首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
为提高农业车辆导航路径自动跟踪精度,提出一种基于线性时变模型预测控制的路径跟踪方法。该方法将农业车辆非线性运动学模型线性化和离散化处理,作为控制器预测方程;建立以系统控制增量为状态量的目标函数,为防止无可行解,引入松弛因子;设计系统控制量、控制增量和状态量约束条件,并将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将求得的控制输入增量第一个元素作用于系统;重复以上过程,实现优化控制。基于Matlab/Simulink平台进行了模型预测控制器设计,并分别进行了导航坐标系下的直线和圆形路径跟踪试验。结果表明,所设计的控制器能够实现直线路径的完全跟踪(误差始终为0);跟踪圆形路径时,1 m/s时的横向平均跟踪误差为7.5 cm,3 m/s时的横向平均跟踪误差为10 cm;整个跟踪过程,前轮转角始终被限定在约束范围内。不同控制器参数下的仿真结果表明,增大预测时域和控制周期能够减小跟踪误差和前轮转角变化幅度,控制时域的变化对控制器路径跟踪响应速度影响较小。同时基于设计的模型预测控制器进行了场地试验。结果表明,试验小车以1m/s的速度跟踪直线路径时,横向最大误差均值为1.622 cm,横向平均误差均值为0.865 cm;跟踪圆形路径时,当行走速度低于1 m/s时,横向最大误差小于10 cm。  相似文献   

2.
赵翾  杨珏  张文明  曾珺 《农业工程学报》2015,31(10):198-203
针对农用轮式铰接车辆驾驶员工作条件恶劣的问题,该文提出了一种应用于无人驾驶系统的滑模变结构控制铰接车精确轨迹跟踪的方法。首先推导出了铰接车的运动学模型,根据该模型建立实际行驶轨迹与参考轨迹偏差的模型,之后针对偏差模型设计滑模变结构路径跟踪控制器,该控制器使用Ackermann公式设计,控制律采用指数趋近律使系统有较快的响应和较小的抖振,同时,为了进一步抑制滑模控制器固有的抖振问题,将趋近律中的符号函数替换为连续函数,以避免趋近律数值产生阶跃变化,并用Lyapunov函数证明了其稳定性,最后在硬件在环仿真中验证了控制器的实时性和路径跟踪质量。结果表明,该控制器在硬件在环仿真环境下可将横向位置偏差、航向角偏差、曲率偏差分别控制在0.21 rad(12°)、100 mm、0.17rad(1°)、0.005 m-1附近,各向偏差均在10 s内达到平衡,且误差控制在5%以内,铰接车能有效跟踪参考路径。该研究为农用轮式铰接车辆实现无人驾驶提供参考。  相似文献   

3.
为了实现铰接式车辆无人驾驶技术。针对路径跟踪问题,该文提出了基于模糊双曲正切模型的铰接式车辆路径跟踪控制算法。首先根据实地试验测得铰接式车辆的横向偏差、横向偏差变化率、航向角偏差、航向角偏差变化率和转向角的样本数据,建立其模糊双曲正切模型。在此基础上,采用改进的自适应反向传播(back propagation,BP)神经网络对模型进行参数辨识,并推导了基于Cauchy鲁棒误差估计器的权系数调解率公式。然后设计基于极点配置方法的控制器,得到转角的反馈控制率。从试验数据可以看出:车辆横向位置偏差、航向角偏差、转角控制量分别控制在0.008 m、0.07 rad(0.5°)、0.21 rad(12°)附近,各向偏差均稳定,误差控制在1%以内。该种路径跟踪控制算法的研究可为铰接式车辆无人驾驶提供参考。  相似文献   

4.
农用车辆自动导航定位方法   总被引:1,自引:5,他引:1  
农用车辆自动导航技术可有效提高作业精度、实现农田规模化生产。该文以电瓶车为试验平台,使用 RTK DGPS、RTD GPS 和电子罗盘分别采集电瓶车的位置信息和航向角度信息,对农用车辆的导航定位方法进行了研究。试验时,以 RTK DGPS 采集的数据作为标准轨迹。在对试验数据进行空间配准后,采用 Kalman 滤波技术对 RTD GPS 和电子罗盘的数据进行了融合;通过计算综合权重值,对单 GPS 系统和融合系统的性能进行测试与评估,其值分别为 0.006、0.002。由此可知,采用 Kalman 滤波的电子罗盘和 RTD GPS 的组合导航系统,定位精度相对较高,稳定性较好,整体性能优于单 GPS 系统。  相似文献   

