首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1980, 60 zebu cattle from Brazil were admitted into quarantine in Florida for 150 days. During the 30 days between their last test in Brazil and their first test in Florida, four animals developed antibody to bluetongue virus detectable by agar gel immunodiffusion test. Within 62 days after arrival in Florida, three more seroconverted and one more was positive by the 86th day. Virus neutralizing titers of serums from the first four cattle were highest against bluetongue virus serotype 4 and 20; both of these serotypes are exotic to the United States. A bluetongue virus serotype 4 was isolated from one of these animals. The eight positive reactors were slaughtered; the other 52 cattle, which did not develop detectable antibody titers to bluetongue virus, were released into the United States.  相似文献   

2.
Sheep were experimentally infected with cloned strains of tissue culture adapted bluetongue virus (BTV) serotypes 10, 11, 13 and 17. All the infected animals developed viremia by Day 2 or 3 post-inoculation (P.I.) and reached maximum viremia on Day 7 P.I. The viremia lasted for 2 to 3 weeks. Animals infected with the different serotypes showed mild clinical bluetongue (BT) responses, characterized by pyrexia and leukopenia, which coincided with the peak of viremia. Antibodies appeared by Day 10 P.I. and reached maximum by Day 28 P.I. There was a temporal relationship between the increase in neutralizing antibody titer, the drop in titer and clearance of virus from the peripheral circulation. Recovery from primary infection protected the animals against secondary challenge with homologous virus.  相似文献   

3.
Six calves were inoculated with 1 of 2 North American serotypes of epizootic hemorrhagic disease virus (EHDV) and then inoculated with the second serotype 16 weeks later. One calf did not develop an immune response to EHDV after primary inoculation and was removed from the study. Viremia after primary inoculation was transient. Although each infected calf developed a high serum neutralizing antibody titer to EHDV, at no time after inoculation with one or both viruses was antibody detected that neutralized any US serotypes of bluetongue virus. After exposure to both serotypes of EHDV, 4 of 5 calves developed antibodies that cross-reacted with group-specific bluetongue virus antigens.  相似文献   

4.
In development of a bluetongue alternative immunodiagnostic rest, the polyclonal anti-idiotypic antibodies were generated by the sequential immunization of rabbits with three monoclonal antibodies to VP7 of bluetongue virus. The anti-idiotypic antibodies recognize the idiotypes that are located within or near the antigen-combining sites and are associated with both heavy and light chains of the antibodies to VP7 of bluetongue virus. The anti-idiotypic antibodies mimic the VP7 antigen by recognizing the anti-VP7 antibodies from cattle and sheep that were infected with various serotypes of bluetongue viruses. The results indicate that the rabbit anti-idiotypic antibodies may be used as surrogate antigen in serological assays to detect the antibodies from different species of animals infected with various serotypes of bluetongue viruses.  相似文献   

5.
A competitive enzyme-linked immunosorbent assay (cELISA) was developed to detect antibodies to the group antigen of bluetongue virus (BTV). The epitope recognized by the BTV-specific monoclonal antibody was confirmed, by immunofluorescence staining of monolayers of virus-infected Vero cells, to be present on BTV serotypes 2, 10, 11, 13, and 17 but not on epizootic hemorrhagic disease virus (EHDV) serotypes 1 and 2. Sera from BTV-inoculated ruminants and rabbits were used to evaluate the cELISA and to compare its specificity and sensitivity with that of the conventional BTV-specific agar gel immunodiffusion (AGID) and serum neutralization (SN) tests. Rabbit antisera to the 5 serotypes of BTV present in the United States had cELISA titers (inverse of the final dilution of serum that gave greater than 20% inhibition) that ranged from 32 to greater than 1.024. Seroconversion of the 8 calves and lambs inoculated with BTV was detected by all 3 serologic tests (SN, AGID, cELISA) by 6 weeks after inoculation. Specificity of the cELISA test was confirmed with bovine sera that contained neutralizing antibodies to EHDV but not to the 5 serotypes of BTV present in the United States; these sera gave positive results by AGID test but were negative by cELISA. The sensitivity and specificity of the cELISA test was further confirmed by analysis of a panel of bovine test sera supplied by the National Veterinary Services Laboratories, indicating that the cELISA is a superior test for detection of BTV group-specific antibodies in sera from ruminants in the United States.  相似文献   

6.
Seven serum samples of 101 samples from nondomestic, captive and free-ranging felids from the United States were indirect fluorescent antibody positive for antibodies to Neospora caninum, whereas 44 samples were positive for antibodies to T. gondii. Although none of the captive animals displayed clinical signs of disease, nondomestic felids in the United States have been exposed to, and are likely infected with, N. caninum and T. gondii. This may have serious implications for zoological gardens exhibiting susceptible animals, such as kangaroos, close to felids.  相似文献   

