首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以东北虎豹国家公园范围内的针叶纯林为研究对象,结合2018年9月机载LiDAR点云数据和同步地面调查数据,提取半径为15 m的圆形采样尺度下的LiDAR点云特征变量为数据基础,采用BP神经网络算法、逐步回归法分别构建林分算术平均高模型和林分加权平均高模型,实现对林分平均高的估测.其中在利用BP神经网络算法构建模型时分别选择了贝叶斯正则化算法和L-M算法作为神经网络训练算法.结果表明:BP神经网络算法对数据具有更好地解释能力,其构建的林分平均高模型相关系数(R2)均在87%以上,高于逐步回归法构建的林分平均树高模型;林分加权平均高模型精度更高,用样地加权平均高作为实测值时,采用逐步回归算法、BP神经网络L-M算法、BP神经网络贝叶斯正则化算法构建的模型的检验样地数据的决定系数(R2)分别为0.858、0.919、0.908,树高估测精度(P)分别为88.6%、89.8%、91.2%,与以林分算术平均高作为实测值构建的估测模型相比,决定系数(R2)分别提升了4.9%、3.7%、3.4%,估测精度(P)分别提升了2.9%、2.4%、1.5%;BP神经网络的不同训练函数之间无明显性能差异,两种不同训练方法构建的林分平均高模型的决定系数R2及树高估测精度(P)略有差异,但整体相差较小.  相似文献   

2.
以TanDEM-X /TerraSAR-X HH单极化干涉对和GF-2遥感数据为基础,提出结合极化干涉与混合像元分解技术的改进差分法来反演林分平均高,并利用外业数据进行精度验证。结果表明:以植被丰度校正冠层高度模型,林分平均高的估测精度和R2值得到大幅提高,均方根误差也随之降低。因此,本研究提出的方法能有效降低林分低郁闭度产生的混合像元作用对林分平均高反演的影响,提高林分平均高的反演精度。  相似文献   

3.
【目的】研究提取影像高程数据建立模型反演天山云杉林分蓄积量,获得便捷、快速提取森林蓄积信息的技术方法,为研究山地天然林精准监测与评价提供技术途径。【方法】以新疆天山中部北坡天格尔森林公园天山云杉(Picea Schrenkiana var.tianshanica)为研究对象,机载激光雷达航拍影像与样地每木检尺为数据源,使用点云分类与克里金插值法对激光雷达影像高程数据进行提取获得天山云杉树高,根据样地实测数据构建胸径-树高模型,并根据胸径-树高模型天山云杉林林分蓄积量进行反演。【结果】激光雷达影像分辨率较高,经过点云分类后,采用克里金插值法提取的树高平均精度可达89.64%,幂函数曲线模型拟合度最高,R2为0.908,结合二元材积公式,基于激光雷达影像估测蓄积量与样地实测蓄积量对比,精度达到87.43%。【结论】采用克里金插值法对天山云杉林树高信息的提取效果较好,建立胸径-树高模型弥补了激光雷达不能对胸径直接测量的缺陷,反演天山云杉林林分蓄积量,该模型可满足对新疆山地天然林数字经营管理的标准。  相似文献   

4.
基于机载LiDAR点云估测林分的平均树高   总被引:1,自引:0,他引:1  
以内蒙古上库力农场为研究区,基于高程归一化后的植被点云数据计算了植被点云高度阈值平均值,建立林分平均树高线性回归模型,并进行精度评定。结果表明,模型估测平均树高精度最高为99.81%,最低为87.09%,总体平均精度为94.56%。利用植被点云高度阈值平均值估测林分平均树高具有较高的可靠性。  相似文献   

5.
【目的】通过2018年1—2月广西国有高峰林场机载激光雷达数据及地面调查数据,采用参数方法和非参数方法建立回归模型,反演桉Eucalyptus树人工林森林蓄积量。【方法】通过点云提取点云高度参数、点云密度参数、林分郁闭度等点云特征变量,采用参数方法 (逐步回归、偏最小二乘回归)和非参数方法 (随机森林回归、支持向量机回归)进行林分蓄积量构建,通过与样地实测数据对比,进行模型回归预测性能评估,进而选择出表现最优蓄积量反演模型。【结果】采用留一法对以上4种模型进行验证,结果显示:逐步回归模型R2为0.85、均方根误差(RMSE)为23.93 m3·hm-2、平均绝对误差(MAE)为18.18 m3·hm-2;偏最小二乘回归模型R2为0.81、RMSE为26.52 m3·hm-2、MAE为19.94 m3·hm-2;核函数为RBF的支持向量回归模型R2为...  相似文献   

