首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
采用室内营养液培养及PEG模拟水分胁迫的方法,在3种供氮形态\[NH4+、NO3-、NH4+/NO3-(质量比)为50∶50\]下,主要研究分蘖期水稻在非水分胁迫及水分胁迫条件下的氮素利用效率及对不同形态氮素的消耗。在非水分胁迫条件下,分蘖期水稻在NH4+/NO3-为50∶50时生物量增量最大;而在水分胁迫条件下,单一供NH4+ N营养的水稻生物量增量最大。在两种水分条件下,当NH4+/NO3-为50∶50时,分蘖期水稻对营养液中NO3- N的消耗量明显大于NH4+ N;此外,在两种水分条件下,均以单一供NH4+ N营养水稻的光合速率、氮素利用率和水分利用率最高。  相似文献   

2.
为区分水稻根系与地上部对水分胁迫的生理响应,采用分根营养液培养及聚乙二醇(PEG6000)模拟水分胁迫的方法,研究了局部根系在水分胁迫下不同形态氮素营养(NH4+、NO3- 、NH4+与NO3-等体积混合) 对水稻幼苗水分与氮素吸收利用的影响。结果表明: 1)全根水分胁迫显著抑制了单供NO3- N营养条件下水稻的生长,而对单供NH4+ N营养条件下水稻生长的影响较小。局部根系水分胁迫对3种供氮形态营养下水稻总生物量没有明显影响,但对单供NO3- N营养水稻根系的生物量、根系总长、根体积、平均直径以及根表面积的影响最大,均以未受水分胁迫的一侧根系生物量明显高于另一侧(受水分胁迫)。2)水分胁迫促进根系对NO3- N的消耗。3)全根水分胁迫严重抑制了单供NO3- N营养水稻的光合速率,但对单供NH4+ N营养水稻的影响较小。不论局部根系水分胁迫还是全根水分胁迫对3种供氮形态的生理水分利用率均无显著影响。4)全根水分胁迫显著降低了单供NO3- N营养水稻的光合氮素利用率。  相似文献   

3.
水稻根系细胞膜H+ ATPase对铵硝营养的响应差异   总被引:2,自引:0,他引:2  
用两相法分离了铵态氮(NH4+ N)和硝态氮(NO3- N)营养下水稻苗期根系的细胞膜,并测定了细胞膜上H+ ATPase的水解活性,以期阐明水稻根系细胞质膜上H+ ATPase对不同氮素形态的响应差异。两相法分离的细胞膜纯度达到95%以上。在离体条件下,NH4+ N营养的水稻根系细胞膜H+ ATPase的水解活性和H+ ATPase的Km和Vmax均显著高于NO3- N营养。NH4+ N营养的水稻根系细胞膜H+ ATPase最适pH值为6.0,而NO3- N营养的在pH 6.2左右。Western blot结果表明,NH4+ N营养的水稻根系细胞膜H+ ATPase浓度显著高于NO3- N营养的H+ ATPase。说明NH4+ N营养的水稻根系细胞膜H+ ATPase活性高是因为单位细胞膜上的H+ ATPase分子数量大于NO3- N营养,并且在NH4+ N营养的水稻根系细胞膜上可能存在着与NO3- N营养不同的H+ ATPase的同工酶。因此,NH4+ N营养的水稻根系细胞膜H+ ATPase活性高很可能是水稻根系对铵态氮营养的一种适应机制。  相似文献   

