首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

2.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

3.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi improve plant growth in marginal soils. This study was conducted to determine the effects of three species of VAM fungi on plant nutrition in two cultivars of corn (Zea mays L.) and one of sunflower (Helianthus annus L.). Plants were grown in pot cultures under controlled (greenhouse) conditions in a soil high in K, Mg, and P, and low in Ca and N, and were supplied with amounts of VAM-fungal inocula in which equal numbers of infective propagules had previously been determined. Analysis of variance showed highly significant main effects and interactions due to both factors (plant and fungus) for N, P, Ca, and Mg. For K, only plant effects were significant (P<0.043). The uptake of nutrients was selectively enhanced or inhibited by one or the other VAM fungus relative to non-VAM control plants. In sunflower, N concentration was markedly enhanced (73%) by the mixed inoculum of the three fungi, even though individual effects were not significant. Evaluation of leaf nutrient analyses by the Diagnosis and Recommendation Integrated System (DRIS) revealed the utility of this system to rank nutritional effects by VAM fungi in an order of relative nutrient deficiency. The DRIS therefore is seen as a useful tool in evaluating and selecting VAM fungi for the alleviation of specific nutrient disorders.Work was funded by the Program in Science and Technology Cooperation, Office of the Science Advisor, Agency for International Development, as Project No. 8.055, and was conducted in collaboration at the Colegio de Postgraduados and the Western Regional Research Center  相似文献   

4.
Com plants were grown in a non‐sterile soil in a greenhouse or in hydroponic culture in a growth chamber. We studied the influence of chitinolytic, pectinolytic, P‐solubilizing bacterial isolates, and a collection of bacterial strains on the development of native vesicular‐arbuscular mycorrhizal (VAM) populations, colonization of roots by the VAM fungus Glomus fasciculatum and their influence on the phosphorus (P) nutrition and growth of plants. As compared with VAM native control, the most potent stimulants for root colonization of soil‐grown plants by the VAM native population was a strain of Agrobacterium radiobacter and isolate H30. All bacteria used significantly supressed shoot fresh weight of mycorrhizal plants (‐13% up to ‐37%), with the exception of Agrobacterium. Under hydroponic conditions, the P‐solubilizing isolate F27 significantly stimulated the intensity of mycorrhiza, the number of arbuscules in roots, and increased both the P concentration and P content in corn shoots (+30% and +35%), than did the VAM fungus alone. Isolate F27 significantly increased shoot dry weight as compared with the mycorrhizal control. The other bacteria did not influence biomass production of corn.  相似文献   

5.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

6.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

7.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected.  相似文献   

8.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

9.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

10.
Rhizosphere organisms affect plant development and soil stability. This study was conducted to determine the effects of a vesicular-arbuscular mycorrhizal (VAM) fungus [Glomus mosseae (Nicol. &>; Gerd.) Gerd. and Trappe] and a rhizobacterium (Bacillus sp.) on nitrate-fertilized or nodulated pea (Pisum sativum L.) plants and on the status of water-stable soil aggregates. The plants were grown in pots in a yellow clay-loam soil, and inoculated with the VAM fungus and the rhizobacterium, with one of the two, or with neither. The Bacillus sp. and G. mosseae did not affect shoot dry mass in nodulated plants. Under N fertilization, the VAM fungus enhanced plant growth, while the rhizobacterium inhibited shoot growth, VAM root colonization, and nodule formation, but enhanced the root:shoot and the seed:shoot ratios. The inhibition of shoot growth and of root colonization appeared to be related. The water stability and pH of the VAM soils were higher than those of the non-VAM soils. The rhizobacterium enhanced the water-stable aggregate status in the non-VAM soils only. Under both N-nutrition regimes, the soils had the greatest proportion of the water-stable aggregates when inoculated with both rhizo-organisms and the lowest when colonized by neither. The two rhizo-organisms affected both plants and soil, and these effects were modified by the source of N input through N2 fixation or fertilization. Received: 5 April 1995  相似文献   

