat grains, which deserves attention in the discussion of the potential health-promoting effects of these grains.  相似文献   

12.
Generalist predators are important antagonists of pest species in agroecosystems. Increasing populations of alternative prey through detrital subsidies is one way to foster these predators. However, alternative prey may also distract generalist predators from their prey thereby diminishing the efficiency of biological control. To develop reliable predictions for biological control, it is essential to evaluate the relative importance of generalist predators, pests, alternative prey and their respective interactions. We investigated the effects of an assemblage of generalist predators on the grain aphid Sitobion avenae in winter wheat. Treatments with 10, 100 and 1000 aphids were established inside 2 m2 sized caged plots with control and reduced density of predators. Three weeks after the experiment started, samples were taken to estimate the size of aphid populations and those of alternative prey. Three prey taxa were significantly reduced by generalist predators: the grain aphid S. avenae (Aphidina), the click beetle Adrastus pallens (Elateridae) and the springtail Isotoma viridis (Collembola). Springtails were decreased by generalist predators independent of aphid densities, indicating complementary predation of springtails and aphids. At high aphid densities, grain aphid population peaks were decreased to the threshold level of economic damage, demonstrating efficient aphid suppression by the predator community. Click beetle numbers declined only at low and medium aphid densities. The results suggest that generalist predators preferentially fed on click beetles at low and medium aphid densities and switched to aphids at high aphid densities. Early-season predators likely had the greatest influence on aphid suppression. Our results indicate that alternative prey from the belowground system forms a substantial food resource for generalist predators, suggesting that the belowground subsystem modulates predator–prey interactions above the ground.  相似文献   

13.
The influence of nitrogen nutrition and Russian wheat aphid (Diuraphis noxia Mordvilko) infestation on morphology and grain yield of wheat (Triticum aestivum L.) was studied in growth chamber experiments. Plants were grown with nutrient solution containing 100, 50, 10, or 0 percent of the normal complement of nitrogen. Plants were infested with eight apterous adult Russian wheat aphids at the flag leaf stage (approximately 53 days after planting). The aphids remained on the plant for a period of 25 days. Aphid infestation reduced mature plant height across all nutrient solution nitrogen concentrations tested. Grain yield was reduced by aphid infestation under all nutrient solution nitrogen concentrations except 0 percent. However, the percentage of yield loss caused by aphid infestation was reduced by increased levels of nitrogen in the nutrient solution. These results suggest that nitrogen fertilization might be a useful strategy for limiting yield loss caused by Russian wheat aphid in plants that are deficient in nitrogen.  相似文献   

14.
为了探明温度对红色型豌豆蚜的世代累积效应,为利用生态措施防治豌豆蚜提供理论依据,本研究在人工设置的5个温度条件下(12℃、17℃、22℃、25℃和28℃)调查了红色型豌豆蚜连续3代的生长发育、繁殖力及生命表等。研究结果表明:红色型豌豆蚜在12℃时F_2代的若虫期较F_0和F_1代分别缩短16.0%和6.8%,而22℃和25℃下若虫期在3代间无显著差异;12℃时世代历期在F_2代较F_0和F_1代分别缩短10.5%和12.4%,17℃、22℃和25℃条件下世代历期在3代间差异不显著。在12℃下红色型豌豆蚜F_2代平均产蚜量较F_0和F_1代降低;而在持续高温25℃条件下后代繁殖力下降幅度最大,F_1和F_2代平均产蚜量较F_0代分别下降49.3%和50.9%,22℃下F_1和F_2代产蚜量与F_0代无显著差异。连续饲养红色型豌豆蚜,其成蚜体重在12℃和25℃下受影响最小,体重在3代间无显著差异;22℃下F_1代成蚜体重显著高于F_0和F_2代,12℃时体质量增长率有随代数增加逐代增长的趋势。随世代数增加红色型豌豆蚜在12℃和25℃条件下净增殖力(R0)降低、平均世代周期(T)缩短;25℃时F_1和F_2代的内禀增长率(rm)和周限增长率(λ)都较F_0代显著增长。表明在连续较低温或较高温胁迫下,红色型豌豆蚜后代繁殖力下降,体重无明显变化,但发育历期缩短,内禀增长率和周限增长率增长,表现出极强的环境适应能力,这可能是其种群数量上升的原因之一。  相似文献   

15.
Abstract

There is an increasing demand for organically grown pulses and cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Spring field beans (Vicia faba) could be a popular break crop in organic agriculture. The black bean aphid (Aphis fabae) is generally considered to be a serious pest of spring-sown field beans in northern Europe, and field studies have shown that yield losses can exceed more than 50% due to attacks from the black bean aphid.

