首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Four cultivars of alfalfa (Medicago sativa L cv. Vangard, Cody, Zia, and Dawson) were grown under a gradient irrigation system on a Pullman clay loam soil (fine, mixed, thermic, Torrertic Paleustoll) at Bushland, Texas. Twelve harvests were taken during 1983, 1984 and 1985 over a wide range of irrigation levels. Alfalfa was harvested at 10% bloom and subsamples were oven dried and ashed. Irrigation water and rainfall were determined by catchment collections and soil moisture content was determined with a neutron soil moisture probe. Potential evaporation was determined by pan evaporation and by modified Penman, Priestley and Taylor, and Jensen and Haise prediction equations from climatic data. No varietal differences in the relationship of yield to water or water use efficiency occurred. Yield within each harvest correlated well with evapotranspiration (ET). The regression of yield with ET over all twelve harvests had a low coefficient of determination. Relative yield had a high correlation with relative ET when maximum ET was measured but the correlation was lower when maximum ET was calculated from a prediction equation or pan evaporation. The correlation increased when the maximum yield for each harvest was used rather than a constant value. Including a high temperature factor in the equation greatly improved the correlation between yield and ET but the correlation was not as high as when relative yield was correlated with relative measured ET. Water use efficiency was highest with the highest yields.Contribution Texas Agricultural Experiment Station. Paper No. 20929  相似文献   

2.
Food production and water use are closely linked processes and, as competition for water intensifies, water must be used more efficiently in food production worldwide. A field experiment with wither wheat (Triticum Aestivum L.), involving six irrigation treatments (from rain-fed to 5 irrigation applications), was maintained in the North China Plain (NCP) for 6 years. The results revealed that dry matter production, grain yield and water use efficiency (WUE) were each curvilinearly related to evapotranspiration (ET). Maximum dry matter at maturity was achieved by irrigating to 94% and maximum grain yield to 84% of seasonal full ET. A positive relationship was found between harvest index (HI) and dry matter mobilization efficiency (DMME) during grain filling. Moderate water deficit during grain filling increased mobilization of assimilate stored in vegetative tissues to grains, resulting in greater grain yield and WUE. Generally, high WUE corresponded with low ET, being highest at about half potential ET. At this location in NCP, highest WUE and grain yield was obtained at seasonal water consumption in the range 250–420 mm. For that, with average seasonal rainfall of 132 mm, irrigation requirements was in the range of 120–300 mm and due to the deep root system of winter wheat and high water-holding capacity of the soil profile, soil moisture depletion of 100–150 mm constituted the greater part of the ET under limited water supply. The results reveal that WUE was maximized when around 35% ET was obtained from soil moisture depletion. For that, seasonal irrigation was around 60–140 mm in an average season.  相似文献   

3.
Tomato production systems in Florida are typically intensively managed with high inputs of fertilizer and irrigation and on sandy soils with low inherent water and nutrient retention capacities; potential nutrient leaching losses undermine the sustainability of such systems. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on crop N and P accumulation, N-fertilizer use efficiency (NUE) and NO3-N leaching of tomato cultivated in a plastic mulched/drip irrigated production system in sandy soils. Experimental treatments were a factorial combination of three irrigation scheduling regimes and three N-rates (176, 220, and 330 kg ha−1). Irrigation treatments included were: (1) surface drip irrigation (SUR) both the irrigation and fertigation line placed underneath the plastic mulch; (2) subsurface drip irrigation (SDI) where the irrigation drip was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with the irrigation and fertigation lines placed as in SUR and irrigation applied once a day. Except for the TIME treatment all irrigation treatments were soil moisture sensor (SMS)-based with irrigation occurring at 10% volumetric water content. Five irrigation windows were scheduled daily and events were bypassed if the soil water content exceeded the established threshold. The use of SMS-based irrigation systems significantly reduced irrigation water use, volume percolated, and nitrate leaching. Based on soil electrical conductivity (EC) readings, there was no interaction between irrigation and N-rate treatments on the movement of fertilizer solutes. Total plant N accumulation for SUR and SDI was 12-37% higher than TIME. Plant P accumulation was not affected by either irrigation or N-rate treatments. The nitrogen use efficiency for SUR and SDI was on the order of 37-45%, 56-61%, and 61-68% for 2005, 2006 and 2007, respectively and significantly higher than for the conventional control system (TIME). Moreover, at the intermediate N-rate SUR and SDI systems reduced NO3-N leaching to 5 and 35 kg ha−1, while at the highest N-rate corresponding values were 7 and 56 kg N ha−1. Use of N application rates above 220 kg ha−1 did not result in fruit and/or shoot biomass nor N accumulation benefits, but substantially increased NO3-N leaching for the control treatment, as detected by EC monitoring and by the lysimeters. It is concluded that appropriate use of SDI and/or sensor-based irrigation systems can sustain high yields while reducing irrigation application as well as reducing NO3-N leaching in low water holding capacity soils.  相似文献   