6.
  目的  考虑天然混交林的林分密度、直径结构和树种结构,基于代数差分方程构建最适宜的林分平均高与平均胸径关系模型,为天然混交林的立地生产力估计与可持续经营提供理论依据。  方法  以吉林省天然栎类阔叶混交林为研究对象,利用4期连续调查固定样地数据,基于Richards方程构建4种数据结构类型即typeC、typeD、typeE和typeF的基础代数差分方程,比较分析得出最优数据结构类型;基于最优数据结构类型,以5个林分密度指标即林木株数(N)、林分断面积(BA)、林分密度指数(SDIr)、可加林分密度指数(SDIa)和郁闭度(CD),5个直径多样性指数即Shannon均匀度指数(ShaI)、Simpson指数(SimI)、McIntosh均匀度指数(MceI)、Gini系数(GinI)和Berger-Parker指数(BerI),4个树种多样性指数即ShaI、SimI、MceI和BerI,构建并比较分析不同多样性代数差分方程的差异,得出最佳方程为最适宜林分平均高与平均胸径关系模型。  结果  不同数据结构类型的建模效果由好到差排序:typeD > typeC > typeF > typeE。除了typeC,其他3个数据结构类型的模型参数b和r均显著不为零(P < 0.01),说明typeD拟合的模型参数检验效果最佳。林分密度指标SDIr的建模效果最好。无论使用哪个林分密度指标,其模型参数b0、r和cSD均显著(P < 0.01),说明5个林分密度指标的模型参数检验效果均比较理想。直径多样性指数ShaI的建模效果最好。除了GinI,其他4个直径多样性指数的模型参数b0、r、cSDIr和cDI均显著(P < 0.01),表明ShaI、SimI、MceI和BerI均为较理想的直径多样性指数。4个树种多样性指数的建模拟合效果和检验数据效果差别不大。BerI的模型参数b0、r、cSDIr、cShaI和cSP均显著(P < 0.01),说明BerI是较理想的树种多样性指数。ShaI、SimI和MceI的模型参数b0、r、cSDIr、cShaI和cSP均不能同时达到0.05显著水平,说明ShaI、SimI和MceI是不理想的树种多样性指数。  结论  typeD是最优的数据结构类型,林分密度、直径多样性和树种多样性对模型均有影响。其中,林分密度指标SDIr、直径多样性指数ShaI和树种多样性指数BerI建立的多样性代数差分方程拟合效果最佳,为最适宜的天然栎类阔叶混交林林分平均高与平均胸径关系模型。   相似文献   

7.
曲延斌    王振锡    吕金城    马琪瑶    郝康迪    葛瑶   《西北林学院学报》2022,37(5):174-181
构建多变量的天山云杉林Schumacher蓄积收获模型,提高林分蓄积量反演精度,获得便捷、快速提取森林蓄积信息的技术方法,为探索山地天然林精准监测与评价提供技术途径。以2020年激光雷达影像与样地实测数据为研究材料,在激光雷达影像图中提取遥感因子,代入Schumacher蓄积收获模型中,通过再参数化来构建适用于天山云杉林的可变密度收获预估模型,并进行精度检验。结果表明,激光雷达影像分辨率较高,进行点云数据处理后,树高提取精度为89.64%,每公顷株数提取精度为85.13%,坡度提取精度为84.26%,坡向提取精度为84.26%,海拔提取精度为97.25%。结合Schumacher蓄积收获模型构建天山云杉蓄积量反演模型,R2=0.80,将检验数据代入模型中,估测蓄积量与实测蓄积量平均精度为90.22%,模型的拟合度较好。研究将立地因子、林分密度、林龄等变量引入Schumacher蓄积收获模型,对于天山云杉的蓄积估测精度有较大提高,优于以往经验模型,满足新疆山地天然林数字经营管理的标准。  相似文献   

8.
基于机载LiDAR数据的林分平均高及郁闭度反演   总被引:2,自引:0,他引:2  
以内蒙古大兴安岭森林生态系统国家野外科学观测研究站为研究区,通过2012年8月至9月获取的机载激光雷达数据与地面同步调查样地数据,构建林分平均高反演模型和林分内郁闭度反演模型。结果表明:混交林、阔叶林和针叶林的林分平均高估测精度依次为95.66%、94.11%和90.71%,林分郁闭度估测精度依次为92.73%、56.62%和85.19%。不同森林类型的林分平均高与郁闭度反演精度存在显著性差异。  相似文献   