7.
Four lambs and 3 calves, seronegative to bluetongue virus (BTV), were inoculated intravenously with a highly plaque-purified strain of BTV Serotype 10. A single calf and lamb served as controls and were inoculated with uninfected cell culture lysate. All BTV-inoculated lambs exhibited mild clinical manifestations of bluetongue, whereas infected calves were asymptomatic. Viremia persisted in BTV-infected lambs for 35-42 days, and for 42-56 days in BTV-infected calves. Neutralizing antibodies were first detected in sera collected at Day 14 post-inoculation (PI) from 2 BTV-infected calves and all 4 infected lambs, and at Day 28 PI in the remaining calf. The appearance of neutralizing antibody in serum did not coincide with clearance of virus from blood; BTV and specific neutralizing antibody coexisted in peripheral blood of infected lambs and calves for as long as 28 days. The sequential development, specificity and intensity of virus protein-specific humoral immune responses of lambs and calves were evaluated by immunoprecipitation of [35S]-labelled proteins in BTV-infected cell lysates by sera collected from inoculated animals at bi-weekly intervals PI. Sera from infected lambs and calves reacted most consistently with BTV structural proteins VP2 and VP7, and nonstructural protein NS2, and less consistently with structural protein VP5, and nonstructural protein NS1. Lambs developed humoral immune responses to individual BTV proteins more rapidly than calves, and one calf had especially weak virus protein-specific humoral immune responses; viremia persisted longer in this calf than any other animal in the study. The clearance of virus from the peripheral blood of BTV-infected lambs and calves is not caused simply by the production of virus-specific neutralizing antibody, however the intensity of humoral immune responses to individual BTV proteins might influence the duration of viremia in different animals.  相似文献   

8.
Serum samples (n = 1,146) representing 100 species of exotic ruminants now captive in United States zoos were assayed for neutralizing antibody to infectious bovine rhinotracheitis (IBR) virus (bovine herpesvirus 1). Thirty-four animals (3%) of 11 species had antibody to IBR virus. Because of the low prevalence of IBR antibody found, it was concluded that vaccination against IBR virus probably is not necessary for captive wild ruminants in United States zoos.  相似文献   

9.
Bluetongue (BT) is an insect transmitted viral disease of sheep that often causes mild or inapparent disease but rarely causes severe disease in cattle. Until recently, bluetongue viral infection was believed to be more prevalent in the Western United States, as compared with other regions of the country. However, a national survey for bluetongue antibody and clinical evidence of the disease in the Southeastern United States prompted the present investigation that was designed to determine the serological prevalence of BT virus in Alabama cattle. Results of the study demonstrated that 16% of the samples collected from 1,500 cattle in 64 of the 67 counties were positive. The prevalence of positive cattle in the western part of the State was significantly higher (P less than .001) than the prevalence in the eastern half of the State. On a herd basis, 52% of all herds tested had positive animals. Results of this study suggest that bluetongue infection is more common in the Southeastern United States than previously suspected.  相似文献   

10.
Serums from 103 sheep and 24 cattle experimentally infected with one of 3 serotypes of bluetongue virus isolated in Australia were tested for antibody to bluetongue virus in the serum neutralisation test and the agar gel diffusion precipitin test. Antibody to bluetongue virus was first detected by these tests 8 to 10 days after intravenous infection in 4 sheep that were bled daily for serum analysis. The agar gel diffusion test failed to detect antibody in 28% (29/103) of sheep which had seroconverted in the serum neutralisation test. A further 7% (7/103) of sheep serums were negative in both tests 14 to 22 d after infection. Both tests detected antibody to bluetongue virus in all cattle serums by 10 days after detection of viraemia. In comparison with the intravenous route of infection, extended prepatent periods for the commencement of viraemia resulting from intradermal, subcutaneous and intrauterine routes of infection in the cattle caused corresponding delays in the detection of antibody. For example, one cow that was infected by intrauterine inoculation did not become viraemic until 22 d after inoculation and antibody was not detected until 32 d after inoculation.  相似文献   

11.
Beginning in 1973, all available laboratory and field strains of bluetongue virus (BTV) from the United States were serotyped. Of the viral strains serotyped, 27 were collected from 1953 through 1972; 173 were collected from 1973 through 1977. Although 20 BTV serotypes have been found worldwide, only BTV serotypes 10, 11, 13, and 17 have been found in the United States. Since 1973, serotypes 11 and 17 have been the prevalent serotypes. Samples were collected over a 24-year period in the United States and represent a wide geographic area and diverse host sources (sheep, cattle, wild ruminants, and insect vectors). The collection was not a statistical sampling.  相似文献   

