首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The agricultural activities practice often demands an intensive application of fertilizers. Phosphate and nitrogen fertilizers are the most employed in the corn growing areas of the central Mexico highlands. The first ones presents an uranium content ranging from 50 to 200 mg. kg?1 depending on the origin of the phosphate rock used in its production. It is crucial to analyze the rainwater, surface water, soil water at several depths, groundwater and soil to determine the simultaneous behavior of phosphate, nitrate and uranium, and their leaching in a specific agricultural land. Uranium concentration, 16 mg. kg?1, in the soil water was higher than that in the surface water and groundwater. The different concentrations are due to an unequal uranium distribution in the environment. The phosphate concentration, 37.4 mg. kg?1, diminished throughout the profile of the soil due to a sorption–precipitation process. The nitrates were leached toward groundwater after the application of fertilizers, but the nitrate concentration in it did not exceed the limit for drinking water.  相似文献   

2.
Geostatistical approaches (ordinary kriging (OK) and indicator kriging (IK)) were used in this study to investigate the spatial and temporal variations in groundwater nitrate concentrations in Çar?amba plain of Turkey. Groundwater samples were taken in April 2012, July 2012, September 2012 and March 2013 from 78 groundwater wells. The experimental semivariograms were often fitted well by a Gauss model for April 2012 and September 2012, whereas a spherical model was fitted to experimental semivariograms for July 2012 and March 2013. Spatial distribution maps revealed that groundwater nitrate concentrations were above the threshold value of 50 mg L?1 specified for drinking water in 4.3% of the study area in April 2012, 40.8% in July 2012, 32.8% in September 2012 and 19.1% in March 2013. Probability maps created with IK showed that 3.1% and 3.2% of the total area had very strong probability (0.8–1.0) of exceeding the threshold nitrate concentration in July 2012 and September 2012, respectively. Current findings revealed that groundwater nitrate concentrations changed seasonally and increased much more in summer. It was concluded that OK and IK may yield significant outcomes for groundwater management, identification of risky sites for potential pollution and identification of the sites with excessive fertilizer uses.  相似文献   

3.
复合井修复地下水硝酸盐污染的效果   总被引:1,自引:1,他引:0  
为探寻更适用于农田周边硝酸盐污染地下水的原位生物修复技术,该研究构建了A、B、C3套试验装置,分别刻画管井(A)、大口井与管井组成的复合井(B、C)。基于3套物理试验模型,定量对比分析了管井与复合井修复地下水硝酸盐污染的效果。结果表明:受水力停留时间的影响,相同流速条件下,A、B、C三套修复系统的硝酸盐负荷分别介于75~100、100~125、125~150 mg/L之间;在允许硝酸盐负荷范围内,去除率均可达到95%以上,且不会出现亚硝酸盐累积及氨氮超标现象,表明了复合井修复系统的可行性,可以实现地下水开采与修复同步进行,提高了地下水水源地供水安全保证率。  相似文献   

4.
华北农区浅层地下水硝酸盐分布特征及其空间差异性   总被引:10,自引:5,他引:5  
华北平原地下水硝酸盐污染备受关注,然而受地貌类型、土地利用、土壤结构、含水层水文地质条件等因素差异性的影响,对区域尺度上农区浅层地下水硝酸盐污染程度和特征尚没有统一定论。本文通过综述过去华北平原地下水硝酸盐污染程度的相关研究,并结合近年来对华北平原农业种植区浅层地下水硝酸盐研究所取得的认识,指出补给源区(太行山低山丘陵区)、山前平原和低平原3个典型地貌类型区浅层地下水硝酸盐研究存在的问题:补给源区土地利用变化多样、土壤和含水层渗透性好,要重视对源区氮输入的控制,加强低山丘陵区气候变化对水文过程和氮迁移过程影响机制的研究;山前平原区是农业高产区,地下水埋深较深且包气带厚度大,较高的浅层地下水硝酸盐浓度除了与点源、污水渗漏以及污水灌溉等直接影响因素有关外,农田过量肥料施用对地下水硝酸盐影响的程度、水氮迁移路径以及未来潜在风险是农区地下水硝酸盐研究中亟需关注的问题;低平原区较细的土壤沉积结构减缓了氮向下迁移的速度,但地下水埋深较浅,二者的制约关系决定了地下水硝酸盐浓度,因此应在理解地表水-土壤-地下水转化关系的基础上评估地下水硝酸盐污染的风险。  相似文献   

