首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi improve plant growth in marginal soils. This study was conducted to determine the effects of three species of VAM fungi on plant nutrition in two cultivars of corn (Zea mays L.) and one of sunflower (Helianthus annus L.). Plants were grown in pot cultures under controlled (greenhouse) conditions in a soil high in K, Mg, and P, and low in Ca and N, and were supplied with amounts of VAM-fungal inocula in which equal numbers of infective propagules had previously been determined. Analysis of variance showed highly significant main effects and interactions due to both factors (plant and fungus) for N, P, Ca, and Mg. For K, only plant effects were significant (P<0.043). The uptake of nutrients was selectively enhanced or inhibited by one or the other VAM fungus relative to non-VAM control plants. In sunflower, N concentration was markedly enhanced (73%) by the mixed inoculum of the three fungi, even though individual effects were not significant. Evaluation of leaf nutrient analyses by the Diagnosis and Recommendation Integrated System (DRIS) revealed the utility of this system to rank nutritional effects by VAM fungi in an order of relative nutrient deficiency. The DRIS therefore is seen as a useful tool in evaluating and selecting VAM fungi for the alleviation of specific nutrient disorders.Work was funded by the Program in Science and Technology Cooperation, Office of the Science Advisor, Agency for International Development, as Project No. 8.055, and was conducted in collaboration at the Colegio de Postgraduados and the Western Regional Research Center  相似文献   

2.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

3.
Mycorrhizal fungi influence plant nutrition and therefore likely modify competition between plants. By affecting mycorrhiza formation and nutrient availability of plants, Collembola may influence competitive interactions of plant roots. We investigated the effect of Collembola (Protaphorura fimata Gisin), a mycorrhizal fungus (Glomus intraradices Schenck and Smith), and their interaction on plant growth and root structure of two plant species, Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover). In a laboratory experiment, two individuals of each plant species were grown either in monoculture or in competition to the respective other plant species. Overall, L. perenne built up more biomass than T. repens. The clover competed poorly with grass, whereas the L. perenne grew less in presence of conspecifics. In particular, presence of conspecifics in the grass and presence of grass in clover reduced shoot and root biomass, root length, number of root tips, and root volume. Collembola reduced shoot biomass in L. perenne, enhanced root length and number of root tips, but reduced root diameter and volume. The effects of Collembola on T. repens were less pronounced, but Collembola enhanced root length and number of root tips. In contrast to our hypothesis, changes in plant biomass and root structure in the presence of Collembola were not associated with a reduction in mycorrhizal formation. Presumably, Collembola affected root structure via changes in the amount of nutrients available and their spatial distribution.  相似文献   

4.
Summary The influence of cropping sequence with and without fertilizer and farmyard manure application on vesicular-arbuscular mycorrhizae was studied over three consecutive seasons. In the first season maize was grown on all the plots. In the second season cowpea, groundnut and finger millet were raised on the same plots and in the third season, sunflower was grown on all the plots. The groundnut grown in the second season stimulated mycorrhizal root colonization, sporulation and infective propagules in the soil, and these effects were carried over to the next season. The plots cropped to finger millet in the second season had the lowest number of mycorrhizal spores. The application of farmyard manure stimulated vesicular-arbuscular mycorrhizae while fertilizers at the recommended level decreased the mycorrhizal propagules.  相似文献   

5.
Distinct extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N). However, substantial uncertainty exists on their role in the N cycle and their functional dependency on soil properties. We therefore examined the variation in mineralizable N and its relationship with EOM fractions, soil physical and chemical properties across 98 agricultural soils with contrasting inherent properties and management histories. Mineralizable N was determined by aerobic incubation at 20 °C and optimum moisture content for 20 weeks. We used multivariate statistical modelling to account for multi-collinearity, an issue generally overlooked in studies evaluating the predictive value of EOM fractions. Mineralization of N was primarily related to the size of OM pools and fractions present; they explained 78% of the variation in mineralizable N whereas other soil variables could explain maximally 8%. Both total and extractable OM expressed the same soil characteristic from a mineralization perspective; they were positively related to mineralizable N and explained a similar percentage of the variation in mineralizable N. Inclusion of mineralizable N in fertilizer recommendation systems should be based on at least one OM variable. The most appropriate EOM fraction can only be identified when the underlying mechanisms are known; regression techniques are not suitable for this purpose. Combination of single EOM fractions is not likely to improve the prediction of mineralizable N due to high multi-collinearity. Inclusion of texture-related soil variables or variables reflecting soil organic matter quality may be neglected due to their limited power to improve the prediction of mineralizable N.  相似文献   

6.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

7.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:4,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

