首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
滴灌条件下土壤湿润体特征研究   总被引:1,自引:0,他引:1  
基于非饱和土壤水运动理论,建立了地埋滴灌条件下土壤水分运动数学模型。采用HYDRUS-3D软件对模型进行求解。通过实测结果与模拟情况对比分析,湿润体内土壤含水率模拟值与实测值差异不大,相对误差在10%以内。总体上模拟结果能较真实地反映点源滴灌条件下的土壤水分运动规律,可为滴灌系统的设计和运行提供一定的理论依据。  相似文献   

2.
针对宁夏旱区枸杞滴灌施肥系统设计、水肥管理方案等不完善问题,研究了滴灌施肥条件下湿润锋的运移变化规律,为大田滴灌施肥系统设计提供参考依据。通过室内土箱实验模拟大田点源滴灌,试验以滴头流量和施氮浓度为变量,以计划湿润层为控制量,采用完全随机组合设计,研究湿润锋变化规律。灌水氮素浓度一定的条件下,滴头流量越大灌水到达计划湿润层的时间就越短,形成的湿润体体积越大,灌水结束后湿润体水分再分布的距离越大;滴头流量一定的条件下,灌水氮素浓度越大越有利于水分在竖直方向的迁移扩散,水分到达计划湿润层的时间越短,形成的湿润体体积相对较小,灌水结束后土壤水分再分布的距离越小;水平湿润锋和垂直湿润锋运移距离与时间之间满足幂函数关系,幂指数b随流量q和施肥浓度c无明显变化,幂函数系数a随滴头流量的增大而变大,随施肥浓度的增大而变小。滴头流量和施肥浓度都会影响水分在土壤中的运移分布状况,滴头流量起主要作用。水分运移距离与时间满足幂函数关系,可以通过函数关系式来预测土壤水分运移深度。  相似文献   

3.
双点源滴灌条件下土壤湿润锋运移规律研究   总被引:3,自引:0,他引:3  
通过模拟试验,研究了不同滴头流量、灌水量和滴头间距下双点源滴灌水分交汇作用对湿润锋运动规律的影响,结果表明:在交汇界面,湿润锋水平和垂直入渗距离与入渗时间符合多项式关系,在未发生交汇的平面符合幂函数关系。相同条件下,交汇界面处的水分向外扩散距离与距滴灌点源相同距离处未发生交汇的水分扩散距离相比增加了30%,湿润锋前沿处的含水率比其增大了81%。在滴头流量为0.8 L/h、灌溉水量17.0 L条件下,双点源交汇入渗在结束灌水时湿润锋水平和垂直湿润距离分别为31.0 cm和33.3 cm,比单点源入渗分别大1.0 cm和1.3 cm。此外,通过试验发现,增大滴头流量、灌水量或缩小滴头间距均能有效改善土壤湿润体的均匀性。  相似文献   

4.
地表滴灌条件下土壤湿润体运移量化表征   总被引:2,自引:0,他引:2  
基于非饱和土壤水分运动的Richards方程,采用HYDRUS-2D/3D模拟软件对11种典型土质(美国制土壤质地分类系统)中滴灌湿润体的运动过程进行了数值模拟。结果表明,湿润体平均含水率的增量与滴灌流量正相关,与饱和导水率负相关;湿润体垂向迁移距离与滴头流量、饱和导水率和时间呈幂函数关系;湿润体径向迁移距离可用滴头流量、平均含水率的增量、垂向迁移距离和时间来定量表征。据此建立了描述不同土质中湿润体动态变化规律的经验公式,通过与数值模拟结果、文献试验数据等进行对比,表明此经验公式对不同土质中湿润体运移规律的预测效果较好,可为农业生产中地表滴灌设计提供简便实用的计算工具。  相似文献   

5.
地下滴灌条件下棉花土壤水分运移田间试验研究   总被引:6,自引:1,他引:6  
在棉花大田实地测量的基础上,对地下滴灌条件下棉花不同生育期内土壤含水量进行分析,同时对实际应用效果进行监测,结果表明:地下滴灌影响土壤水分变化深度主要为20~60 cm,棉花根系主要集中在15~50 cm。通过对棉花常规地面沟灌、膜下滴灌和地下滴灌土壤水分变化试验研究分析和应用效果监测,棉花地下滴灌节水增产效果显著。  相似文献   

6.
为提高甘薯产量、品质以及水氮利用效率,设置3个灌水水平:不灌水(P1)、滴灌湿润比30%(P2)、滴灌湿润比60%(P3),3个施氮水平:90 kg/hm2(N1)、180 kg/hm2(N2)、270 kg/hm2(N3),共9个处理进行田间试验,探索不同水氮组合下甘薯生长指标、产量以及营养成分对水肥的响应.研究分析...  相似文献   

7.
滴灌湿润比的解析设计湿润比的计算是滴灌系统设计的重要内容。本文根据湿润比的合理定义,按照实际单个简头湿润体的形状,首次提出了相应当量湿润直径的概念,导出了现在国内广泛使用的湿润比计算公式的理论基础和实际应用时应满足的严密条件,分析了已往国内滴灌湿润比...  相似文献   

8.
地下滴灌条件下湿润体特性的试验研究   总被引:4,自引:0,他引:4  
滴头流量与灌水量影响土壤湿润体的大小形状等特性,从而影响作物的生长生产.通过室内试验,研究了地下滴灌条件下不同滴头流量不同灌水量对湿润体特性的影响.结果表明:湿润锋运移与滴头流量的时间变化呈正相关;灌水量为5L时湿润体的横向和纵向尺寸达到50 cm;湿润体含水率与滴头的距离具有良好的二次幂函数关系.这对于开展地下滴灌试验与设计具有一定的参考价值.  相似文献   