The use of insecticides in organically grown field bean crops is not permitted, but it has been known for a long time that the black bean aphid infests different varieties of beans to a very different extent. Therefore, partial resistance to the black bean aphid is one method of stabilizing yields. Another method of cultural pest control is intercropping and a third method could be a combination of both. Six field experiments involving the three methods were carried out. There was a significant difference between the number of aphids per plant on the three investigated bean varieties, where ‘Colombo’ was the most susceptible, ‘Quattro’ was intermediate, and ‘Caspar’ the most resistant variety. ‘Colombo’ intercropping with spring wheat and spring barley reduced the numbers of aphids per plant significantly, and also the number of plants infested. The harvesting of all crops took place during the last fourteen days of August.

It can be concluded that the growing of partial host plant resistant varieties of field beans or the intercropping of field beans with spring cereals separately will reduce the infestation with black bean aphids. If both methods are used, the reduction of infestation will be even higher and consequently also the yield.  相似文献   

16.
Cereal aphid infestations have considerable impact upon productivity and profitability of United States agriculture. A comparison study of the influence of different aphid species (Russian wheat aphid, Duraphis noxia Mordvilko; greenbug, Schizaphis graminum Rondani; and bird cherry oat aphid, Rhopalosiphum padi L.) upon shoot characteristics and root growth of hard red spring wheat (Triticum aestivum L.) was conducted in an attempt to better understand the mechanisms of yield loss in aphid damaged plants. Plants infested with aphids showed similar reductions in shoot growth regardless of aphid species. Shoot chlorophyll concentrations were lowest in greenbug‐infested plants. Root length and dry weight were also equally reduced by feeding damage by the three aphid species. Upon removal of the aphids, shoot dry weights of plants damaged by each aphid species remained unchanged for 10 days. Shoot dry weights for aphid‐damaged plants were about half the magnitude seen in the control plants after 15 days. Chlorophyll concentrations seen in greenbug and Russian wheat aphid‐infested plants initially were lower than the concentrations seen in bird cherry oat aphid‐infested and control plants. Within 10 days after aphid removal, however, chlorophyll concentrations across all treatments were essentially equal. Root lengths in plants previously infested with greenbugs or Russian wheat aphids were lower than control plants four days after aphid removal. Within 10 days after aphid removal, root lengths in plants previously infested with greenbugs or Russian wheat aphids did not differ from control plants. Root lengths in plants previously damaged by bird cherry oat aphids did not reach the same magnitude as that of the other treatments until 27 days after aphid removal. These results indicate that aphid feeding damage to wheat plants can have significant effects on root growth, suggesting that crop management practices that promote root growth could play important roles in improving plant tolerance to aphid damage.  相似文献   

17.
Abstract

Transgenic potato plants expressing snowdrop lectin (GNA potatoes) are developed to increase resistance against sap-feeding insects. When expressing GNA at relatively high levels such potatoes may have a negative effect on the fecundity and development of the first generation of the important pest, the peach-potato aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae). However, the effects on M. persicae over several generations, and how such plants affect the alate aphids’ colonization behaviour have not been reported. In this laboratory study, the performance of single M. persicae on potatoes with low GNA expression, measured as developmental time, fecundity, size and survival, was compared with the control, following two successive generations of single apterous aphids. Aphid population growth on the two plant lines was also studied. In addition, colonization behaviour was investigated in a choice experiment where the alate aphids could choose between the GNA and an isogenic control potato plant in a cage. The present study showed that the apterous aphid performance was not significantly different on the two potato lines, although the aphids tended to perform slightly poorer on the transgenic potato. However, the transgenic potato was less likely to be colonized by alate aphids. It is concluded that such transgenic potato plants expressing the lectin at a relatively low level, maximum 0.2% of the soluble protein, have no significant impact on the performance of apterous M. persicae once on the plant, but may have a potential in controlling the aphids by altering the colonization behaviour of alates.  相似文献   

18.
It has been suggested that salicylic acid (SA) is a signal in acquired resistance to pathogens in several plants. Also, it has been suggested that infestation of plants causes an increase in the activity of phenylalanine ammonia-lyase (PAL), a key phenolic biosynthesis enzyme. The purpose of this work was to investigate whether the induction of SA and PAL activity is related to the susceptibility of barley to aphid infestation. The induction of free and conjugated SA in two barley cultivars that differ in susceptibility to aphids was analyzed. Analyses of several physiological parameters showed that cv. UNA-80 was more susceptible to the aphid Schizaphis graminum than cv. LM-109. Salicylic acid was not detected in noninfested plants. Levels of free and conjugated SA in cv. LM-109 and of conjugated SA in cv. UNA-80 increased with aphid infestation, whereas the levels of free SA in cv. UNA-80 remained high under all infestation degrees. Maximum values reached in both cultivars were not significantly different. With respect to PAL activity, cv. LM-109 showed a significantly higher specific activity than cv. UNA-80, the more susceptible cultivar. The relationship between the susceptibility of a plant to aphid and SA induction and PAL activity is discussed.  相似文献   

