首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
UHMWPE fibers were dyed with yellow and red dyes having different length of alkyl substituents on monoazo chromophores. The dyeability was investigated at various conditions and fastness of the dyeings was examined. As the length of alkyl substituents increased, the dyeability toward UHMWPE fibers tends to be improved gradually up to propyl or butyl groups and then decreased for the longer alkyl substituents. Color strength of the fabrics was increased with the increase of dyeing temperature from 100 to 130 °C. From the dyeing rate, equilibrium dyeing at 130 °C was achieved at 2~3 h. The color fastnesses to washing, rubbing, and light of the dyeings were good showing higher than 4 ratings except for light fastness of the red dye.  相似文献   

2.
A new series of anthraquinoid red dyes were synthesized with 1-amino-2-bromo-4-hydroxyanthraquinone and nalkylphenols to dye UHMWPE fibers with high light fastness. Their dyeability was examined depending on the length of alkyl chains. As the length of alkyl substituents increases, the dyeability toward UHMWPE fibers improves rapidly from methyl to ethyl substituents and maintains almost same level of color strength, and then decreases from heptyl to octyl groups. The color strength of dyeings increased dramatically with the increase of dyeing temperature from 100 °C to 130 °C. The maximum build-up was shown at around 5 % owf dye amount. From the dyeing rate, equilibrium dyeing was achieved at around 5 h at 130 °C. All kinds of fastnesses were good enough showing higher than ratings 4-5 to washing and rubbing for the longer alkyl substituents. Especially, much improvement was achieved in light fastness showing ratings 4, which was higher than ratings 2 of the previous study.  相似文献   

3.
A new series of magenta dyes having different length of alkyl substituents was synthesized to dye unmodified polypropylene (PP) and ultra-high molecular weight polyethylene (UHMWPE) fiber. It could be concluded that the affinity of the dyes onto unmodified PP and UHMWPE fibers was increased with the increase of the length of alkyl substituents. The optimum length of alkyl group was determined as the longest dodecyl-substituted dye in this study. Their absorption spectra appeared almost the same at visible range, which meant that the length of alkyl substituents did not affect the color appearance of the dyes. The color fastness properties of the dyeings to washing, rubbing and light were good enough for commercialization.  相似文献   

4.
Following the previous studies regarding blue and yellow dyes, a series of new red dyes having different length of alkyl substituents on the same chromophore were synthesized in order to dye unmodified polypropylene fiber. The affinity of the dyes onto unmodified polypropylene fiber was increased with the increase of the length of alkyl substituents. Therefore, the longest hexyl-substituted dye showed very deep shade of dyeing with K/S value of around 30 at maximum absorption wavelength. Within the range below 2 % o.w.f., the exhaustion (%) showed more than 80 %. The color fastnesses to washing, rubbing, and light of the dyeings were also improved greater for the dyes having longer alkyl substituents than the shorter ones. Since color hue of the dyes exhibited very strong red, they could be considered to be used as the primary red color dyes for unmodified polypropylene fibers.  相似文献   

5.
The several disazo dyes having different alkyl substituents were synthesized to dye unmodified polypropylene fiber. The affinity of the dyes onto unmodified polypropylene was increased with the increase of the length of alkyl substituents. Therefore, the heptyl-substituted dye having the longest alkyl group in this experiment showed very high color strength of dyeings with K/S value of over 24 at maximum absorption wavelength. The color fastnesses to washing, rubbing and light were also improved significantly for the longer alkyl substituted dyes, so that the heptyl-substituted dye exhibited a rating of 4∼5 for all kinds of fastnesses.  相似文献   

6.
A series of new monoazo yellow dyes having different alkyl substituents was synthesized to dye unmodified polypropylene fiber. Color hue of the dyes exhibited light yellow with very high chroma enough to use as yellow primary color dyes. The affinity of the dyes onto unmodified polypropylene was increased with the increase of the length of alkyl substituents. Therefore, the hexyl-substituted dye having the longest alkyl group in this experiment showed very high color strength of dyeings with K/S value of over 26 at maximum absorption wavelength. The color fastnesses to washing, rubbing and light were also improved significantly for the longer alkyl substituted dyes, so that the hexyl-substituted dye exhibited a rating higher than 4∼5 for all kinds of fastnesses.  相似文献   

7.
The five non-fluorinated paraffinic water repellents having different lengths of alkyl groups were synthesized by emulsion polymerization. The number and weight average molecular weights were obtained at around 86,000-150,000 and 170,000-470,000, respectively. As the length of alkyl groups increased, the average molecular weight tended to decrease and the melting points gradually increased from 4.8 °C to 66.7 °C. The optimum length of alkyl group of paraffinic water repellents could be determined as hexadecyl and octadecyl and they showed the contact angle higher than 130 °. The critical surface tensions were obtained at 20-21 mN/m, there was no significant difference according to the length of alkyl groups between hexadecyl and docosyl groups.  相似文献   