8.
Summary Loss-on-ignition (LOI) and the organic C content have been used to estimate soil organic matter. Organic matter is often estimated from organic C by applying a factor of 1.724. Several authors have examined the relationship between LOI, used as an estimate of organic matter, and C by simple linear regressions. In the present study, this approach was examined in relation to two sets of data. LOI overestimates organic matter in soils with significant proportions of clay minerals because of bound water, and correcting for bound water gives some LOI: C ratios of less than 1. It is concluded that differences in the nature of the organic matter in different soils and horizons make the simple regression approach unsuitable. More attention needs to be paid to studies of the nature of the organic matter.  相似文献   

9.
In the highlands of Chiapas, southern Mexico, soil texture and soil chemical properties were measured in 70 agricultural fields covering a range of slope positions and managements. Fields represented four corn cropping systems: long fallow, short fallow, pasture–cultivation rotation, and annual continuous cultivation, in addition to fallow at rest (forest, shrubland, and pastures). Fields were located in four slope positions (upper, middle, and lower slopes, and doline floor) in a karst landscape developed on limestone with additions of acid volcanic ashes. Distribution of clays and sands were related to the toposequence and the percentage of clay fraction increased from upper slope to doline floor. Sand presented a reverse pattern. Some soil chemical properties also vary in a characteristic way along the toposequence. Exchangeable Ca2+ and Mg2+ effective cation exchange capacity (ECEC) and pH were higher in the doline floor than in the other slope positions. Soil organic matter and total N contents were 30.4 and 35.2% higher under long fallow than under annual continuous cultivation. Soil Olsen P was greater under cultivation than under fallow (irrespective of the cropping system), with the highest values under annual continuous cultivation (16.2±8.3 mg kg−1) and the lowest in the forest (5.3±2.5 mg kg−1). Exchangeable K+ was 74 and 51% higher in cultivated plots of the long and the short fallow than under forest and shrubland, respectively. Exchangeable Ca2+ and Mg2+ and ECEC did not vary significantly among the cropping systems. Inputs of basic cations through burning of tree and shrub vegetation increased the soil pH. These results indicate that land use intensification is leading to a decline in soil organic matter and total N, whereas Olsen P increased with intensification due to the continuous application of P fertilizers and sheep manure as soil conditioners in intensively cultivated fields.  相似文献   

10.
Soil water content is the most sought-after soil physical parameter. Recent experiments have shown that dual probe heat pulse (DPHP) sensors can be used to determine volumetric water content of soil without roots. Little work has been done to document the performance of DPHP sensors in the presence of roots, and no work has been done with a taprooted plant. Thus, the objective of this experiment was to determine the accuracy of DPHP sensors in measuring volumetric water content (θv) and changes in volumetric soil water content (Δθv) in soil with a branched taproot system. Another objective was to determine plant water use. A sunflower plant (Helianthus annuus L. ‘Hysun 354') was grown in a column (0.20 m in diameter and height) with Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents; FAO-Eutric Fluvisols) containing 11 DPHP sensors. Results from the sensors were compared with those from the gravimetric method. Discrepancies between measurements of soil volumetric water content and changes of soil volumetric water by the DPHP and gravimetric methods were small (within 0.018 and 0.01 m3 m−3, respectively). The sunflower had a small amount of nocturnal transpiration, and roots took up water at a higher rate near the surface of the soil than at deeper depths. The results showed that the DPHP technique can monitor volumetric soil water content in the presence of a taproot.  相似文献   

11.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

12.
Summary The relationship between the microbial activity in the soil and the effect of seed inoculation with the rhizopseudomonad strain 7NSK2 was evaluated in a series of pot experiments under greenhouse conditions. The microbial activity in plain soil, as measured by the respiratory activity, was significantly increased by the growth of the plants. Both the respiration rate of the microorganisms and the density of the bacteria and fungi in the bulk soil increased with increasing duration of the plant growth. Upon repeated short-term growth of plants on the same soil, a similar stimulation was noticed.The effect of seed inoculation on the growth of the maize cultivar Beaupré and the barley cultivar Iban was most pronounced in the microbiologically more active soils. The results suggest that the increase of the plant growth by seed inoculation is probably due to the inhibition of deleterious root microorganisms.  相似文献   