4.
5.
Florida is the largest producer of fresh-market tomatoes in the United States. Production areas are typically intensively managed with high inputs of fertilizer and irrigation. The objectives of this 3-year field study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling on yield, irrigation water use efficiency (iWUE) and root distribution of tomato cultivated in a plastic mulched/drip irrigated production systems. Experimental treatments included three irrigation scheduling regimes and three N-rates (176, 220 and 230 kg ha−1). Irrigation treatments included were: (1) SUR (surface drip irrigation) both irrigation and fertigation line placed right underneath the plastic mulch; (2) SDI (subsurface drip irrigation) where the irrigation line was placed 0.15 m below the fertigation line which was located on top of the bed; and (3) TIME (conventional control) with irrigation and fertigation lines placed as in SUR and irrigation being applied once a day. Except for the “TIME” treatment all irrigation treatments were controlled by soil moisture sensor (SMS)-based irrigation set at 10% volumetric water content which was allotted five irrigation windows daily and bypassed events if the soil water content exceeded the established threshold. Average marketable fruit yields were 28, 56 and 79 Mg ha−1 for years 1-3, respectively. The SUR treatment required 15-51% less irrigation water when compared to TIME treatments, while the reductions in irrigation water use for SDI were 7-29%. Tomato yield was 11-80% higher for the SUR and SDI treatments than TIME where as N-rate did not affect yield. Root concentration was greatest in the vicinity of the irrigation and fertigation drip lines for all irrigation treatments. At the beginning of reproductive phase about 70-75% of the total root length density (RLD) was concentrated in the 0-15 cm soil layer while 15-20% of the roots were found in the 15-30 cm layer. Corresponding RLD distribution values during the reproductive phase were 68% and 22%, respectively. Root distribution in the soil profile thus appears to be mainly driven by development stage, soil moisture and nutrient availability. It is concluded that use of SDI and SMS-based systems consistently increased tomato yields while greatly improving irrigation water use efficiency and thereby reduced both irrigation water use and potential N leaching.  相似文献   

6.
The effects of high temperature stress and supplemental irrigation on seed yield and water use efficiency (WUE) of canola (Brassica napus L.) were studied in a field experiment conducted for 2 years. The experiment was a randomized complete block design arranged in split plot, conducted at Agricultural Research Station of Gonbad, Iran. It was arranged in two conditions, i.e. supplemental irrigation and rainfed. Two cultivars of canola (Hyola401 and RGS003) as subplots were grown at five sowing dates as main plots. The sowing dates were 9 November, 6 December, 5 January, 4 February and 6 March in 2005-2006 and 6 November, 6 December, 5 January, 4 February and 6 March in 2006-2007, to have a wide range of environmental conditions around flowering and seed filling periods, and to coincide reproductive stages of the crop with high temperature stress. Seed yield was improved due to field management practices, such as supplemental irrigation and optimum sowing date. Supplemental irrigation was an efficient practice to mitigate water stress, and to increase aboveground dry matter and seed yield. There was a strongly negative relationship between seed yield and air temperature during reproductive stages. Delay in sowing led to more rapid developmental of canola, decreased aboveground dry matter, leaf area index (LAI), harvest index (HI), WUE, and seed yield. Achieving a high aboveground dry matter was an essential prerequisite for high reproductive growth and a high seed yield. Greater seed yield and WUE at first sowing date were associated with greater LAI and aboveground dry matter, and lower temperatures during reproductive stages. The results support the view that WUE can be used as an indirect selection criterion for seed yield in genotypic selection.  相似文献   