12.
Three bovine fetuses were inoculated in utero with approximately 10(3) plaque forming units of type 11 bluetongue virus. The gestational ages of the fetuses at the time of inoculation were 106, 113 and 122 days. They were spontaneously aborted 104, 65 and 109 days later, respectively, and the first and third of these fetuses were recovered. There was no grossly normal cerebral tissue, the meninges formed fluid filled sacs, and the cerebellums were reduced in size. Bluetongue virus was not isolated from the fetuses but the older one had neutralizing antibody. The three dams developed neutralizing antibody to bluetongue virus. The present work supports the observation by others that early fetal infections with bluetongue virus normally result in severe central nervous system damage and not in clinically normal, persistently infected calves.  相似文献   

13.
A novel bluetongue virus termed “Toggenburg Orbivirus” (TOV) was detected in two Swiss goat flocks. This orbivirus was characterized by sequencing of 7 of its 10 viral genome segments. The sequencing data revealed that this virus is likely to represent a new serotype of bluetongue virus [Hofmann, M.A., Renzullo, S., Mader, M., Chaignat, V., Worwa, G., Thuer, B., 2008b. Genetic characterization of Toggenburg Orbivirus (TOV) as a tentative 25th serotype of bluetongue virus, detected in goats from Switzerland. Emerg. Infect. Dis. 14, 1855–1861].In the field, no clinical signs were observed in TOV-infected adult goats; however, several stillborn and weak born kids were reported. Although born during a period of extremely low vector activity, one of these kids was found to be antibody and viral genome positive and died 3.5 weeks postpartum.Experimental infection of goats and sheep, using TOV-positive field blood samples, was performed to assess the pathogenicity of this virus.Goats did not show any clinical or pathological signs, whereas in sheep mild bluetongue-like clinical signs were observed. Necropsy of sheep demonstrated bluetongue-typical hemorrhages in the wall of the pulmonary artery. Viral RNA was detected in organs, e.g. spleen, palatine tonsils, lung and several lymph nodes of three experimentally infected animals.Unlike other bluetongue virus serotypes, it was not possible to propagate the virus, either from naturally or experimentally infected animals in any of the tested mammalian or insect cell lines or in embryonated chicken eggs.In small ruminants, TOV leads to mild bluetongue-like symptoms. Further investigations about prevalence of this virus are needed to increase the knowledge on its epidemiology.  相似文献   

14.
The diagnostic potential of RT-PCR for detection of bluetongue virus (BTV) ribonucleic acid (RNA) sequence in cell culture and tissue samples from infected ruminants from United States, Sudan, South Africa and Senegal, was evaluated. The non structural protein 1 (NS1) gene of North American BTV serotype 11 was targeted for PCR amplification. The United States BTV serotypes 2, 10, 11, 13 and 17 and the Sudanese BTV serotypes 1, 2, 4 and 16 and BTV serotype 4 from South Africa and BTV serotype 2 from Senegal were studied. RNAs from all BTV field isolates used in this study, propagated in cell cultures, were detected by the described RT-PCR-based assay. The first specific 790bp BTV PCR products were amplified using a pair of outer primers (BTV1 and BTV2). Specificity of the PCR products was confirmed by a nested amplification of a 520bp PCR product using a pair of internal (nested) primers (BTV3 and BTV4). The BTV PCR products were visualized on ethidium bromide-stained agarose gels. Amplification products were not detected when the RT-PCR-based assay was applied to RNAs from closely related orbiviruses including, epizootic hemorrhagic disease virus (EHDV) prototypes serotypes 1, 2, 4; RNA from Sudanese isolate of palyam orbiviruses serogroup and total nucleic acid extracts from uninfected Vero cells. Application of the nested BTV RT-PCR to clinical samples resulted in amplification of BTV RNA from blood and serum samples from goats experimentally infected with BTV4 and from naturally infected sheep, goats, cattle and deer. The results of this study indicated that this RT-PCR assay could be applied for rapid detection of BTV, in cell culture and clinical samples from susceptible ruminants during an outbreak of the disease, in the United States and African.  相似文献   

15.
A shotgun-cloning method incorporating all 10 bluetongue virus genome segments can simultaneously produce complete and partial copies of any of the genome segments. We report here 4 different cloned probes derived from 3 genome segments and individually defined by different hybridization recognition capabilities. One probe hybridized strongly with all 5 United States prototype strains of the 5 different bluetongue virus (BTV) serotypes existing in the United States and, as such, is a strong candidate for a broad BTV diagnostic probe in the United States. Another probe derived from genome segment 2 of BTV-17 hybridized only with the BTV-17 prototypic serotype, thereby demonstrating serospecific hybridization diagnostic potential. The implications for diagnostic and genetic relationship studies on BTV, using various genetic probes, are discussed.  相似文献   