4.
不同氮源条件下橡胶树小苗NH4+和NO3-的吸收特征   总被引:3,自引:2,他引:1  
采用改进常规耗竭法,研究(NH)SO4,KNO3,NH4NO3三种氮源条件下橡胶树小苗对N4+和NO3-的吸收特性.结果表明:不论是单一氨源(NH4+-N或NO3--N)还是NH4+-N和NO3--N的混合氮源,橡胶树小苗对NH4+的吸收量均大于NO3-的吸收量,其差异在浓度大于0.5 mmol/L的混合氮源下达显著水平.混合氮源条件下,不论是NH4+还是NO3-的吸收量,均比单一氮源条件下的大,且其差异分别在浓度小于1.25 mnlol,L(NH4-)和0.25 mmol/L(NO3-)时达显著水平.吸收动力学特征表现为,单一氮源条件下,橡胶树小苗对NH4+的最大吸收速率和离子亲和力大于NO3-,表明小苗更喜好NH4+-N.而在NH4+-和NO3-N的混合氮源条件下,橡胶树小苗吸收NH4+的Vma值和离子亲和力都较单一氮源时高;吸收NO3-的Vma和KmI值都有所下降,但Km值的下降幅度比Vma值的大,说明混合氮源条件能同时促进橡胶树小苗对NH4+和NO3-的吸收.与单一NH4++N营养相比,橡胶树小苗可能更喜好NH4+-N和NO3--N混合营养.用LB法和H法2种方法处理数据,橡胶树小苗吸收NH4+和NO3-的动力学特性基本相同,不同之处仅在于H法所得的参数值Vma和Km普遍略大于LB法的.  相似文献   

5.
利用15N标记研究铵态氮与硝态氮对大豆的营养作用   总被引:1,自引:0,他引:1  
以东农47为材料,采用15N示踪技术,利用组培的方式进行了铵态氮与硝态氮营养作用研究.结果表明,在无菌条件下,以NH4+-N为唯一氮源大豆表现出了铵盐毒害;以NO3--N和混合态氮作为氮源时,大豆可以正常生长.以混合态氮为氮源植株总生物量最大,以NO3--N为氮源次之,以NH4+-N为氮源的处理生物量最小,不同形态氮之间生物量差异达到显著水平.随氮素水平增加,外源氮在植株中比例增加,当培养基中NH4+-N与NO3--N比例为1∶1时,大豆吸收NH4+-N与NO3--N比例为1.5∶1,叶片、茎、根NH4+-N与NO3--N吸收比例分别为1.6∶1、1.4∶1和1.6∶1,说明硝态氮的存在能够解除铵盐毒害并促进大豆对氮素的吸收利用.  相似文献   

6.
 为比较不同形态氮素营养下籼稻与粳稻对水分胁迫的响应,采用室内营养液培养,通过供应不同形态氮素及100 g/L PEG6000模拟水分胁迫的方法,对4种不同基因型水稻的生长状况及渗透调节能力进行了分析。结果表明:1)与铵态氮营养相比,水分胁迫明显抑制了硝态氮营养籼稻和粳稻的地上部生长,降低了叶片净光合速率,且对粳稻的抑制效果更加显著;2)水分胁迫条件下,铵态氮营养籼稻和粳稻植株内的游离氨基酸和K+可以更有效地积累、转运和穿梭,以致伤流液和韧皮部汁液拥有更强的渗透调节能力;3)铵态氮营养籼稻和粳稻在通过渗透调节降低叶片渗透势的同时,能够提高或维持叶片含水量。由此可见,铵态氮营养下,籼稻和粳稻均可通过渗透调节促使叶片在渗透势下降和维持含水量之间达到合理的平衡,保证叶片在水分胁迫下维持正常的光合速率,提高了水稻的抗旱能力。  相似文献   

7.
氮素形态对冬油菜幼苗生长的影响   总被引:2,自引:0,他引:2  
通过营养液培养试验研究了硝态氮(NO3-)和铵态氮(NH4+)不同搭配比例对甘蓝型油菜中双9号幼苗生长的影响。试验设5个处理:NO3-:NH4+分别为100:0(N1)、75:25(N2)、50:50(N3)、25:75(N4)和0:100(N5)。结果发现,与N1处理相比,油菜幼苗干重、根长、根表面积、根体积、氮(N)含量及N积累量、硝酸还原酶活性等指标均以N2处理最高,之后随着营养液中NH4+比例的升高而显著降低。而光合色素含量、铁(Fe)和锰(Mn)浓度却随营养液中NH4+的添加而显著升高,锌(Zn)浓度随NH4+的添加而显著降低。说明中双9号属于喜硝态氮的作物,在供应NO3-时搭配适量的NH4+更有利于其生长,但是当NH4+比例超过50%时,则会显著抑制其生长。  相似文献   