5.
基于增强Tiny YOLOV3算法的车辆实时检测与跟踪   总被引:8,自引:8,他引:0  
针对深度学习方法在视觉车辆检测过程中对小目标车辆漏检率高和难以实现嵌入式实时检测的问题,该文基于Tiny YOLOV3算法提出了增强Tiny YOLOV3模型,并通过匈牙利匹配和卡尔曼滤波算法实现目标车辆的跟踪。在车载Jetson TX2嵌入式平台上,分别在白天和夜间驾驶环境下进行了对比试验。试验结果表明:与Tiny YOLOV3模型相比,增强Tiny YOLOV3模型的车辆检测平均准确率提高4.6%,平均误检率减少0.5%,平均漏检率降低7.4%,算法平均耗时增加43.8 ms/帧;加入跟踪算法后,本文算法模型的车辆检测平均准确率提高10.6%,平均误检率减少1.2%,平均漏检率降低23.6%,平均运算速度提高5倍左右,可达30帧/s。结果表明,所提出的算法能够实时准确检测出目标车辆,为卷积神经网络模型的嵌入式工程应用提供了参考。  相似文献   

6.
车辆转向统一动力学模型及模型跟踪控制   总被引:5,自引:2,他引:3  
为将两轴车辆控制算法应用于多轴车辆,该文在多轴转向车辆二自由度动力学模型的基础上,建立了多轴转向车辆和两轴车辆的统一动力学模型;在此统一动力学模型的基础上可通过对任两轴车轮的控制就能实现对多轴转向车辆的控制。同时根据零侧偏角控制策略构建了多轴车辆的动力学理想模型;对前轮机械转向和前轮电控转向的多轴转向车辆,分别设计了基于模型跟踪的控制系统并进行了分析。分析结果表明,采用统一动力学模型、零侧偏角控制策略和模型跟踪控制方法,控制系统调整方便且较易实现,也能达到理想的控制效果。  相似文献   

7.
8.
从轻量化和强度安全性的角度出发,综合运用了概率密度函数联合积分法与功能密度函数积分法,整理并推导了农用车辆半轴的保守模糊可靠度计算公式,即应力、强度及构件的几何尺寸等参数都为正态分布,隶属度函数为七次抛物线分布时的模糊可靠度计算公式;通过VB编程实现农用车辆半轴保守模糊可靠度设计的数值解计算,根据输入的原始数据、原函数与积分区间的特点进行积分变换,然后利用中点公式积分法与龙贝格求积法进行积分计算.程序可直接应用于设计计算中,以提高农用车辆半轴的设计水平.  相似文献   

9.
为研究性能指标对渠系控制器参数优化的效果,该文基于无量纲性能指标,利用MATLAB程序"渠系控制仿真系统"整定了PI控制器参数,同时进行了仿真对比分析。在梳理渠系控制指标领域现有研究成果的基础上,文章首先以渠池固有参数对现有渠系性能指标进行无量纲化处理及追加,并进一步衡量各水位、流量、时间指标的相关性和代表性建立了含权重的综合指标。在程序"渠系控制仿真系统"平台上,采用实例验证法结合2个设计流量约为170 m3/s、8 m3/s的不同规模渠系进行了分析验证。结果表明:无量纲性能指标能够比较不同渠系的控制优劣,并可确定其优化目标数量级;以综合指标在E-3数量级为控制器优化目标,可同时满足各单一无量纲性能指标的优化要求,较好地均衡系统逐项动态性能;流量指标和闸门开度指标存在高耦合关系,在2个实例中其相关度分别为0.995、0.993;控制器比例系数—流量指标变化曲线存在敏感与否的分区,时间积分常数对水位指标敏感,作用曲线呈"U"型。研究提出的无量纲性能指标及综合指标可比较不同规模渠系控制系统性能,也适用于渠系的控制器参数优化设计,对中国大量的调水工程渠道运行调度及灌区渠网调控具有一定的参考价值。  相似文献   