8.
Although madder (Rubia tinctorum) has been used as a well-known natural textile dye source for dyeing of natural fibers such as wool, silk and cotton, 100 % polyester dyeing with madder is not common. In this study, polyester samples were dyed with madder at different dyeing temperatures, from 60 °C to 130 °C, in company with 7 chemical and 5 natural mordants. Color properties and rub, light and wash fastness performances were investigated. Different shades of orange, brown, pink and reddish green colors were obtained. Dyeing at 130 °C exhibited the highest color yield, the highest chroma and the lowest lightness values. Overall, chemical mordants exhibited higher color yields than natural mordants. High wash fatness, moderate light and rub fastness levels were observed. The potassium bitartrate and gallnut, a natural mordant, exhibited the best results. The madder dyeing of polyester should be carried out at hot temperature conditions, 130 °C, in order to obtain the highest achievable color yield and chroma with the highest light and wash fastness properties.  相似文献   

9.
The chemical structure of a new gemini dicationic imidazolium ionic liquid, 3,3′-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide (PEG150-DIL) was established by 1H-NMR and elemental analyses. Then, PEG150-DIL was applied to pretreat ramie fiber. PEG150-DIL treated ramie fiber was characterized by FT-IR, XRD, DSC-TG and FE-SEM. Finally, the mechanical and dyeing properties of PEG150-DIL pretreated ramie fibers were studied. The optimum condition of PEG150-DIL modification was carried out at 100 °C for 30 min. The color strength increased obviously with the duration time and temperature of the PEG150-DIL. The tensile strength and strength retention of PEG150-DIL -treated ramie fibers decreased with the increase of pretreating time and temperature. The tensile strength retention was 86.20 % under optimal PEG150-DIL pretreating condition (100 °C, 30 min).  相似文献   

10.
The dyeing properties of hydrophobic polypropylene fibers using cationic dyes were investigated to improve dyeability by electron beam irradiation and sulfonic acid incorporation. The color strength of polypropylene fibers after irradiation was examined according to the dyeing conditions including the pH of the dyebath, absorbed doses, and the introduction of a functional group to the fiber substrate. The best dyeing result was obtained when polypropylene fibers incorporated by sulfonic acid group after electron beam irradiation were dyed with cationic dyes at alkaline conditions and 30∼75 kGy irradiation ranges.  相似文献   

11.
In this research, results of an experimental and artificial neural network fuzzy interface system (ANFIS) modeling of operating parameters on tensile strength of the carbon fibers are investigated. To do these experiments, the commercial polyacrylonitrile (PAN) fiber of Polyacryl Iran Corporation (PIC) was used as the precursors. The results show that increasing all of parameters improves tensile strength performance. ANFIS was applied to predict tensile strength of carbon fibers as a function of stabilization temperature at first stage (STFIS), stabilization temperature at second stage (STSS), stabilization temperature at third stage (STTS), stabilization temperature at fourth stage (STFOS), and carbonization temperature (CT). The optimum levels of influential factors, determined for tensile strength are STFIS 200 °C, STSS 225 °C, STTS 240 °C, STFOS 260 °C, CT, and 1400 °C. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values. Furthermore, the fiber process is optimized applying differential evolution (DE) algorithm as an effective and robust optimization method.  相似文献   

12.
Pleated wool fabrics were prepared by the treatment with ethylenediamine (EDA) at 90°C for 30 min. The degree of set, tensile property and dyeing of the treated fabrics have been discussed in relation to the concentration of EDA in the treatment system. No significant decreases in tensile strength and elongation, and great increases of exhaustion of synthetic and natural dyes were observed. Pleat and flat set were successfully attained in a wide range of the concentration of EDA. Excellent dyeability and setability of the fabrics obtained were considered to be associated with the existence of new crosslink, β-N-(2-aminoethyl)alanino-β-aminoalanine and the pendant group, β-N-(2-aminoethyl) aminoalanine produced by the reaction of EDA with dehydroalanine intermediate.  相似文献   

13.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

14.
Hydrophobic poly(lactic acid), PLA, was modified to give hydrophilicity and dyeability to cationic dyes via UV/O3 irradiation. The UV irradiation treatment caused ester linkage of PLA surface to break down resulting in reduced molecular weight and generation of new photooxidized products as indicated in subtracted ATR spectra and ESCA analysis. It was found that water contact angle decreased from 61 ° to 39 ° and surface energy slightly increased with increasing UV energy, which was attributed to significant contribution of polar component rather than nonpolar component resulting from the surface photooxidation of PLA. Also the surface treatment increased dyeability of PLA to C.I. Basic Blue 41 in terms of both K/S and %E. The increased dyeability may be due to photochemically introduced anionic and dipolar dyeing sites which electrostatically interact with the cationic dye as ascertained by the decreased zeta potential and its pH dependence of the modified PLA.  相似文献   