8.
在施氮总量相同的条件下,比较NO3--N、NH4+-N的比例分别为1∶0、2∶1、4∶1、6∶1、10∶1和0∶1时对文心兰“黄金2号”生长发育的影响。试验结果表明,文心兰“黄金2号”苗期和花期生长发育的最佳N源是NO3--N/NH4+-N为10∶1,其次为6∶1;随着NO3--N比例的增加,文心兰植株体内N、K含量呈上升趋势,NH4+-N 利于根部对Ca,Mg素的吸收,NO3--N 利于茎部对Ca,Mg的吸收;在文心兰整个生长发育阶段,中苗期至花芽分化期对N,K元素的吸收最旺,对P,Ca,Mg整体吸收量  相似文献   

9.
利用FACE(Free Air Carbon Dioxide Enrichment)平台技术,研究了低氮(125 kg/hm2,以纯N计)和常氮(250 kg/hm2)水平下,高浓度CO2(周围大气CO2浓度+200 μmol/mol)对水稻不同生育期功能叶N代谢关键酶活性的影响。结果表明,高浓度CO2提高了叶片硝酸还原酶和蛋白水解酶的活性,两者在常N下的响应程度大于在低N下的响应程度;高浓度CO2降低了低N下叶片谷氨酰胺合成酶和谷氨酸脱氢酶(NADH GDH)活性,常N水平下酶活性的下降趋势得到改变或缓解。由此可见,高浓度CO2条件下NO3-转化为NH4+加速,而NH4+进一步同化为有机N却受阻,而且,由于后期蛋白水解加速,将进一步加剧叶片N含量的下降。这是水稻叶片N含量下降的内在因素。而增施N肥,有利于同化酶的表达,降低叶片蛋白水解酶活力,从而缓解叶片N含量的下降。  相似文献   

10.
利用动态离子流检测技术对稻瘟病侵染的水稻根系NH4+和NO3-做了动态检测。发现抗病水稻在病害侵染时,根系对NH4+和NO3-具有很好的保持能力,而不抗病水稻根系对NH4+和NO3-的吸收能力明显下降,氮素含量测定也证实了不抗病水稻的氮素吸收减少,造成这种现象的原因可能是因为稻瘟病菌对不抗病水稻根系的NH4+和NO3-转运体直接或间接的起到了抑制作用。此外,在正常生长情况下两种水稻具有不同的NH4+和NO3-离子吸收特征,动态离子流检测技术对这种离子吸收特征的检测,为早期快速、无损筛选氮营养高效水稻品种提供了有效工具。  相似文献   

11.
不同供氮形态下水稻苗期磷吸收累积与根系形态的关系   总被引:1,自引:1,他引:1  
【目的】植物根系形态对于适应低磷胁迫具有一定的可塑性,对提高磷的吸收利用具有重要意义。因此,本研究以长江中下游地区主推的102个水稻品种为供试材料,研究根系形态与水稻幼苗磷吸收利用的相关性。【方法】采用国际水稻所营养液培养方法,研究在NH_4^+-N和NO_3^--N供应条件下苗期植株生物量、磷含量和磷素累积量及其与根系形态指标的相关性。【结果】研究结果表明,在相同供氮水平(40 mg/L)下,供应NH_4^+-N时,水稻苗期平均生物量为67.87 mg/株,比供应NO_3^--N时高4.27 mg/株;水稻苗期平均磷含量为0.49%,比供应NO_3^--N时高0.10%;水稻苗期平均磷累积量为0.37 mg/株,比供应NO_3^--N时高0.10 mg/株。在NH_4^+-N条件下,水稻根系形态指标变异系数呈现根尖数>总根长>分支数>总根面积>交叉数>总根体积>平均根系直径的规律;在NO_3^--N条件下,水稻根系形态指标变异系数呈现根尖数>分枝数>总根长>总根面积>交叉数>总根体积>平均根系直径的趋势。在NH_4^+-N条件下,总根长、总根面积、分枝数、交叉数四个形态指标与植株生物量、磷含量、磷累积相关最为显著(P<0.01),而在NO_3^--N培养下,总根长、总根面积、根尖数、交叉数与植株生物量及磷素吸收累积指标相关性最为显著(P<0.01)。【结论】供应氨态氮,水稻营养指标与根系形态指标的相关性更高。水稻苗期根系总根长、总根面积、交叉数可作为水稻磷高效评价的重要指标。  相似文献   