10.
路径跟踪控制技术作为农业机械导航的核心,是提高控制系统控制精度和对环境适应性的关键,可提高农机具作业精度和效率,同时可避免重复作业和遗漏现象,减少农业生产资料浪费。该文根据农业机械导航路径跟踪控制方法中是否涉及农机模型,将路径跟踪控制技术分为与农机运动学模型相关、与农机动力学模型相关以及与模型无关的路径跟踪控制方法。通过对原理的解析明确了各类控制方法的优缺点,及对现有解决方案进行了总结分析,指出了现有方案存在共性或个性问题,由此完成了对现阶段国内外针对农业机械导航路径跟踪控制方法的研究进展的阐述。通过对各类控制方法适用性及农机导航产品发展现状的分析,提出了农机导航路径跟踪控制方法的发展展望,以期为后续路径跟踪控制方法的研究提供指导性方向和有针对性的参考,具体如下:1)明确了现有模型对农机运动过程描述的局限性,指出高精度农机模型研究的必要性;2)为提升控制方法自适应性和鲁棒性,研究需从常规工况向极限工况和复杂工况拓展;3)明确单一控制方法的局限性,明确多方法融合控制的发展趋势。  相似文献   

11.
基于Gray-EKF算法的智能农业车辆同时定位与地图创建   总被引:1,自引:1,他引:0  
为了提高智能农业车辆在未知环境中同时定位与地图创建精度,将灰色预测理论和扩展卡尔曼滤波融合,提出了基于灰色扩展卡尔曼滤波的同时定位与地图创建算法。算法在传统的扩展卡尔曼滤波基础上,通过改进的滑窗灰色预测理论建立传感器的GM(1,1)观测预测模型,进而完成新息的计算。为了提高观测精度和抗干扰能力,系统使用了三目摄像机作为观测传感器,并提出了一种简易的权值标定算法。试验表明:精度权值标定后的三目摄像机具有较高的测量精度,16组测量数据中有12组的测量误差小于1%,并能减小由于干扰造成的误差。在30个人工路标的停车场环境中,车辆对路标x和y方向的观测误差均值为0.074和0.073m,自身定位误差为0.140m,误差均方差为0.048。在60个人工路标的停车场环境中,车辆对路标x和y方向的观测误差均值为0.061和0.068m,自身定位误差为0.109m,误差均方差为0.038。在60个人工路标的旱地环境中,车辆对路标x和y方向的观测误差均值为0.079和0.077m,自身定位误差为0.122m,误差均方差为0.049。研究认为,与传统的EKF SLAM算法相比,Gray-EKF SLAM算法具有更高的精度。  相似文献   

12.
为了实现智能小车在各种不同的路径下稳定高效的进行图像导航,该文以自主设计了满足于设施农业用的四轮独立驱动的高地隙小车作为平台,采用TI公司的TMS320DM642高性能数字多媒体处理器为核心处理器,建立了识别路径的视觉检测系统,实现了对多种路径标识的实时采集和图像显示,提出了用于实际路径检测的图像处理的改进算法,包括利用2G-R-B颜色特征识别绿色植物、中心线法提取路径、双折线拟合的Hough变换提取路径、多折线拟合的Hough变换提取路径等,以实现小车的自主导航。试验结果表明所开发的路径识别与跟踪控制系统能对不同颜色的标识线、绿色植物与裸露地面的分界线等一系列路径进行识别和导航控制,系统适应性好、抗干扰能力强,稳定性高、实时性好,满足无人控制的农田作业需求,节省劳动力,提高生产效率。该研究可为应用于田间作业的高地隙小车的路径识别与跟踪控制系统设计提供参考。  相似文献   

13.
基于DSP的小型农用无人机导航控制系统设计   总被引:3,自引:2,他引:1  
为适应农业信息化要求,针对农业用小型无人机要求体积小、质量轻、稳定、可靠、低空低速飞行的特点,该文提出了一种小型无人机导航控制系统,其导航控制与数据采集采用单独DSP芯片进行处理,以降低导航控制系统的复杂度。系统以TMS320F2812芯片为核心,集成了GPS、红外传感器和电子罗盘,并扩展了DSP芯片异步串行通信接口,保证了数据通信的实时性、完整性和可靠性,实现了无人机的自主导航控制。飞行试验表明,该设计方案具有较高的可靠性。该研究可为农业用小型无人机的设计与应用提供参考。  相似文献   