11.
Earthworms and mulch can have positive or negative effects on mycorrhizae (fungus-roots) and N uptake by plants. In the present experiment, maize plants were grown under greenhouse conditions with or without tropical earthworms (Balanteodrilus pearsei) and mulch of velvetbean (Mucuna pruriens var. utilis). The formation of vesicles and hyphae of arbuscular-mycorrhizal (AM) fungi in roots and N uptake by maize plants was measured at harvest. The addition of earthworms and velvetbean reduced AM root colonization. Earthworms had no effect on plant root or shoot biomass. In the absence of velvetbean, earthworms reduced AM colonization, but when velvetbean was present, this effect disappeared. The addition of velvetbean mulch, on the other hand, had an effect on plant biomass (above- and belowground) and a positive effect on AM fungal colonization of roots in presence of worms, but a negative effect when worms were absent. When both M. pruriens and B. pearsei were added, shoot and root biomass and N concentrations increased. Vesicle formation was related to velvetbean mulch decomposition as well as the higher N concentration in maize roots. Management of mulch–earthworm interactions may be of value, particularly in low-input and organic agricultural systems, and deserves further investigation.  相似文献   

12.
Summary Sweet potatoes were micropropagated and then transplanted from axnic conditions to fumigated soil in pots in the greenhouse. Spores of Glomus clarum were obtained from Brachiaria decumbens or from sweet potatoes grown in soil infected with this fungus and with an enrichment culture of Acetobacter diazotrophicus. Three experiments were carried out to measure the beneficial effects of vesicular-arbuscular mycorrhizal (VAM) fungi-diazotroph interactions on growth, nutrition, and infection of sweet potato by A. diazotrophicus and other diazotrophs obtained from sweet potato roots. In two of these experiments the soils had been mixed with 15N-containing organic matter. The greatest effects of mycorrhizal inoculation were observed with co-inoculation of A. diazotrophicus and/or mixed cultures of diazotrophs containing A. diazotrophicus and Klebsiella sp. The tuber production was dependent on mycorrhization, and total N and P accumulation were increased when diazotrophs and G. clarum were applied together with VAM fungal spores. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM fungi or when present within G. clarum spores. More pronounced effects on root colonization and intraradical sporulation of G. clarum were observed when A. diazotrophicus was co-inoculated. In non-fumigated soil, dual inoculation effects, however, were of lower magnitude. 15N analysis of the aerial parts and roots and tubers at the early growth stage (70 days) showed no statistical differences between treatments except for the VAM+Klebsiella sp. treatment. This indicates that the effects of A. diazotrophicus and other diazotrophs on sweet potato growth were caused by enhanced mycorrhization and, consequently, a more efficient assimilation of nutrients from the soil than by N2 fixation. The possible interactions between these effects are discussed.  相似文献   

13.
For efficient use of mycorrhizal inoculum the effectiveness of the isolate used and the rate of application required for maximum colonization must be known. The objectives of this research were to (1) define the lower limit of inoculum density required for maximum colonization of Uniola paniculata in a commercial nursery and (2) evaluate the performance of a selected native dune vesicular-arbuscular mycorrhizal (VAM) isolate versus a commercially available non-dune VAM (foreign) isolate on three diverse Florida beaches. An inoculum-dilution study was conducted in a commercial nursery with cutroot inoculum of a Glomus sp. that had been isolated from a Florida dune. Maximum colonization was achieved with approximately 1 propagule ml-1 of growth medium. In a separate nursery study, 10 inoculation treatments (combinations of inoculum source and level) were established in the commercial nursery. Treatments included cut-root and sheared-root inoculum of the native dune isolate, and Nutri-Link, a commercial inoculum of G. intraradices. Colonized plants from selected treatments were transplanted to beach sites around Florida. At Miami Beach, after one growing season, the shoot mass of plants inoculated with the native isolate was approximately twice that of plants inoculated with the foreign isolate. At Katherine Abbey Hanna Park and Eglin Air Force Base there were no significant inoculum source effects on shoot mass or root length after one growing season. However, the native isolate produced a greater colonized root length than the foreign isolate in all plantings. The soil hyphal density was measured at Eglin Air Force Base, and the results showed that plants inoculated with the native isolate had more soil hyphae (4.33 mg-1) than plants inoculated with the foreign isolate (3.65 mg-1) or the non-inoculated plants (2.12 mg-1). Even where there were no obvious shoot growth responses, mycorrhizal inoculation may have an important effect on dune stabilization, as soil hyphae are known to bind sand grains and improve dune stability.Publishedas Florida Agriculture Experiment Station Journal SeriesPublishedas Florida Agriculture Experiment Station Journal Series  相似文献   