12.
为给小麦优质生产中合理施用氮肥提供理论依据,以小麦品种豫麦34为材料,采用盆栽方法研究了三种氮素形态对豫麦34地上器官游离氨基酸和籽粒蛋白质含量的影响。结果表明,小麦叶片、茎、鞘和籽粒中游离氨基酸含量均以开花期最高;穗轴和颖壳中游离氨基酸含量以花后10 d最大;各叶位游离氨基酸含量高低表现为旗叶>倒二叶>倒三叶>倒四叶。三种氮素形态处理比较,各器官中(开花期倒三叶、倒四叶、穗轴和颖壳除外)游离氨基酸含量于花后30 d前均以酰胺态氮处理最大,铵态氮和硝态氮处理下互有高低,花后30 d以酰胺态氮处理最低;硝态氮处理下籽粒球蛋白含量最高,铵态氮处理下醇溶蛋白和麦谷蛋白含量最高,酰胺态氮处理下清蛋白含量、麦谷蛋白/醇溶蛋白比值、蛋白质含量最高,氮素形态间差异显著。说明施用酰胺态氮肥能够提高籽粒灌浆前、中期地上各器官中游离氨基酸含量,促进灌浆后期游离氨基酸向籽粒中的转运,提高籽粒蛋白质含量,因此,酰胺态氮肥是豫麦34品质栽培中首选的氮源。  相似文献   

13.
pH值对茶树生理活动的影响   总被引:1,自引:0,他引:1  
方兴汉 《茶叶科学》1987,7(1):15-22
水培试验结果表明,硝态氮源茶树的适宜pH值为4.5—6.0,最适pH值为6.0;氨态氮源茶树的适宜pH值为4.5—6.5,最适pH值为5.5。硝态氮茶苗比氨态氮生长好,但叶色发黄。在适宜pH范围内,茶树对氮磷钾的吸收量多,水分代谢旺盛,光合效率高,呼吸作用随pH升高而增强;在适宜pH范围外,茶树的生理活动明显受到抑制,生长不良和伤害致死。在水培过程中,溶液的pH不断向酸性方向变化,表现了茶树的喜酸性特性,但在适宜pH范围内向酸性变化小,范围外变化大,氨态氮源较硝态氮源变化大。  相似文献   

14.
脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响   总被引:10,自引:0,他引:10  
【目的】本研究旨在阐明脲酶抑制剂(urease inhibitor,UI)和硝化抑制剂(nitrification inhibitor,NI)对稻田土壤氮素转化的影响,探讨抑制剂提高稻谷产量以及氮肥利用率的机理。【方法】本试验设在我国南方红壤稻田,共5个处理:1)不施氮肥(CK);2)尿素(U);3)尿素+脲酶抑制剂(U+UI);4)尿素+硝化抑制剂(U+NI);5)尿素+脲酶抑制剂+硝化抑制剂(U+UI+NI);脲酶抑制剂采用N-丁基硫代磷酰三胺(NBPT),硝化抑制剂采用3,4-二甲基吡唑磷酸盐(DMPP)。在水稻分蘖期和孕穗期测定土壤脲酶活性、硝酸还原酶活性、土壤铵态氮含量、硝态氮含量以及微生物碳、氮的含量,分析NBPT与DMPP对水稻两个主要生育期土壤氮素供应的影响,比较各处理的产量以及氮肥利用率,通过逐步回归分析研究以上各指标对产量的影响,探明脲酶抑制剂NBPT与硝化抑制剂DMPP在稻田的增效机理。【结果】1)与单施尿素相比,添加NBPT以及NBPT与DMPP配施均显著提高稻谷产量与地上部氮素回收率,两个处理分别增产6.56%与8.24%,氮素回收率提高幅度为19.4%与23.7%。2)与单施尿素相比,添加NBPT以及NBPT与DMPP配施,显著降低水稻分蘖期的土壤脲酶活性和铵态氮含量,显著提高孕穗期的铵态氮含量,而对此时期的脲酶活性无显著影响,所有处理对两个时期的硝态氮含量、硝酸还原酶活性、微生物量碳、氮含量均无显著影响;因此,NBPT对于抑制脲酶活性以及提高铵态氮含量的作用主要在孕穗期之前,而单施DMPP没有显著效应。3)从各项土壤指标与水稻产量相关性的逐步回归分析结果来看,水稻分蘖期与孕穗期稻田土壤中铵态氮含量对水稻产量影响显著,而且孕穗期的影响大于分蘖期,其余指标则对产量无显著影响。【结论】脲酶抑制剂NBPT以及NBPT与硝化抑制剂DMPP配施显著提高孕穗期土壤中的铵态氮含量,显著提高稻谷产量以及地上部氮素回收率,证明了生产上氮肥后移的重要意义。  相似文献   