13.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity.  相似文献   

14.
The high input of mechanical energy in common agricultural practice can negatively affect soil structure. The impact of compaction (P) and rotovation (R) on soil pore characteristics was compared with those in soil from untreated reference (U) plots of a loamy sand soil receiving for 14 yr, either only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot‐water extractable carbon (Chot). Water retention, air permeability and gas diffusivity were determined at ?100 hPa in both years and for a range of water potentials in one of the years. The continued addition of animal manure had increased OC, BC, and Chot compared with the soil receiving only mineral fertilizer. Soil under treatment OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly influenced by mechanical treatment. Modelling the diffusion data normalized to the inter‐aggregate pore space showed no significant treatment effects on pore‐connectivity, although there was a tendency of more water blockage in soil under treatment MF. More studies are needed to confirm this interpretation. Our studies indicate that organic manure increases soil porosity, but compaction reduces the related gas exchange effects to the level of compacted soils receiving mineral fertilizer.  相似文献   

15.
Abstract

Barley plants grown in a soil very low in organic matter had higher concentrations of Mn, Cu, Zn, and Mo than when the plants were grown in soil considerably higher in soil organic matter. Application of some heavy metals (Co, W, Ag) resulted in much more severe phytotoxicity on low organic matter soil than on high organic matter soil. FeDTPA (ferric diethylene triamine pentaacetate acid) increased Fe levels in plants much more on low organic matter soil than on high organic matter soil. Low organic matter soil resulted in a lower Cs level from the applied Cs than from the high organic matter soil. Sulfur increased Mn concentration of plants even though all the soil was not neutralized.  相似文献   

16.
Understanding how elevated atmospheric CO2 alters the formation and decomposition of soil organic carbon (SOC) is important but challenging. If elevated CO2 induces even small changes in rates of formation or decay of SOC, there could be substantial feedbacks on the atmosphere's concentration of CO2. However, the long turnover times of many SOC pools - decades to centuries - make the detection of changes in the soil's pool size difficult. Long-term CO2 enrichment experiments have offered unprecedented opportunities to explore these issues in intact ecosystems for more than a decade. Increased NPP with elevated CO2 has prompted the hypothesis that SOC may increase at the same time that increased vegetation nitrogen (N) uptake and accumulation indicates probable declines in SON. Varying investigators thus have hypothesized that SOC will increase and SON will decline to explain increased NPP with elevated CO2; researchers also invoke biogeochemical theory and stoichiometric constraints to argue for strong limitations on the co-occurrence of these phenomena. We call for researchers to investigate two broad research questions to elucidate the drivers of these processes. First, we ask how elevated CO2 influences compound structure and stoichiometry of that proportion of NPP retained by soil profiles for relatively long time periods. We also call for investigations of the mechanisms underlying the decomposition of mineralizable organic matter with elevated CO2. Specifically, we need to understand how elevated CO2 influences microbial priming (driven by enhanced microbial energy needs associated with increases in biomass or activity) and microbial mining of N (driven by enhanced microbial N demand associated with greater vegetative N uptake), two processes that necessarily will be constrained by the stoichiometry of both substrates and microbial demands. Applying technologies such as nuclear magnetic resonance and the detection of biomarkers that reveal organic matter structure and origins, and studying microbial stoichiometric constraints, will dramatically improve our ability to predict future patterns of ecosystem C and N cycling.  相似文献   

17.
In order to evaluate the sustainability and efficiency of soil carbon sequestration measures and the impact of different management and environmental factors, information on soil organic matter (SOM) stability and mean residence time (MRT) is required. However, this information on SOM stability and MRT is expensive to determine via radiocarbon dating, precluding a wide spread use of stability measurements in soil science. In this paper, we test an alternative method, first developed by Conen et al. (2008) for undisturbed Alpine grassland systems, using C and N stable isotope ratios in more frequently disturbed agricultural soils. Since only information on carbon and nitrogen concentrations and their stable isotope ratios is required, it is possible to estimate the SOM stability at greatly reduced costs compared to radiocarbon dating. Using four different experimental sites located in various climates and soil types, this research proved the effectiveness of using the C/N ratio and δ15N signature to determine the stability of mOM (mineral associated organic matter) relative to POM (particulate organic matter) in an intensively managed agro-ecological setting. Combining this approach with δ13C measurements allowed discriminating between different management (grassland vs cropland) and land use (till vs no till) systems. With increasing depth the stability of mOM relative to POM increases, but less so under tillage compared to no-till practises. Applying this approach to investigate SOM stability in different soil aggregate fractions, it corroborates the aggregate hierarchy theory as proposed by Six et al. (2004) and Segoli et al. (2013). The organic matter in the occluded micro-aggregate and silt & clay fractions is less degraded than the SOM in the free micro-aggregate and silt & clay fractions. The stable isotope approach can be particularly useful for soils with a history of burning and thus containing old charcoal particles, preventing the use of 14C to determine the SOM stability.  相似文献   

18.
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures.  相似文献   

19.
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover.  相似文献   

20.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号