共查询到20条相似文献,搜索用时 0 毫秒
1.
使用成像光谱仪获取遭受稻纵卷叶螟危害的水稻叶片的高光谱影像,统计分析虫害叶片和健康叶片在光谱反射率和植被指数上的差异,建立分类判别模型,精确提取叶片上虫害区域的像元数和比例,实现对虫害严重程度的精确评估。结果表明:在波长为400—710 nm的可见光-红边波段范围内,虫害叶片的反射率普遍高于健康叶片,差异极显著(P<0.01);在近红外波段虫害叶片反射率低于健康叶片(P<0.01),但二者差异略小。虫害叶片的NDVI、RVI、RARS和SIPI 4种植被指数值明显低于健康叶片。基于RVI构建决策树分类模型能够准确区分叶片上的虫害区域和健康区域,并据此计算出虫害区域所占比例,进而对虫害严重程度进行定量化评估。 相似文献
2.
水稻土中有机质光谱常常受到水分、秸秆等土壤背景的影响,为了减弱或去除非有机质组分对有机质光谱的影响,构建南方水稻土有机质估算模型。利用机载高光谱(GaiaSky Mini2 VN)作为数据源,对原始反射率进行单一和组合变换(去除包络线、倒数、对数、一阶微分、二阶微分单一变换和倒数一阶微分、对数一阶微分、倒数对数组合变换)提取一维特征光谱;通过对变化后光谱进行比值和归一化处理,提取二维特征光谱;构建基于特征光谱的线性(多元回归、偏最小二乘)和非线性(反向传播神经网络、支持向量机)有机质预测模型,监测南方水稻土有机质含量。结果表明:一维光谱变换能显著增强光谱对有机质响应的敏感度,二维光谱变换能充分挖掘光谱信息,增强有机质与光谱之间的内在联系,提高建模精度。非线性模型(BPNN、SVM)尤其是BPNN对土壤有机质拟合性好,建模精度高。基于原始反射率比值指数建立的BPNN模型建模精度达到0952,检验精度达到0889,建模效果最优。该结果适用于南方水稻土有机质监测,对机载高光谱在土壤有机质监测中的特征波段提取和建模方法选择具有重要借鉴意义,对现代农业发展管理提供新的思路。 相似文献
3.
【目的】为实现快速无损地监测水稻叶绿素含量,采用大疆M600 Pro无人机搭载SENOP RIKOLA高光谱仪获取水稻分蘖期冠层高光谱影像。【方法】利用相关性分析筛选出光谱指数的特征波长,构建DSI、RSI、NDSI、MSR、OSAVI和RDVI 6种植被指数,并利用一阶光谱导数计算其红边面积和红边幅值,分析8种光谱参数参与水稻叶绿素含量之间的相关性分析。将这些光谱参数作为CatBoost回归模型的输入变量,分析8种光谱参数对水稻叶绿素含量的估算能力。【结果】基于红边参数的反演模型中红边幅值拟合效果最好,其R2为0.952 4,RSME为0.638 1;基于植被指数的反演模型中OSAVI指数拟合效果最好,其R2为0.941 6,RSME为0.588 5。2种模型均能有效预测水稻叶绿素含量信息,可以作为水稻叶绿素含量监测的依据。【结论】将无人机高光谱遥感影像与机器回归算法相结合,可以实现对水稻冠层叶绿素含量的精准预测,从而对水稻的生长和健康状况进行实时监测,进而实现对水稻的精准施肥和精准灌溉,对水稻的增产增收以及精准农业的发展具有重要意义。 相似文献
4.