14.
Soil acidification has become a serious problem for citrus cultivation in China. As a soil amendment, biochar is expected to increase soil pH as well as soil fertility. In this study, we assessed the effect of biochar on Trifoliate orange, the most frequently used citrus rootstock, in a pot experiment using acidic red soil from the Gannan citrus production area. Plant height and shoot diameter of Poncirus trifoliata (L.) Raf. seedlings increased significantly after biochar was added to soils. This positive effect was further evidenced by the increased plant biomass and leaf net photosynthetic rate. The root system architecture (RSA) was evaluated based on root length, root surface area, root volume and root tip. Biochar amendment significantly increased the total absorptive surface area of the root system. Due to the significant role of arbuscular mycorrhizal fungi (AMF) in citrus root nutrient uptake, the AMF colonization and community in Poncirus roots were investigated. The AMF colonization rate was not significantly affected by biochar, whereas AMF diversity increased upon biochar treatment. In addition, the biochar treatment resulted in increases in soil pH, organic matter and mineral nutrients. Together, our results suggest that the positive effects of biochar on the growth performance of Poncirus seedlings can be attributed to the substantial augmentation of soil fertility, increased soil pH, optimized RSA and improved AMF species composition.  相似文献   

15.
Summary Faidherbia albida (syn. Acacia albida) (Del.) A. Chev. and Acacia nilotica (L.) Willd. were grown for 18 weeks in sterile and non-sterile soils inoculated with Glomus clarum (Nicolson and Schenck). During this period, drought stress was imposed for the last 10 (F. albida) or 12 weeks (A. nilotica) at 2-week intervals. A greater number of leaves abscissed in drought-stressed mycorrhizal plants of A. nilotica than drought-stressed non-mycorrhizal and unstressed plants. In F. albida, the number of abscissed leaves was few and similar for all treatments. At the end of the drought stress, inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi in sterile soil increased the plant biomass of the two tree species compared to the control plants. In non-sterile soil, the mycorrhizal growth response of introduced G. clarum equalled the effect of indigenous VAM fungi. There were significant interactions between the mycorrhizal and drought stress treatments and between the mycorrhizal and soil treatments for plant biomass and P uptake in F. albida. The absence of these interactions except for that between the mycorrhizal and soil treatments in A. nilotica indicates that the increased plant biomass and nutrient uptake cannot be attributed directly to a mycorrhizal contribution to drought tolerance. F. albida tolerated the drought stress by producing long tap roots and similar weights of dry matter in shoots and roots. Whereas A. nilotica tolerated the drought stress by developing larger root systems able to explore a greater volume of soil, in addition to leaf abscission, for a favourable internal water status. The introduction of G. clarum increased nodulation by A. nilotica under unstressed conditions, but at the expense of a reduced P uptake in sterile soil.  相似文献   

16.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

17.
Arbuscular mycorrhizal fungi (AMF) as a biostimulant enhance salt tolerance in plants, while the informations regarding AMF-induced changes in soil structure are only available to a limited degree. In this study, trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Diversispora versiformis under 100 mM NaCl for 85 days. The salt stress considerably inhibited mycorrhizal colonization by 26%, compared with non-salt stress. Mycorrhizal inoculation significantly increased plant height, stem diameter, leaf number, shoot biomass, and root biomass, length, surface area, and volume in comparison to non-mycorrhizal inoculation under salt stress or non-salt stress. Mycorrhization induced significantly higher production of easily extractable glomalin-related soil protein (EE-GRSP), and total glomalin-related soil protein (T-GRSP), higher percentage of water-stable aggregates (WSAs) in 0.25–0.50, 0.50–1.00, and 1.00–2.00 mm size, and lower in 2.00–4.00 mm size, regardless of non-salt stress or salt stress. Mycorrhizal soils represented higher aggregate stability (in terms of mean weight diameter) under salt and non-salt stress, which was related with root colonization, root surface area, root volume, EE-GRSP, and T-GRSP. The better soil structure by mycorrhization provided higher leaf water potential under salt stress. It suggests that mycorrhizas had a positive contribution to improve plant growth and soil structure, thereby enhancing salt tolerance.  相似文献   