7.
Summary Effects of weekly (W) and fortnightly (F) irrigation schedules on established stands of lucerne (Medicago sativa L.) grown on gypsum treated (G) and untreated (C) heavy clay soil were investigated. Two irrigations were applied under the fortnightly regime and four under the weekly schedule during a single cutting cycle. Growth and light interception were measured during both the vegetative and mature phases of growth.Leaf expansion, light interception and dry matter production were greater under treatments W G and W C, with yield increasing from 3.4 t ha–1 under the fortnightly schedule to 5.0 t ha-1 with weekly irrigation. Gypsum treatment was effective under the more frequent irrigation schedule. Specific leaf area and the proportion of stem were both increased by treatments W G and W C. The responses to irrigation were therefore characteristic of those elicited by a more favourable plant moisture status. Growth was analysed in terms of light interception, the efficiency of utilisation of intercepted light, the proportion of the daily dry matter gain retained by the leaves and leaf expansion. The analysis demonstrated that impaired leaf expansion contributed to a decline of approximately 15% in yield, and that impaired efficiencies of utilisation of intercepted light contributed to losses of approximately 30% under the less frequent irrigation schedule.A comparison of growth rates and efficiencies of energy conversion with published data showed that satisfactory rates of growth and levels of productivity were achieved on the heavy soils of the local region using gypsum treatment and the more frequent irrigation schedule.  相似文献   

8.
Water transmission characteristics under saturated and unsaturated conditions were studied in a sandy loam soil with (F1) and without (F0) long-term farmyard manure (FYM) treatments, in relation to sodium adsorption ratios (SAR) and electrolyte concentrations of water. The effect of FYM and ratios of Ca2+ : Mg2+ in water at a given SAR on sodication of the soil was also studied.Saturated hydraulic conductivity (k) and weighted mean diffusivity (D?) were slightly higher for F1 than for F0, whereas sodication indices like Gapon constant (KG), Krishnamoorthy-Davis-Overstreet constant (KKDO) and Vanselow constant (KV) were slightly smaller. The k and D? decreased with an increase of SAR and decrease of electrolyte concentration, the effect of SAR being more pronounced. There was proportionately a sharper decrease in the k and D? values at SAR 10 with total electrolyte concentrations of 10–40 meq 1?1. However, with a total electrolyte concentration of 80 meq 1?1, there was a smaller drop at SAR 10.A small difference in the build-up of exchangeable sodium percentage (ESP) in F1 and F0 treatments at a given SAR suggests that, apart from slightly improving water transmission parameters, the use of FYM also reduces the sodication hazard in a soil irrigated with sodic waters. An increase in the Ca2+ : Mg2+ ratio from 25:75 to 75:25 slightly decreased the values of KG, KKDO and KV, thus indicating somewhat more preference for Ca2+ to Mg2+ at a given SAR, which was more so in F1 soil. This fact could also be expressed in terms of a slight shift of thermodynamic exchange constant (K) and standard free energy change of the exchange reaction (ΔG0r). The presence of some unidentified Na+ releasing minerals in the soils studied was observed and correction for exchangeable Na+ determination applied.  相似文献   