稻纵卷叶螟危害后水稻叶片的光谱特征 总被引:2,自引:1,他引:2
【目的】阐明水稻受稻纵卷叶螟危害后不同受害程度的叶片、卷叶的分布形式及卷叶率对稻叶光谱特征的影响,获取诊断水稻受害程度的模型,以便为稻纵卷叶螟的遥感监测提供理论指标与方法。【方法】试验以不同受害等级的虫害叶及健康叶为材料,在室内恒定条件下采用ASD光谱仪分别测定不同受害程度、受害叶片的不同分布形式、及不同卷叶率下稻叶的光谱反射率,并采用直线回归法,建立基于光谱参数的水稻受害程度诊断模型。【结果】水稻虫害叶光谱反射率均随受害等级的增加,在绿光区(530—570nm)和近红外区(700—1050nm)降低,而在红光区(610—700nm)增加。能反演叶片受害程度的敏感波段为530—564nm、614—695nm和706—1050nm。建立了5个反演叶片受害程度的模型,诊断准确率在80%—90%之间,并且以741nm处的反射率对叶片受害程度的诊断效果最好。在卷叶率恒定的条件下,卷叶的分布位置对光谱反射率影响较小;而卷叶率对光谱反射率的影响较大,表现为随卷叶率的增大,450—500nm和610—700nm处的反射率增大,530—570nm和700—1050nm处反射率降低。差值植被指数(Rnir-Rred)、黄边面积(SDy)及红边面积与蓝边面积的差值(SDr-SDb)等指标均能将6个不同等级的卷叶率(0、10%、30%、50%、70%和90%)区分开,并且利用黄边面积(SDy)指标诊断卷叶率的准确率达86%。【结论】水稻受稻纵卷叶螟为害后,在叶片光谱反射率上有明显的表现,可以利用光谱特征来监测稻叶的受害程度及卷叶率大小。 相似文献
5.
[目的]构建水稻叶片SPAD值的高光谱精确估算模型,为进一步提高高光谱对水稻SPAD值反演估算精度提供参考依据.[方法]利用SPAD-502型叶绿素测定仪测量水稻叶片SPAD值,以FieldSpec 4光谱仪采集水稻叶片光谱数据.通过分析光谱植被指数、位置参数与SPAD值的相关性,构建4个水稻叶片SPAD值高光谱估测模型,即逐步多元线性回归(SMLR)模型、支持向量机回归(SVR)模型、基于主成分分析的支持向量机回归(PCA+SVR)模型和以逐步多元线性回归确定最佳参数的支持向量机回归(SMLR+SVR)模型;并采用均方根误差(RMSE)、平方相关系数(R2)、相对分析误差(RPD)和平均相对误差(MRE)等指标对模型进行评价.[结果]在分析的15个光谱特征参数中,除黄边位置(λy)无显著相关外(P>0.01),水稻叶片SPAD值与叶片光谱位置参数及植被指数参数间存在显著相关性,选择相关系数大于0.800的5个植被指数参数(VOG1、VOG2、VOG3、CARI和PRI)和7个光谱位置参数[蓝边面积(SDb)、黄边振幅(Dy)、黄边面积(SDy)、绿峰反射率(Rg)、红谷净深度(Hr)、蓝边振幅(Db)和红边位置(λh)]作为输入变量构建水稻叶片SPAD值的估测模型.R2和RPD值越大,RMSE和MRE值越小,则表明模型的性能越好,估算精度高.比较4个模型训练与测试结果的R2、RMSE、MRE和RPD可知,在模型估算精度上,SMLR+SVR模型高于SMLR模型,PCA+SVR模型高于SVR模型.总体上,SMLR+SVR模型能更好地实现对水稻叶片SPAD值的预测,其模型各项评价指标R2、RMSE、MRE和RPD分别为0.856、2.076、3.984%和2.550.[建议]进一步挖掘分析光谱特征参数与水稻叶片SPAD值间的关系,提出新的光谱特征参数或优化特征参数选择组合方法,增加回归建模算法,提高高光谱对水稻叶片SPAD值的有效估算.采集水稻冠层高光谱图像,反演出高光谱图像中的水稻冠层SPAD值,研究冠层SPAD与水稻长势关系,为水稻科学管理提供技术支持. 相似文献
6.