15.
Graft copolymerization of acrylamide onto commercial acrylic fibers was carried out using benzoyl peroxide as a free-radical initiator in aqueous medium within the 75–95 °C temperature range. In this study, the effects of initiator and monomer concentration, the amount of fiber, polymerization time, and temperature on the graft yield were investigated. The optimum concentration for initiator was found to be 2.0×10−3 mol/l and the optimum temperature of 85 °C. The activation energy of the reaction was calculated to as 35.81 kJ/mol at the temperature interval of 75–95 °C. The structures and morphologies characterization of grafted fibers was investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The thermogravimetric analysis data showed that the thermal stability of the acrylic fibers increased with graft yield. The scanning electron photographs showed that the homogeneous appearance of the fiber surface changed and a shell-like heterogeneous structure occurred at the surface with an increasing degree of grafting. The moisture content, water absorption, dyeability, and antimicrobial activity of grafted acrylic fibers were also reported. The results showed that grafting of polyAAm improved the moisture contain, water absorption, dyeability, and antimicrobial activity of fiber.  相似文献   

16.
Boron modified high-ortho phenolic fibers (o-BPFs) were prepared by melt-spinning from boron modified highortho phenolic resins (o-BPRs) with the weight-average molecular weight of 4973 g/mol, followed by being cured in a solution of formaldehyde and hydrochloric, and then heat-treated under high temperature. Gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR) were used to measure the average molecular weight and ortho/para (o/p) ratio of o-BPRs. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the chemical and morphological structures of o-BPRs and o-BPFs. Thermogravimetric analysis (TGA) was employed to examine the thermal stability properties of different resins and fibers and the tensile strength of fibers was measured by a tensile tester. It was found that under proper curing and heat-treatment conditions, the tensile strength of o-BPFs reached 213.6 MPa and the char yield in N2 atmosphere at 800 °C attained 75.4 %. Compared with phenolic fibers (PFs), the decomposition temperatures at 5 % weight loss of o-BPFs in N2 and air atmospheres were increased by 156.8 °C and 219.0 °C, respectively.  相似文献   

17.
The dyeability of poly(lactic acid) (PLA) fiber strongly depends on disperse dye structure due to the low dyeing temperature and the short dyeing time. Thus, the dye uptake value of PLA fiber is low for some disperse dyes and is needed to be improved. In the current study, the dyeability of PLA fiber is improved with the addition of N-Phenylaminopropyl polyhedral oligomeric silsesquioxane (AP-POSS) during melt spinning process. The effects of dyeing conditions including dyeing temperature and time, disperse dye type and AP-POSS concentrations are investigated on the dyeability properties of PLA fiber samples. The tensile, thermal and morphological properties of fiber samples are also characterized by tensile testing, differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As the added amount of AP-POSS increases, the percent crystallinity increases and the tensile strength reduces. According to the dyeing results, AP-POSS is very effective for increasing the dyeability of PLA fiber especially for disperse dyes with low dye uptake values.  相似文献   

18.
This article describes a new process for strengthening natural silk fibers. This process is simple yet effective for mass production of high strength silk fibers, enabled by drawing at a lower temperature and immediately heat setting at a higher temperature. The processing conditions were investigated and optimized to improve the strength. Silk fibers drawn to the maximum ratio at room temperature and then heat set at 200 °C show best tensile properties. Some salient features of the resulting fibers are tensile strength at break reaching 533±10.2 MPa and Young’s modulus attaining 12.9±0.57 GPa. These values are significantly higher than those of natural silk fibers (tensile strength increased by 44 % and Young’s modulus by 135 %). Wide-angle X-ray diffraction and FTIR confirm the transformation of silk I to silk II crystalline structure for the fiber obtained from this process. DSC and TGA data also provide support for the structural change of the silk fiber.  相似文献   

19.
The UHMWPE fibers with different cold drawing ratio (DR0) were obtained from the industrial UHMWPE fibers production line. The effect of cold drawing before the extraction of paraffin oil process on final fibers was investigated by tensile testing, small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The tensile strength and modulus with 5.0 DR0 were 2.99 and 151.5 GPa, respectively, which were 13.3 % and 41.9 % higher than those with 1.5 DR0. With the increase of DR0, the values of average shish length decreased obviously, while the shish orientation increased and the apparent crystal size along two lattice directions ((110)o and (200)o) in UHMWPE fibers decreased. The increase of degree of orientation and crystallization were verified that better folded chains and amorphous chains were involved in forming shorter and better oriented shish.  相似文献   

20.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号