9.
Summary Concurrent diurnal measurements of water potential, osmotic potential and conductance were made on leaves of lucerne grown under weekly (W) and fortnightly (F) irrigation on gypsum-treated (G) and untreated soil (C). Measurements were made throughout the period of vegetative growth.Leaf water potentials were lower both at dawn and in the afternoon under fortnightly as compared to weekly irrigation. Gypsum application led to a slower decline in water potential under fortnightly irrigation, although the effect was small compared with more frequent irrigation. Stomatal conductance was reduced under treatments FG and FC during the later stages of vegetative growth, coinciding with leaf water potentials of less than c. –1.6 MPa.The relationship between leaf water potential and turgor potential changed with time such that positive turgor was maintained as leaf water potential declined. Turgor maintenance was achieved through a decrease in leaf osmotic potential. These data suggest that lucerne is capable of osmotic adjustment.Stomatal conductance declined rapidly below a leaf turgor potential of c. 0.1 MPa. It is hypothesised that osmotic adjustment enabled stomatal adjustment, which contributed to continued assimilation despite increasing soil moisture deficits.  相似文献   

10.
In this work we tested the influence of different solutions of a hydrophobic polymer named Guilspare®, applied to the soil surface to reduce soil evaporation, on the soil water status, soil temperature, crop performance and weed emergence. Two tests were carried out on a farm of the Guadalquivir river valley, southwest Spain, one with a maize crop and the other with bare soil. In the test with maize, we evaluated the effect of applying a solution of 2% v/v of Guilspare® in water, at the rate of 3 l m−2, on the crop performance and weed emergence. On both the treated and the untreated control plots, three rates of irrigation were applied, namely 100, 75 and 50% of the locally determined optimal irrigation depth to cover the crop needs for an optimum development and yield. For the case of 50% of the irrigation dose, the performance of the crop treated with the polymer (T50) was much better than that of the untreated control plot (C50). The crop height and green leaf area index for T50 were nearly as good as for the C100 control plants receiving 100% of the irrigation dose. The T50 crop was 73% of the yield of the treated and fully irrigated T100 crop, while the C50 yield was only 38% of the C100 yield. The treated crop reached the different phenological stages quicker than the untreated crop. The polymer was effective in reducing weed emergence. In the test with bare soil, 0.8% v/v of Guilspare® in water, at the rate of 1 l m−2, kept levels of water content in the soil as high as other solutions with greater amounts both of polymer and water. The average soil water content during the irrigation period in this lower treatment was 34 and 53% higher at depths of 0.15 and 0.25 m, respectively, than in the untreated plots. No influence of the polymer on soil temperature was observed. Results from additional measurements on weed emergence and hydraulic conductivity of the soil surface showed that the polymer was still effective 7 months after application. In fact, the hydraulic conductivity in the range near saturation was 44% greater in the treated plots than in the untreated ones, and the number of weeds was 27% lower.  相似文献   

11.
Summary The extent to which evapotranspiration (ET) of Valencia citrus trees is affected by differing soil water depletions (SWD) and soil salinity regimes was determined during five seasons during which soil salinity levels varied. Three weighing lysimeters, each with a 14 year old tree, were used to measure daily ET and to schedule irrigation to maintain SWD at maxima of 15, 75 and 150 mm respectively. Tensiometers and salinity sensors were used to indicate the in situ soil matric and soil solution osmotic potentials. Total soil water potential was calculated from tensiometer and salinity sensor readings weighted for root density with depth. The total of these for the summer months was found to be linearly related (Fig. 5) to the mean ET/Ep (Ep=A-pan evaporation). The slope and threshold of ET reductions with decreasing soil water potential for the low frequency irrigation treatment (150 mm SWD) show good agreement with the slope and threshold of yield decrease that is calculated from soil salinity in the lysimeter using previously reported salinity-yield relationships. The reduced water uptake due to increasing soil salinity has important implications for soil salinity control, since the lower uptake should in theory increase the leaching fraction. This implies a degree of self adjustment to the leaching fraction when irrigating with increasingly saline waters if water applications are scheduled as for non-saline conditions.  相似文献   