蜜柚叶片磷素(phosphorus,P)含量是准确诊断和定量评价生长状况的重要指标,为快速、无损、精确地估测磷素含量,需要建立蜜柚叶片磷素含量高光谱估算模型。基于蜜柚叶片高光谱数据和磷素含量实测数据,提取原始光谱及一阶微分光谱特征波段和光谱特征变量,构建单变量估算模型、偏最小二乘回归模型和BP神经网络回归模型,并确定蜜柚叶片磷素含量最佳估算模型。在350~1 050 nm波段,原始光谱和一阶微分光谱与叶片磷素含量在可见光范围内有多波段相关性显著,并出现多个极值。原始光谱敏感波长为549和718 nm,一阶微分的敏感波长为528、703和591 nm。在建立的回归模型中,选择决定系数较高的模型进行精度检验,其中BP神经网络模型的拟合R2(0.775 9)最大,偏最小二乘估算模型的拟合R2(0.749 9)次之。综合建模精度和模型检验精度,确定BP神经网络模型为蜜柚叶片磷含量的最佳估算模型,建模和验证的R2分别为0.71和0.775 9;其次为偏最小二乘估算模型,建模和验证的R2分别为0.64和0.74... 相似文献
7.
类胡萝卜素(Car)是植物进行光合作用的主要色素之一,在吸收传递光能、保护叶绿素,以及延缓叶片衰老等方面有重要作用。以LOPEX’93数据库为基础,系统分析400~2 500 nm高光谱波段范围内任意两波段组合而成的归一化差值植被指数(NDVI)、比值植被指数(RVI)和差值植被指数(DVI)与双子叶植物叶片Car含量间的定量关系。结果表明,在756 nm处红光波段与809 nm处近红外波段的NDVI(809,756)、RVI(809,756),以及750 nm处红光波段与809 nm处近红外波段的DVI(809,750)都可以较好地实现Car含量反演,建立的回归预测模型的判定系数(R2)均大于0.74。对由各植被指数构建的反演模型进行精度验证发现,NDVI(809,756)和RVI(809,756)的估算效果相当,且都好于DVI(809,750),模型预测精度分别为0.735和0.738,均方根误差分别为1.426 1和1.420 5,平均相对误差分别为13.66%和13.60%。表明基于高光谱数据对双子叶植物叶片Car含量进行估算是可行的。 相似文献
8.
东北水稻叶片SPAD遥感光谱估算模型 总被引:1,自引:0,他引:1
为通过构建高精度SPAD遥感估算模型,实现对水稻叶片叶绿素含量进行实时无损的监测,以东北地区多时期不同施氮水平下水稻叶片光谱反射率为研究对象,采用回归模型与BP神经网络算法构建不同输入量的SPAD高光谱估算模型,通过模型精度评价指标决定系数R~2、均方根误差RMSE,确定最优输入量和最优模型。结果表明:1)不同品种水稻成熟时期不同导致在孕穗期和抽穗期之间光谱反射率出现差异;2)回归模型中以DVI(D755,D930)为变量建立多项式模型估算精度最高;3)与回归模型相比,不同波长处单波段反射率作为输入量的BP神经网络模型估算精度显著提高,R~2为0.98。BP神经网络模型在隐藏节点数为7时估算精度达到稳定,在可见光和近红外处经过不同波段反射率作为输入量的尝试说明神经网络模型较为稳定,可以用来反演叶绿素相对含量。 相似文献
9.