18.
Summary This paper presents soil biological data from a study on the functioning of three soil-plant systems on a Gray Luvisol in Cryoboreal Subhumid central Alberta. The systems were (1) an agroecological 8-year rotation, (2) a continuous grain system, both established in 1981, and (3) a classical Breton 5-year rotation established in 1930. The objectives were to (1) determine whether changes in vesicular-arbuscular mycorrhizae (VAM) populations occurred in soil under these cropping systems, (2) discover whether these cropping systems and/or VAM infection influenced the incidence of common root rot (Bipolaris sorokiniana), and (3) use nutrient translocation indices to test the hypothesis that soil quality influences non-specific physiological conditions in barley (Hordeum vulgare L.). VAM fungal propagules in soil samples and VAM infection under controlled conditions were significantly affected by the cropping system. VAM infection accounted for more than 85% of the variability in grain yield, plant biomass yield, and plant uptake of K, S, Ca, Fe, and Zn under controlled conditions. Backward-elimination regression analyses showed that under these conditions of high available P, plant P uptake was governed by the quantity of extractable P in the soil (r 2=0.82); the VAM infection contributed practically nothing when combined with available P (R 2=0.84). Neither VAM infection nor the cropping system were related to the B. sorokiniana infection in the barley. The growth of B. sorokiniana was equal, and its sporulation superior, when grown on residues of the non-host fababean (Vicia faba L.), compared with growth on residues of barley. Higher translocation of plant nutrients to the grain in the agroecological compared with the continuous grain treatments suggested that VAM and/or the soil history affected plant physiology, possible through hormonal effects. Superior barley yields in the agroecological compared with the continuous grain treatments were partly due to increased VAM colonization, greater nutrient accumulation and translocation to the grain, but not to a reduced disease incidence. These results demonstrate the benefits of a holistic systems approach while studying biological interactions involving plants and groups of soil microorganisms.(ICRISAT journal article number 1161)  相似文献   

19.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

20.
孙婷婷  徐磊  周静  樊剑波  陈晏 《土壤》2016,48(5):946-953
针对江西贵溪Cu、Cd重金属污染土壤,通过田间试验,比较无机生物材料羟基磷灰石及3种植物(海州香薷、巨菌草、伴矿景天)与羟基磷灰石联合修复对土壤总Cu、Cd的吸收及对活性Cu、Cd的钝化吸收能力差异。采用磷脂脂肪酸(PLFA)分析法,比较不同修复模式对土壤微生物群落结构的影响,以评估土壤微生态环境对不同修复措施的响应。研究结果表明:羟基磷灰石的施加可显著提高土壤pH,并有效钝化土壤活性Cu、Cd含量,但对土壤总Cu、Cd的含量影响较小。植物与羟基磷灰石的联合修复在显著降低土壤活性Cu、Cd(P0.05)的同时,减少了植物根际土壤总Cu、Cd的含量(P0.05)。不同修复措施对土壤微生物群落组成影响差异明显。单独施加羟基磷灰石与土壤真菌群落呈显著正相关,使土壤真菌生物量提高,从而引起真菌/细菌(F/B)的升高。植物与羟基磷灰石的联合修复可有效缓解土壤真菌化的趋势,其中巨菌草与羟基磷灰石的联合修复可有效提高土壤革兰氏阳性、革兰氏阴性细菌生物量及多样性,降低F/B值,从而降低土壤真菌病害的风险。不同植物根系活性代谢引起有机质的积累促进植物与羟基磷灰石处理中根际有机碳含量显著提高。聚类增强树(Aggregated boosted tree,ABT)分析结果表明:不同修复模式是影响土壤微生物群落的重要因素,其次土壤pH和Cu的含量及活性也是改变重金属污染区域微生物群落的因子。该研究从微生物群落结构角度解释了植物与羟基磷灰石联合修复对土壤微生态体系的作用,为开展Cu、Cd等重金属污染地植物与无机生物材料的联合修复方式的筛选及实施提供可靠的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号