12.
Changes in soil fertility status were evaluated for 10 years, from 1996 to 2006 to examine the impact of drip fertigation in a laterite soil and to determine the nutrient uptake pattern of arecanut (Areca catechu L.). Four fertigation levels (25%, 50%, 75% and 100% of recommended fertilizer dose, 100:18:117 g N:P:K palm−1 year−1), three frequencies of fertigation (10, 20 and 30 days) and two controls (control 1: drip irrigation without fertilizer application and control 2: drip irrigation with 100% NPK soil application) were studied. The soil pH increased to 6.0 at the end of experiment in 2006 compared to the pre-experimental soil pH of 5.6 in 1996. In 0-25-cm depth interval, the soil organic carbon (SOC) increased significantly from 1.06% in 1999 to 1.84% in 2006, and in 25-50-cm depth interval, it increased from 0.68% to 1.13%. Temporal variation in available P and K content in arecanut root zone was significant due to drip fertigation. Pooled analysis of data, from 2000 to 2005, revealed significant impact of level and frequency of fertigation and their interaction on available P and K content. At 0-25-cm depth interval, increase in fertigation dose from 50% to 100% NPK did not result in significant increase of Bray’s P content, which remained at par ranging from 5.24 to 5.32 mg kg−1. Fertigation every 30 days resulted in significantly higher available P (5.32 mg kg−1) than fertigation every 10 days (4.49 mg kg−1), while it was at par with fertigation every 20 days (5.09 mg kg−1). The K availability at 0-25-cm depth interval was significantly lower at 25% NPK level (114 mg kg−1) than at 75% (139 mg kg−1) and 100% (137 mg kg−1). With respect to fertigation frequency, the 30-day interval resulted in higher available K of 139 mg kg−1 than 20-day (128 mg kg−1) and 10-day intervals (120 mg kg−1). Availability of P and K at 25-50-cm depth interval followed similar trend as that of 0-25-cm depth interval. The total N uptake (g palm−1 year−1) by leaves, nuts and husk varied between 143 in 0% NPK to 198 in 75% NPK fertigation level. Similarly, the total P uptake (g palm−1 year−1) ranged between 15 for the 0% NPK and 25 for the 75% NPK treatment. The total K uptake (g palm−1 year−1) was 62 for the 75% NPK treatment followed by 56 for the 25%, 56 for the 50%, 54 for the 100% and 46 for the 0% NPK treatments. The nutrient uptake pattern and marginal availability of soil P and K highlight the importance of drip fertigation during post-monsoon season to improve and sustain the yield of arecanut in a laterite soil.  相似文献   

13.
Summary Effects of weekly (W) and fortnightly (F) irrigation schedules on CO2 assimilation by lucerne grown on untreated (C) and gypsum-ameliorated (G) heavy clay soil were investigated. Leaf area limited rates of assimilation during the initial stages of regrowth, but rates of up to 9 g CO2 m–2 h–1 were measured once full ground cover was achieved after approximately two weeks. High rates were maintained until the fifth week of regrowth (one week after full flower), after which there was a marked decline.During the fourth week of regrowth, afternoon rates of canopy photosynthesis under less frequent irrigation were less than those measured at similar irradiance during the morning. This was evidenced as hysteresis in the light response curves and was apparent in all treatment during the final stages of the experiment.For the first five weeks of regrowth, daytime integrals of photosynthesis were directly related to the amount of light intercepted by the crops. The mean efficiency of utilisation of light in CO2 assimilation was 6.2 g CO2 MJ–1 in all treatments apart from that on untreated soil under the fortnightly irrigation regime (treatment FC). Its mean efficiency was 5.1 g CO2 MJ–1. The amounts of CO2 assimilated exceeded the growth and respiratory requirements of the above-ground components of the crops, and it was estimated that 25% and 40% of the assimilated carbon was partitioned to and retained in the roots and crowns of the weekly and fortnightly irrigated crops, respectively.Results are appraised in terms of the response of lucerne to moisture deficits. Implications for above-ground dry matter production are also discussed.  相似文献   