基于高光谱的水稻叶片含水量监测研究 总被引:7,自引:2,他引:7
【目的】建立快速、无损诊断水稻叶片含水量的估测模型,为水稻水分精确管理提供依据。【方法】基于2年不同土壤水分处理和水稻品种的池栽试验,于水稻主要生育时期同步测定顶部4张叶片的光谱反射率和含水量,系统分析350-2 500 nm波段范围内任意两波段组合而成的比值(RSI)、归一化差值(NDSI)及差值(DSI)光谱指数,并分析其与叶片含水量的量化关系。【结果】不同土壤水分处理和叶位间,叶片反射光谱具有显著的时空变化特征,叶片含水量的敏感光谱波段主要位于近红外及短波红外区域;RSI (R1402, R2272)及NDSI (R1402, R2272)光谱指数与叶片含水量呈现良好的线性相关,线性拟合R2均达到0.80。基于独立试验资料对所建模型进行测试检验也显示,预测值和观察值的拟合R2也均达到0.86。【结论】RSI(R1402, R2272)、NDSI(R1402, R2272)均可用于水稻叶片含水量的定量监测。 相似文献
10.
水稻虫害和病害一样,同样会对水稻的生长发育产生严重的危害,所以在对水稻病害有针对性防治的同时,也应对水稻虫害引起足够的重视,早发现,早防治,确保稳产高产. 相似文献
11.
<正>水稻持续增产的一大障碍的病虫有水稻二化螟、水稻二化螟、褐稻飞虱、纹枯病、稻纵卷叶螟等,具有发生面积大、危害广,不断蔓延等特点,为此,必须进行有效的防治措施。一、水稻主要病虫发生动态1.水稻病虫害性状水稻白叶枯病,是细菌性病害,病菌主要从叶片水孔侵入危害水稻叶片。健全部绿色与叶缘、叶脉和叶尖出现白色条状病斑,发病部交界处明显。菌脓是在潮时,病部常溢出淡黄色颗粒。干后如同鱼籽状的菌脓将病菌带入大田,侵入秧苗,水稻在 相似文献
12.
13.
准确估算叶绿素含量对于植物生长监测、产量预测、生境的适宜性评价具有重要作用。为寻求叶片叶绿素含量的高精度估算模型,以石楠为对象,实测叶片叶绿素含量和反射光谱反射率,对原始光谱进行变换并计算植被指数,通过相关性分析挑选特征波段,运用多元逐步线性回归和偏最小二乘回归建立叶绿素预测模型。结果表明:1)FDR的逐步线性回归模型和偏最小二乘模型优于R、1/R、LR、SDR;2)DNDVI(R645,R1 370)的指数函数模型为估算叶绿素含量的最佳单变量模型;3)DRI(R747,R1 464)与RI(R733,R944)的逐步线性回归模型精度最高,验证结果的决定系数R2为0.955,均方根误差RMSE为3.145。因此,该模型可以实现叶片叶绿素含量的准确估算,从而为实现高光谱技术监测植被叶绿素含量变化提供依据。 相似文献
14.
15.
16.
【目的】阐明稻纵卷叶螟(Cnaphalocrocis medinalis)危害孕穗期水稻后,水稻冠层、未受害展开叶和受害已卷叶片的光谱特征,建立基于光谱参数的稻纵卷叶螟危害程度的诊断模型。【方法】利用便携式光谱仪测定不同卷叶率小区水稻的冠层光谱反射率,同时在不同卷叶率小区内采集未受害展开叶和已卷叶带回实验室进行室内单叶的光谱反射率测定,并采用相关分析与回归建模方法组建稻纵卷叶螟危害程度的光谱诊断模型。【结果】水稻冠层光谱反射率在近红外光区域内随卷叶率级别的升高而降低,738-1 000 nm处的反射率可较好地表征出水稻受稻纵卷叶螟危害的程度。不同卷叶率小区内的未受害叶的光谱反射率也可很好地表征水稻的受害级别,在512-606和699-1 000 nm处的反射率与小区卷叶率级别呈极显著的负相关。已受害卷叶的反射率在582-688 nm处与受害级别呈极显著正相关。水稻受稻纵卷叶螟危害后,在冠层、未受害叶及已受害卷叶光谱的红边幅值与红边面积有明显变化。利用水稻冠层光谱的红边幅值、未受害健康叶片550 nm处的反射率建立的稻纵卷叶螟危害程度的一元回归模型的诊断误差较小,而同时利用冠层、受害叶和未受害叶光谱组建的逐步回归模型的诊断误差最小,可用于小区稻纵卷叶螟危害的监测。【结论】受害区域内水稻冠层在738-1 000 nm处和未受害叶片在512-606和699-1 000 nm处的光谱反射率,以及红边幅值和红边面积均可较好地表征水稻受稻纵卷叶螟危害后的卷叶率级别,可利用这两层次的光谱指标分别对小区水稻的受害程度进行诊断。 相似文献
17.