9.
为了探究机载LiDAR数据结合极端梯度提升(XGBoost)算法估算森林地上生物量的可行性和适用性,寻求更优的森林地上生物量的监测和估算模型的建模方法。根据125块地面样地调查数据和机载激光雷达提取的点云特征变量,结合根据皮尔森相关系数和递归特征消除筛选变量,采用多元线性回归(MLR)、随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGBoost)算法,建立4种不同算法的地上生物量估测模型并进行对比分析。结果表明:在训练集中,RF模型表现最好(RMSE=9.98 t·hm-2,R2=0.93,MAE=5.69 t·hm-2),其次是XGBoost模型(RMSE=10.80 t·hm-2,R2=0.89,MAE=7.24 t·hm-2);在测试集中,采用XGBoost算法建立的模型表现(RMSE=12.20 t·hm-2...  相似文献   

10.
基于机载激光雷达和高光谱数据的树种识别方法   总被引:1,自引:1,他引:1  
训练样本的选取是影响监督分类精度的直接原因之一,数据空间分辨率越高,训练样本要求越准确,而人机交互训练样本选取推广力有限。利用机载高光谱(AISA)和激光雷达(LiDAR)主被动遥感数据,探讨基于高分辨率影像的训练样本自动提取技术以及适合树种识别的遥感变量。根据树木的结构和高度差异,开展树高分层掩膜试验,并计算光谱间夹角,在每个高度层中自动化优选树种的高纯度训练样本。计算植被指数、主成分分析等特征变量,基于支持向量机分类器对研究区进行树种精细分类。实验表明:通过对阔叶林、马尾松Pinus massoniana,毛竹Phyllostachys edulis,杉木Cunninghamia lanceolata,油茶Camellia oleifera的训练样本分层自动提取后再进行分类,激光雷达和不敏感色素指数变量能有效提高树种分类精度。其中高光谱+激光雷达+结构不敏感色素指数变量组合的分类精度最高,其总体精度和Kappa系数分别为89.12%和0.86,阔叶林、马尾松、毛竹、杉木、油茶的用户精度分别为75.00%,100.00%,86.36%,90.91%和96.55%。该方法对本研究区森林树种的识别是有效的。  相似文献   

11.
选择地处草原和森林过渡地带的上库力农场作为研究区(E120°36'50.48″~120°52'56.53″,N50°21'11.08″~50°24'32″),由机载激光雷达Leica ALS60采集实验数据,对Terra Solid分类获取的地形点建立数字高程模型(DEM);利用IDL编译一次样条有限元内插法对点云数据进行分块处理,分析生产DEM的精度。结果表明:1.0、1.5、2.0 m三种不同分辨率的DEM精度,分别为0.034、0.078、0.096 m。  相似文献   

12.
提出了利用航片计算林分平均高的方法。该方法是根据光束法空中三角测量理论,首先生成DEM和DSM模型,再从DEM和DSM模型中生成DVHM模型,最后从DVHM模型中生成林分平均高,并用固定样地林分平均高对DVHM模型生成的林分平均高进行了检验,结果表明:实测固定样地平均高与DVHM计算固定样地林分平均高差值最大为6.8m,最小为-0.3m,实测值与计算值之间存在着一定的线性关系。  相似文献   

13.
利用几种不同的滤波算法对黑龙江省凉水国家级自然保护区的点云数据进行处理,对比分析评价了各滤波算法在东北地区的滤波分类效果及对构建数字高程模型和数字表面模型的影响。指出了各算法的适用范围,并生成了高质量的数字表面模型产品———精确反映地形起伏的DEM和准确反映地物高程及形状信息的DSM。  相似文献   

14.
[目的]便于进行林分平均木、优势木数据转换,获取林分优势木信息。[方法]通过在塞罕坝机械林场获取的5个林龄。共178块临时样地的数据,对华北落叶松平均木和优势木树高相关关系进行研究。[结果]建立起平均木一优势木树高模型:DomH=2.162+0.98AvgH。通过模型可知,华木落叶松林林分优势木高要比林分平均木高高出近2m。[结论]该模型便于在只取得了林分平均木高的情况下,换算得到林分优势木高。  相似文献   

15.
为了探讨不同的立地条件下,应用机载激光雷达(Lidar)数据建立的林分蓄积量模型的反演精度。以高峰林场2016年森林资源二类调查小班数据为研究对象,运用随机森林对Lidar分位数高度、水平结构参数等变量重要性排序,构建蓄积量估测基础模型(不考虑立地质量分级)和优化模型(考虑立地质量分级)。结果表明:105块样地中有23块低立地生产力样地(LSP),有82块高立地生产力样地(HSP);在不同立地质量分级样地中,对树高和胸径进行logistic最小二乘回归曲线,胸径-树高之间存在着显著差异;基础模型和优化-AB模型估测的蓄积量在总体样地和HSP上没有显著差异(P>0.05),但在LSP上差异极显著(P<0.001);优化模型估测的蓄积量和实测蓄积量在两种立地质量的样地中差异不显著(P>0.05);基础模型估测的蓄积量和实测蓄积量在HSP没有显著差异(P>0.05),但在LSP差异极显著(P<0.001)。由分位高度(PH90)和实测蓄积量生成(含HSP和LSP)的两个伪模型曲线表明,在HPS中,实测蓄积量与P  相似文献   