14.
In a greenhouse pot experiment conducted in Turkey during 2001, onion seedlings were transplanted on May 31 at the density of five plants per pot. On this date the soil water content of all pots were at field capacity. The pots were weighed daily until harvest (December 2), and the data were used to determine the daily evapotranspiration and quantity of irrigation. Eight irrigation treatments were applied, designated as I1 full irrigation (non-deficit treatment), and I2, I3 and I4 no irrigation in the vegetative growth periods, yield formation and ripening, respectively, and I5, I6, I7 and I8 received 0.0, 0.25, 0.50 and 0.75 times the soil water depletion in the treatment I1 on the same day. For each treatment, the following parameters were analysed and compared: applied irrigation depth, daily and seasonal evapotranspiration, bulb yield, yield response factor (ky), irrigation water use efficiency (IWUE) and water use efficiency (WUE). The findings indicated that onion plants were very sensitive to lack of soil water during the total growing season and the yield formation period, but rather insensitive in the vegetative and ripening periods. High water use and water use efficiencies were observed with increasing levels of irrigation, or no irrigation in the vegetative period.  相似文献   

15.
Two-year lysimeter experiments were conducted to determine groundwater contributions by safflower (Carthamus tinctorius L.) crop. The plants were grown in twenty columns each with a diameter of 0.40 m packed with Silty Clay soil. The experiments were carried out in a complete randomized blocks design with four replicates. In each experiment, five treatments were applied by maintaining groundwater salinity to a control treatment with EC 1 dS/m, while the groundwater salinity of the other treatments was 2, 5, 8 and 10 dS/m, and 0.8 m water table level, respectively. The use of groundwater as a part of crop evapotranspiration was characterized by using daily measurements of the water level in Mariotte tubes. The extra magnitude of irrigation water requirement for each treatment was applied by water with EC of 1 dS/m. The results of experiments showed that for different control treatments with 1 dS/m, 2, 5, 8 and 10 dS/m, the groundwater contributions were achieved as 59, 51, 38, 32 and 19% of the total plant water requirements, respectively.  相似文献   

16.
Crop coefficients of some plants have been provided by the Food and Agricultural Organization albeit crop coefficients for different medicinal plants such as black cumin (Nigella sativa L.) have not been determined so far. Experiments were carried out during 2 years (2010 and 2011) to determine the water requirements, single and dual crop coefficients of black cumin using drainable lysimeter in a semi-arid region. In this study, black cumin water requirement was determined to be 724 mm by water balance method. The reference evapotranspiration was estimated by Penman–Monteith method. Finally, single and base crop coefficients for initial, development, middle and final stages of black cumin growth were determined to be as 0.59, 0.91, 1.29, 0.78 and 0.24, 0.71, 1.09 0.78, respectively. In order to estimate black cumin evapotranspiration by meteorological parameters, multiple regression models were presented. The results of the study showed that the determination of black cumin water requirements with dual crop coefficients had a less difference as compared to the results obtained from regression model. The total dry matter produced was 9.48 kg/ha per mm of irrigation water applied, seed yield was 3.10 kg/ha per mm of irrigation water applied, and oil content was 31 %.  相似文献   

17.
Soil water supply is the main limiting factor to crop production across the Loess Plateau, China. A 2-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate various water management practices for achieving favorable grain yield (GY) with high water use efficiency (WUE) of spring maize (Zea mays L.). Four practices were examined: a rain-fed (RF) system as the control; supplementary irrigation (SI); film mulching (FM); and straw mulching (SM) (in 2008 only). The soil profile water storage (W) and the crop evapotranspiration (ET) levels were studied during the maize growing season, and the GY as well as the WUE were also compared. The results showed that mean soil water storage in the top 200 cm of the profile was significantly (P < 0.05) increased in the SI (380 mm in 2007, 411 mm in 2008) and SM (414 mm in 2008) compared to the FM (361 mm in 2007, 381 mm in 2008) and RF (360 mm in 2007, 384 mm in 2008) treatments. The soil water content was lower at the end of growing season than before planting in the 60-140 cm part of the profile in both the RF and FM treatments. Cumulative ET and average crop coefficiency (Kc) throughout the whole maize growing season were significantly (P < 0.05) higher in the SI (ET, 501 mm in 2007, 431 mm in 2008; Kc, 1.0 in 2007, 0.9 in 2008) treatment than in the other treatments. Both FM and SI significantly improved the GY. The WUE were increased significantly (23-25%; P < 0.05) under the FM treatment. It was concluded that both SI and FM are beneficial for improving the yield of spring maize on the Loess Plateau. However, FM is preferable because of the shortage of available water in the area.  相似文献   