19.
为明确不同抗生素及其处理方式对绿色型豌豆蚜生物学特性的影响,将盐酸金霉素(chlortetracycline HCl)、氯霉素(chloraomycetin)、盐酸土霉素(oxytetracycline HCl)、青霉素G钾盐(penicillin-G K salt)和硫酸链霉素(streptomycin sulfate)5种抗生素分别按同时喷洒蚕豆植株和蚜虫虫体、只喷洒蚜虫虫体和只喷洒蚕豆植株3种方式处理,了解不同处理下豌豆蚜的发育历期、平均体重、体质量差、相对日均体质量增长率和平均产蚜量等生物学参数变化特征。结果表明:3种处理方式对绿色型豌豆蚜的生物学参数影响大小顺序为:同时喷洒植株和虫体处理喷洒植株处理喷洒虫体处理。5种抗生素对绿色型豌豆蚜的生物学参数影响大小顺序为:盐酸土霉素盐酸金霉素硫酸链霉素氯霉素青霉素G钾盐。经过喷洒蚜虫虫体和植株表面联合作用处理,土霉素对绿色型豌豆蚜的生长发育影响最大,若虫期延长2.25 d,整个世代周期延长3.70 d,体重减轻52.37%,体质量差减小55.84%,相对日均体质量增长率减小53.85%,产蚜量下降79.07%;金霉素处理表现为延长发育历期,青霉素、氯霉素和链霉素为缩短发育历期;经5种抗生素处理后的绿色型豌豆蚜体重均减轻,产蚜量下降。土霉素处理对绿色型豌豆蚜的若虫期、世代历期和相对日均体质量增长率的影响与其他4种抗生素差异显著(P0.05),土霉素和金霉素对平均体重和体重差的影响与其他3种抗生素差异显著(P0.05),但相互间差异不显著(P0.05)。经过喷洒植株表面的间接作用处理,土霉素对绿色型豌豆蚜的生长发育影响最大,若虫期龄期延长1.63 d,世代历期延长3.38 d,体重减轻50.28%,体质量差减小51.49%,相对日均体质量增长率减小41.67%,产蚜量下降75.45%;金霉素的影响作用次之,表现为延长发育历期;青霉素、氯霉素和链霉素为缩短发育历期。5种抗生素处理后绿色型豌豆蚜均体重减轻,产蚜量下降。土霉素处理对绿色型豌豆蚜的若虫期、平均体重和产蚜量的影响与其他4种抗生素差异显著(P0.05),土霉素和金霉素对世代历期和相对日均体质量增长率影响差异显著(P0.05),但相互间差异不显著(P0.05)。经过直接喷洒蚜虫虫体间接作用方式处理,土霉素对绿色型豌豆蚜的生长发育影响最大,若虫期延长0.34 d,体重减轻24.32%,相对日均体质量增长率减小26.32%,产蚜量下降44.23%,其他4种抗生素对绿色型豌豆蚜的生物学参数影响较小。土霉素处理对相对日均体质量增长率的影响与其他4种抗生素差异显著(P0.05),土霉素和金霉素对若虫期和产蚜量的影响与其他3种抗生素差异显著(P0.05),但相互间差异不显著(P0.05)。由不同抗生素的不同处理方式进行多重比较得知,对绿色型豌豆蚜生长发育影响较大的3种处理组合为:土霉素同时喷洒植株和虫体处理组合土霉素喷洒植株处理组合金霉素同时喷洒植株和虫体处理组合,3种作用处理间对绿色型豌豆蚜生物学特性影响差异不显著(P0.05),土霉素同时喷洒植株和虫体处理组合对生物学特性的影响与除土霉素喷洒植株处理组合和金霉素同时喷洒植株和虫体组合之外的其他组合处理差异显著(P0.05)。  相似文献   

20.
The concentration of benzoxazinoids (BX) was measured in field soils at selected intervals after rye residue was either incorporated or left on the soil surface. The spectrum of compounds arising in the soil persisted approximately two weeks and was dominated by methoxy containing BX compounds, which were only minor components of the rye foliage. Growth assays with lettuce and smooth pigweed species showed inhibition when treated soils were tested during the first two weeks after rye applications; however, there were no sufficient concentrations of any one BX compound in the soil to explain these affects. Solution applications of two pure BX compounds, benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), to the surface of soils revealed that movement into the soil column was minimal (greater than 70% BOA and 97% MBOA remained in the top 1-cm of soil profiles) and that the time course for their complete dissipation was less than 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号