花青素(Anthocyanin)是玉米体内的重要色素,对花青素含量的便捷、无损估测对监测玉米长势具有重要意义。利用关中地区拔节期、大喇叭口期、抽雄期以及乳熟期玉米冠层叶片Anth值及高光谱数据建立多个单因素模型和多因素模型。结果表明,不同生育期玉米叶片原始光谱特征总体一致、局部不同。变换光谱的特征波段与Anth值相关性优于原始光谱,其中一阶导数光谱特征波段最优。连续投影算法(SPA)降维能力较好,筛选出的建模参数在2~27个。最优单因素模型与多元性线性回归模型精度均为抽雄期最优,拔节期和大喇叭口期次之,乳熟期最差。所有模型中,抽雄期基于一阶导数光谱的麻雀搜索算法-极限学习机回归(SSA-ELMR)模型精度最佳,该模型建模与验证R2分别为0.847、0.895,相应nRMSE为6.44%和7.21%。本研究结果表明抽雄期是玉米叶片花青素含量反演的最佳时期,极限学习机能进一步提升传统模型精度。 相似文献
18.
基于高光谱技术的覆膜旱作水稻植株氮含量及籽粒产量估算 总被引:3,自引:0,他引:3
为建立利用光谱技术快速诊断覆膜旱作水稻植株氮营养和产量的估算模型,应用高光谱技术分析了长江中下游覆膜旱作区水稻拔节期和抽穗期内5种不同施氮水平(0、60、120、180和240kg/hm~2(N))下植株冠层光谱特征及其与植株氮素含量和产量的关系,并分别构建了植株含氮量和产量的估算模型。结果表明:拔节期和抽穗期内不同供氮水平下冠层光谱的变化规律基本一致,均随着供氮水平的增加,反射率在可见光区降低、在近红外区增大。覆膜旱作水稻植株氮含量与552和890nm 2个敏感波段构成的比值(RVI)和绿色归一化植被指数(GNDVI)的关系最佳。构建的水稻关键生育期植株全氮含量及水稻产量的估算模型预测效果均较好,其中植株全氮含量拟合方程的决定系数为0.730~0.808,采用拔节期的RVI对覆膜旱作水稻进行估产的决定系数达到0.724。本研究构建的模型可以用来估计该地区覆膜旱作水稻的氮素营养状况和作物产量。 相似文献
19.
为实现陕西关中地区夏玉米叶片含水率遥感估算,本研究通过夏玉米叶片高光谱反射率和含水率的测定,利用原始光谱及转换光谱,构建任意两波段的光谱指数,分析光谱指数与叶片含水率之间的关系,构建玉米叶片含水率估算的单因素回归模型和基于支持向量回归算法(SVR)、反向传播神经网络回归算法(BPNN)和麻雀搜索随机森林回归算法(SSA-RFR)的多因素模型,并根据模型精度筛选玉米叶片含水率估算的优化模型。结果表明,随叶片含水率的增加,短波红外波段的光谱反射率降低,最优光谱指数的构成波段主要位于短波红外波段,其中基于一阶导数光谱的比值光谱指数(R1 563/R1 406)和归一化光谱指数[(R1 563-R1 406)/(R1 563+R1 406)]与叶片含水率相关性最佳,其相关系数绝对值均达0.83;多因素回归模型的模拟效果优于单因素回归模型,基于麻雀搜索随机森林回归模型的精度最高,验证集决定系数(R2)为0.78,均方根误差(RMSE)和相对误差... 相似文献