18.
Irrigation water is a limited resource, and therefore irrigation practices must be rationalized for high water-use efficiency. Little is known about the influence of stored water in deep soils on the water needs and the post-sowing irrigation requirements of crops. A 3-year field experiment was conducted to determine the effects of combinations of light and heavy pre-sowing irrigations with two post-sowing irrigation regimes on yield, root growth, water use and water-use efficiency of wheat on a deep alluvial sandy loam soil. Post-sowing treatments consisted of (i) five 75-mm irrigations at five growth stages, and (ii) irrigations based on pan evaporation, i.e. at IW/PAN-E ratio of 0.75 (75 mm of irrigation water were provided as soon as the open-pan evaporation minus rainfall since previous irrigation was 100 mm).The latter regime required 175 mm less water than that with irrigation at growth stages. Profile water utilization was inversely related to post-sowing irrigation water. Where pre-sowing irrigation was light, post-sowing irrigations based on pan evaporation yielded significantly less than those based on growth stages. With heavy pre-sowing irrigation, irrigation based on the pan evaporation yielded as much as five irrigations at growth stages. The former decreased the mean water application by 153 mm and increased the water-use efficiency by 26%. Irrigation based on pan evaporation stimulated greater utilization of stored water by increasing the rooting density in deeper layers.It is indicated that for higher water-use efficiency and yield, wheat should be sown after a heavy pre-sowing irrigation, and post-sowing irrigation should be based on 0.75 pan evaporation.  相似文献   

19.
A 2-year study was carried out from 2006 to 2007 to determine the most suitable irrigation management for maximum dry bean (Phaseolus vulgaris L.) seed yield and water use efficiency (WUE) in southern Alberta, Canada. Six irrigation management treatments were evaluated in this study, including scheduling irrigation based on soil water depletion within a 0.30-m root zone, a 0.60-m root zone, and a split 0.30/0.60-m root zone (a 0.30-m root zone during vegetative growth stages and a 0.60-m root zone at flowering), and 12, 25, and 50-mm applications of irrigation water based on soil water depletion in a 0.60-m root zone. Plant available soil water was maintained above 60% in all irrigation management treatments. A significant increase in average seed yield (15% in 2006 and 46% in 2007) and in WUE (30% in 2006 and 50% in 2007) was found in more frequently irrigated treatments (0.30-m root zone, split 0.30/0.60-m root zone, and 12-mm application) compared to less frequently irrigated treatments (0.60-m root zone and 50-mm application). Dry bean seed yield and WUE may be maximized by keeping the majority of roots moist.  相似文献   

20.
Assessment of plant-extractable soil water from experimental plots using infrared thermometer was carried out through a field experiment on rainfed castor beans (Ricinus communis L.) conducted for 2 years (1992–1993) at Hyderabad, India. The castor beans (cultivar: Aruna) were planted on three different dates in both years. Attempts were made to normalize canopy temperature and stress degree days (SDD) for environmental variability to accurately assess the plant-extractable soil water (PESW) using an Infrared thermometer. Normalization of SDD for variability of temperature and saturation deficit (division of SDD by air temperature and saturation deficit), greatly improved the predictability of the soil water status (PESW), than that based on SDD. The coefficients of determination (R2 values) of the relationship between PESW and SDD after normalization were 0.65 and 0.61 in the years 1992 and 1993, compared to 0.19 and 0.08 before normalization, in respective years. This simple method of normalization of SDD (the division of SDD with weather parameters), which seems to be a promising technique for assessing the soil water status through remote sensing techniques in semi-arid tropics (SAT) needs to be further tested in other environmental conditions and also in other crops, for realising the long-felt objective of assessing soil moisture status with the help of infrared thermometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号