16.
对于直径遵从正态分布的同龄纯林 ,通常只从经验上判定其平方平均直径在株数累积分布曲线上的位置介于 5 5 %~ 6 4%之间 .该文从林分算术平均直径 ( d) ,林分平方平均直径 (Dg)和直径变动系数 (c)三者之间的数学关系 ,导出f(c) =1+c2 - 1 c是正态分布的分布函数的自变量 ,并从数学上证明了其Dg 的株数累积百分数的范围在 5 4%~ 5 6 8%之间 ,同时介绍了用Excel中Normsdist函数求解Dg 株数累积百分数的方法 ,并用一组数据进行验证 ,计算结果与实际情况吻合 ,可靠性 95 %以上 .  相似文献   

17.
18.
[背景]快速、准确地估算水稻产量对于肥水精确管理及国家粮食政策的制定至关重要.高光谱与激光雷达遥感作为2种不同的主被动监测技术,为水稻长势信息获取提供了多样化手段.[目的]对比2种遥感监测手段在不同生态点的独立数据集中的验证精度,寻求可移植性强的产量估算模型,对水稻长势监测提供理论与技术支撑,及为精确农业提供科学指导具...  相似文献   

19.
以黑龙江省佳木斯市桦南县孟家岗林场为研究对象,利用2017年的机载激光雷达(ALS)数据构建冠层高度模型(CHM),探索坡度对单木参数估测的影响。研究区域内坡度分为4级,Ⅰ级为平坡:坡度<5°;Ⅱ级为缓坡:坡度5°~14°;Ⅲ级为斜坡:坡度15°~24°;IV为陡-急-险坡:坡度≥25°。每一级选取8块高郁闭度的人工针叶林样地(50 m×50 m),应用基于区域的分层横截面分析法(RHCSA)进行单木树冠提取,估测单木位置、树高和冠幅信息,利用目视解译的单木树顶和树冠作为参考数据进行精度检验(包括单木树冠提取精度和单木参数估测精度检验)。结果表明:不同坡度下单木树冠提取和单木定位估测均有显著差异(p<0.05)。其中,平坡上的单木树冠提取总体精度最高(均值为84.61%),陡-急-险坡上的总体精度最低(均值为41.31%);缓坡上的单木定位精度最高,平均的均方根误差为1.16 m,陡-急-险坡上单木定位精度最低,平均均方根误差为1.58 m。但是,不同坡度下单木树高和冠幅的估测结果差异并不显著(p>0.05)。因此,应用CHM进行单木参数估测时,虽然进行了地形标准化,但还是需要考虑坡度对单木树冠提取和单木定位的影响,而其对树高和冠幅的影响不大。  相似文献   

20.
以机载高光谱为数据源,对研究区土壤光谱分别进行去除包络线(CR)、倒数(IR)、对数(LR)、一阶导数(FDR)、二阶导数(SDR)、倒数&一阶导数(IFDR)、对数&一阶导数(LFDR)、倒数&对数(ILR)变换,并分别构建归一化光谱指数(NDSI)(分别相应记为NDSI-CR、NDSI-IR、NDSI-LR、NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR、NDSI-ILR)。对NDSI与胡敏酸含量的相关性进行分析,筛选出特征光谱,利用多元线性回归(MLR)、偏最小二乘(PLSR)、反向神经网络(BPNN)、支持向量机(SVM)方法构建模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)为评价指标,筛选最佳建模方法,用于田间尺度胡敏酸含量的高效估算。结果表明:NDSI-FDR、NDSI-SDR、NDSI-IFDR、NDSI-LFDR与胡敏酸含量的相关性更高。在396~1 000 nm,有3处与胡敏酸含量敏感的波段密集区域,分别位于480~550 nm与510~570 nm组合处、730~790 nm与740~800 nm组合处、880~930 nm与880~930 nm组合处。基于NDSI-LFDR建立的BPNN模型,建模集和验证集上的R2分别为0.916、0.805,RMSE分别为0.799、1.107,RPD值为2.189,可满足田间尺度胡敏酸含量估算的精度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号