16.
The efficacy of a bivalent inactivated vaccine against bluetongue virus (BTV) serotypes 2 (BTV-2) and 4 (BTV-4) was evaluated in cattle by general and local examination, serological follow-up, and challenge. Thirty-two 4-month-old calves were randomly allocated into 2 groups of 16 animals each. One group was vaccinated subcutaneously (s/c) with two injections of bivalent inactivated vaccine at a 28-day interval, and the second group was left unvaccinated and used as control. Sixty-five days after first vaccination, 8 vaccinated and 8 unvaccinated calves were s/c challenged with 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 2, while the remaining 8 vaccinated and 8 unvaccinated animals were challenged by 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 4. Three additional calves were included in the study and used as sentinels to confirm that no BTV was circulating locally. At the time of the challenge, only one vaccinated animal did not have neutralizing antibodies against BTV-4, while the remaining 15 showed titres of at least 1:10 for either BTV-2 or BTV-4. However, the BTV-2 component of the inactivated vaccine elicited a stronger immune response in terms of both the number of virus neutralization (VN) positive animals and antibody titres. After challenge, no animal showed signs of disease. Similarly, none of the vaccinated animals developed detectable viraemia while bluetongue virus serotype 2 and 4 titres were detected in the circulating blood of all unvaccinated animals, commencing on day 3 post-challenge and lasting 16 days. It is concluded that administration of the bivalent BTV-2 and BTV-4 inactivated vaccine resulted in a complete prevention of detectable viraemia in all calves when challenged with high doses of BTV-2 or BTV-4.  相似文献   

17.
West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species.  相似文献   

18.
An enzyme-linked immunosorbent assay has been developed to detect antibodies to epizootic hemorrhagic disease of deer virus (EHDV). The assay incorporates a monoclonal antibody to EHDV serotype 2 (EHDV-2) that demonstrates specificity for the viral structural protein, VP7. The assay was evaluated with sequential sera collected from cattle experimentally infected with EHDV serotype 1 (EHDV-1) and EHDV-2, as well as the four serotypes of bluetongue virus (BTV), BTV-10, BTV-11, BTV-13, and BTV-17, that currently circulate in the US. A competitive and a blocking format as well as the use of antigen produced from both EHDV-1- and EHDV-2-infected cells were evaluated. The assay was able to detect specific antibody as early as 7 days after infection and could differentiate animals experimentally infected with EHDV from those experimentally infected with BTV. The diagnostic potential of this assay was demonstrated with field-collected serum samples from cattle, deer, and buffalo.  相似文献   

19.
The 10 double-stranded RNA gene segments of 2 vaccinal strains of bluetongue virus (BTV) serotype 10 that are used in the United States (BTV CA8 California and BT-8 Colorado), and a BTV-10 isolate recently obtained from infected sheep in Washington (state) were characterized by oligonucleotide fingerprint analyses. It was determined that although the 2 BTV-10 vaccinal strains are genotypically distinct, they are closely related both to each other and to the United States prototype BTV-10 virus. The BTV-10 field isolate appears to be a naturally occurring reassortment virus with genome segments derived from both United States prototype BTV-10 and BTV-11 viruses. However, one RNA segment of the isolate was totally unlike the corresponding segments of United States prototype BTV-10, -11, -13 and -17 viruses.  相似文献   

20.
Bluetongue virus serotypes 1 and 3 infection in Poll Dorset sheep   总被引:1,自引:0,他引:1  
Objective To study the clinical signs following bluetongue virus serotypes 1 and 3 infection in Poll Dorset sheep.
Design A clinical and pathological study.
Procedure Twenty Poll Dorset sheep were inoculated with bluetongue virus serotypes 1 or 3, each inoculum having a different passage history. The sheep were examined daily and their clinical appearance and rectal temperatures recorded. Heparinised and non-heparinised blood samples were taken at intervals for virological and serological study. Gross pathological findings were recorded for several sheep at necropsy and tissue samples were collected from three sheep for virological studies.
Results All inoculated sheep developed clinical disease. The clinical signs and gross pathological changes varied considerably but were consistent with damage to the vascular endothelial system. There was a decline in the titres of infectious bluetongue virus and of antigen in tissues collected between 7 and 12 days after infection.
Conclusions The severity of disease was related to the speed of onset and duration of pyrexia and not the development or titre of viraemia. Generally, those animals with sensitive mouths, depression, coronitis, recumbency and reluctance to move were the most debilitated. Whole blood was the most reliable source of infectious virus from acutely and chronically infected and convalescent animals. However, tissue samples particularly spleen, collected from dead or killed animals suffering from either peracute or acute forms of disease were most appropriate for the rapid confirmation of a clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号