15.
不同供氮形态对旱作水稻生长和养分吸收的影响   总被引:1,自引:0,他引:1  
采用土培试验种植旱作水稻,研究铵态氮(A)、硝态氮(N)和铵态氮加硝化抑制剂(A+DCD)对旱作水稻分蘖期、孕穗期生长和养分吸收的影响。在分蘖期和孕穗期,铵态氮和铵态氮加硝化抑制剂处理的水稻各部位生物量、分蘖数及新完全展开叶的叶面积均较硝态氮处理的高;铵态氮加硝化抑制剂处理的水稻叶片净光合速率最高,硝态氮处理的水稻叶片净光合速率最低; 铵态氮和铵态氮加硝化抑制剂处理的水稻体内的钾向叶片中分配比例较高,而硝态氮处理的水稻向茎秆中分配的比例较高。  相似文献   

16.
We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water,loss of ammonia through volatilization from paddy fields,rice production,nitrogen-use efficiency,and nitrogen content in the soil profile.The concentration of NH4+-N in surface water and the amount of ammonia lost through volatilization increased with increasing nitrogen application level,and peaked at 1-3 d after nitrogen application.Less ammonia was lost via volatilization from clay soil than from sandy soil.The amounts of ammonia lost via volatilization after nitrogen application differed depending on the stage when it was applied,from the highest loss to the lowest:N application to promote tillering > the first N topdressing to promote panicle initiation(applied at the last 4-leaf stage) > basal fertilizer > the second N topdressing to promote panicle initiation(applied at the last 2-leaf stage).The total loss of ammonia via volatilization from clay soil was 10.49-87.06 kg/hm2,equivalent to 10.92%-21.76% of the nitrogen applied.The total loss of ammonia via volatilization from sandy soil was 11.32?102.43 kg/hm2,equivalent to 11.32%-25.61% of the nitrogen applied.The amount of ammonia lost via volatilization and the concentration of NH4+-N in surface water peaked simultaneously after nitrogen application;both showed maxima at the tillering stage with the ratio between them ranging from 23.76% to 33.65%.With the increase in nitrogen application level,rice production and nitrogen accumulation in plants increased,but nitrogen-use efficiency decreased.Rice production and nitrogen accumulation in plants were slightly higher in clay soil than in sandy soil.In the soil,the nitrogen content was the lowest at a depth of 40-50 cm.In any specific soil layer,the soil nitrogen content increased with increasing nitrogen application level,and the soil nitrogen content was higher in clay soil than in sandy soil.In terms of ammonia volatilization,the amount of ammonia lost via volatilization increased markedly when the nitrogen application level exceeded 250 kg/hm2 in the rice growing season.However,for rice production,a suitable nitrogen application level is approximately 300 kg/hm2.Therefore,taking the needs for high crop yields and environmental protection into account,the appropriate nitrogen application level was 250-300 kg/hm2 in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号