14.
为了提高农机路径跟踪系统控制性能对作业速度变化的适应性,该研究提出一种基于预瞄运动学模型的快速预测控制方法。采用预瞄跟随理论建立预瞄航向误差模型,并将其作为输出方程与路径跟踪误差常规状态方程联立,构建预瞄运动学状态空间误差模型,进而运用模型预测控制算法与输入参数化衰减策略设计路径跟踪控制律。仿真试验结果表明,在不同作业速度下,预瞄模型预测控制器的直线路径跟踪横向误差均渐近趋于0,行驶曲线均无超调;当作业速度为1、3与5 m/s时,预瞄模型预测控制器的圆形路径跟踪横向最大绝对误差分别为8.52、10.42和10.82 cm,标准差分别为3.96、5.83和6.17 cm;当控制时域为10、30与60时,预瞄模型预测控制器的运算周期相对常规模型预测控制器分别减小7.5%、43.0%和48.5%;与常规模型预测控制相比,预瞄模型预测控制能够在确保路径跟踪系统控制精度的同时有效改善系统的动态性能和提高系统的实时性,使不同作业速度下的跟踪效果更加均衡。田间测试结果表明,在0.5~5 m/s作业速度范围内,预瞄模型预测控制器对作业速度变化具有较强的适应性,能够使农机快速平稳地跟踪参考路径并具有较高的控制精度,其直线路径跟踪的横向最大绝对误差均值小于5.5 cm、标准差均值小于2.5 cm,圆形路径跟踪的横向最大绝对误差均值小于15.5 cm、标准差均值小于8.5 cm,跟踪效果满足农机实际作业要求,适于复杂作业环境或高速作业场合。  相似文献   

15.
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

16.
基于GNSS的农机自动导航路径搜索及转向控制   总被引:8,自引:8,他引:0  
为提高农机自动导航系统性能,提出了一种基于全球导航卫星系统(global navigation satellite system,GNSS)的农机自动导航路径搜索方法和基于预瞄点搜索的纯追踪模型。根据农机不同作业需求,导航系统可选择直线路径搜索或曲线路径搜索,实现农机直线和曲线自动导航作业;建立基于预瞄点搜索的纯追踪模型,并将其用于农机转向控制,该模型不涉及复杂的控制理论,适用性较强。为验证路径搜索方法和纯追踪模型性能,以John Deere拖拉机为试验平台,进行了农机直线跟踪和转向控制导航试验。结果表明:直线路径跟踪导航试验,车速为0.8、1.0和1.2 m/s时,导航均方根误差分别为3.79、4.28和5.39 cm;转向导航试验,车速为0.6 m/s时,在弓形转弯和梨形转弯导航方式下,导航均方根误差分别为25.23和14.42 cm;与模糊控制方法对比试验,直线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为4.30和5.95 cm,在曲线路径导航方式下,应用该文方法和模糊控制方法的导航均方根误差分别为13.73和21.40 cm;基于GNSS的农机自动导航路径搜索方法和预瞄点搜索的纯追踪模型可以得到较好的定位控制精度,可满足田间实际作业的要求。  相似文献   

17.
为了提高三轴车辆在极限工况下的稳定性,充分考虑轮胎的非线性特点以及车辆转向过程中轮胎垂直载荷的转移情况,建立了三轴车辆全轮转向的非线性二自由度整车动力学模型,以车辆的质心侧偏角为零为控制目标,基于模糊控制理论,采用前馈加状态反馈的控制方法设计了零质心侧偏角比例前馈加质心侧偏角反馈的全轮转向模糊控制系统,最后利用MATLAB/Simulink建立了该控制系统的仿真模型,对控制系统在车辆极限转向工况下的控制性能进行了仿真验证。结果表明,全轮转向模糊控制方法可使三轴车辆的质心侧偏角基本为0,横摆角速度和侧向加速度均能很快达到稳态值,因而可有效防止车辆在极限转向工况下发生侧滑失稳,可显著提高车辆的主动安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号