9.
滴灌土壤湿润体特性室外试验研究   总被引:2,自引:0,他引:2  
采用室外试验研究与理论分析相结合的方法,在陕北米脂山地微灌枣树示范基地进行原状土的滴灌入渗试验,对单点源入渗情况下,不同滴头流量和灌水历时对湿润体形状、大小与湿润锋运移规律的影响,及不同参数组合情况下土壤水分的分布与再分布规律进行研究,结果表明:湿润体的形状近似为半椭球体;湿润锋的水平、垂向入渗距离分别与入渗时间具有极显著的幂函数关系;土壤含水率与湿润体特征值之间存在极显著的二项式函数关系,利用该函数关系能够精确地表示出滴灌单点源入渗土壤湿润体的水分分布与再分布过程,简单、易操作。  相似文献   

10.
地下滴灌湿润比计算方法探讨   总被引:1,自引:0,他引:1  
最近几年地下滴灌在国内推广迅速,但其工程设计仍按地表滴灌模式进行,一定程度上阻碍了其应用.湿润比是微灌系统设计的重要参数之一,在前人研究的基础上,对地下滴灌湿润比计算方法进行了理论推导,给出了理论计算公式,并进行了相关误差分析.认为:地下滴灌湿润比计算公式与地表滴灌类似,但与计划湿润深度、灌水器埋深等参数相关;继续使用地表滴灌湿润比计算公式会产生误差,误差大小与计划湿润深度和湿润体形状密切相关;只有在一定取值范围内才可继续沿用20~30 cm深处土层的湿润面积来计算湿润比.  相似文献   

11.
滴灌湿润比对成龄库尔勒香梨树根系分布的影响   总被引:3,自引:0,他引:3  
在充分灌溉条件下采用3种滴灌湿润比(20%、40%、60%).以漫灌为对照.研究库尔勒成龄香梨吸水根(根直径≤1 mm)在0~70 cm土层内分布的变化,探讨滴灌湿润比对根系分布的影响.结果表明,漫灌成龄库尔勒香梨树吸水根水平方向上在距树体1~2 m内从树行由内向外呈递增趋势;垂直方向上根系随深度呈递增趋势.滴灌对成龄...  相似文献   

12.
地下滴灌条件下沙质土壤入渗特性试验研究   总被引:9,自引:3,他引:9  
地下滴灌作为一种极具节水潜力的微灌技术,将成为未来节水灌溉技术的新的创新点之一,但对于我国的简易地下滴灌形式尚缺乏深入的研究。通过对沙质土壤进行地下滴灌一维土柱入渗、扩散试验,探讨了不同供水水头、不同容重、不同初始含水量情况下,水平和竖直方向入渗速率、湿润锋的变化规律,并分析了原因,为该技术的发展提出了一些建议。  相似文献   

13.
通气与水分再分布对地下滴灌湿润体导气率的影响   总被引:1,自引:0,他引:1  
利用瞬态土壤导气率测算模型,研究了室内模拟地下滴灌土壤导气率的变化,分析了通气与灌后水分再分布对地下滴灌湿润体土壤导气率的影响。结果表明:地下滴灌湿润体内供气压力与时间呈良好的线性关系,导气特征参数与土壤导气率呈极显著的线性关系;容重为1.3、1.4和1.5g/cm3的风干土样在灌水停止时,棕壤土的导气率分别减小至灌水前的8.9%、22.7%和49.9%,塿土的导气率分别减小至灌水前的2.7%、5.4%和9.8%,灌后土壤水分再分布过程中,土壤导气率呈缓慢增长趋势;灌后人工通气可迅速提高地下滴灌湿润体土壤导气率,通气5min后,棕壤土的导气率分别提高至灌水前干土的64.1%、54.1%和79.9%,是停止灌水时的7.3倍、2.5倍和1.6倍,塿土的导气率分别提高至灌水前的79.9%、84.1%和80.8%,是停止灌水时的30.5倍、15.3倍和8.4倍。  相似文献   

14.
膜下滴灌条件下玉米灌溉制度试验研究   总被引:1,自引:0,他引:1  
采用玉米作为试验材料,进行大田玉米的膜下滴灌灌溉制度试验研究,改变其灌溉定额、灌水次数,设置不同的试验处理,观测降雨量、土壤含水量,运用水量平衡方程分析玉米耗水量。对收获的玉米进行考种与测产,得到一系列产量指标;分析灌溉制度对产量指标的影响。通过分析产量、耗水量及灌溉水量,从而得到水分利用效率、灌溉水生产效率,综合考虑最终确定最优的灌溉制度。  相似文献   

15.
覆膜滴灌技术在我国农业生产中发挥了重要的作用,覆膜对土壤的增温、保水、除草和压盐都有一定的作用。覆膜滴灌提高水肥利用率,增产效果显著。但地膜的广泛使用产生大量的地膜废弃物,而且覆膜滴灌减少水的渗透和养分的运移,常年使用对土地利用也产生不利影响。系统介绍我国覆膜滴灌技术的发展进程、优势及存在问题和技术要点,并提出今后应着重于改进薄膜的使用标准、开发残膜回收机械和研发多用途地膜、生物可降解地膜等发展措施。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号