5.
Abstract

Arsenic (As) is a deadly poison at high concentrations. It is mysterious in the sense that people are exposed to it most of the time through drinking groundwater, fortunately at much lower concentrations than the deadly levels, and usually without knowing it. Arsenic content in alluvial aquifers of Punjab varied from 3.5 to 688 µg L?1. Arsenic status of groundwater is classified into low (<10 µg L?1), moderate (≥10 to <25 µg L?1), high (≥25 to <50 µg L?1), and very high (>50 µg L?1). In zone I, the concentration of As in groundwater varied from 3.5 to 42 µg L?1 with a mean value of 23.4 µg L?1. On the basis of these limits, only 8% of samples were low, whereas 51 and 41% of the total samples collected from this region fall in the moderate and high As categories. The concentration of As in groundwater of zone II varied from 9.8 to 42.5 µg L?1 with a mean value of 24.1 µg L?1. Arsenic concentration in the alluvial aquifers of the central plain of zone II is 2 and 52% in the low and moderate limits. In this region, 46% of groundwater sites contain high As concentrations. Arsenic concentrations in the aridic southwestern parts are significantly different from other two provinces. The As concentration ranged from 11.4 to 688 µg L?1 with average value of 76.8 µg L?1. Eleven percent of the aquifers of the southwestern region of zone III are in the moderate category, 54% in the high, and 35% in the very high. According to safe As limits (<10 µg L?1), only 3 and 1% of the groundwater samples collected from zones I and II were fit for dinking purposes with respect to As content. In the aridic southwest, zone III, all water samples contained As concentrations greater than the safe limits and thus are not suitable for drinking purposes. The presence of elevated As concentrations in groundwater are generally due to the results of natural occurrences of As in the aquifer materials. The concentration of other competitive oxyanions in waters such as phosphate, sulfate, and borate also depressed the adsorption of As on the sorption sites of aquifer materials and thereby eventually elevate the As concentration in groundwaters. In groundwater of alluvial aquifers of Punjab, released from sulfide oxidation and oxyhydroxide of iron, elevated (>10 µg L?1) concentrations of As were widespread because of high pH (>8.0) and higher concentrations of phosphate, borate, sulfate, and hydroxyl anions. It is conclusively evident that geochemical conditions, such as pH, oxidation–reduction, associated or competing ions, and evaporative environments have significant effects on As concentration in groundwater. These conditions influence how much As is dissolved or precipitated into the water and how much is bound to the aquifer materials or the solid particles in water.  相似文献   

6.
The upper Great Egg Harbor River watershed in New Jersey’s Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006–2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river’s flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils.  相似文献   

7.
Agricultural, urban, forest and groundwater protection areas as well as nitrate and chloride concentrations are documented in maps. Areal distribution shows regionally elevated nitrate and chloride concentrations in connection with urban areas and agricultural use. Transport of nitrate and chloride tends to be conservative in the groundwater of the investigated area. Therefore, the elevated concentrations of these anions are suitable as indicators of anthropogenic impact on the groundwater. The average concentration of nitrate and chloride from all surveyed wells amounts to 26 and 17 mg L?1, respectively. It is shown that wells recharged through forests have lower nitrate and chloride concentrations (average: 21 and 13 mg L?1, respectively). Wells affected by waste deposits have an average nitrate concentration of 35 mg L?1 and chloride concentration of 24 mg L?1. Urban use results in an average value of 28 mg L?1 nitrate and 24 mg L?1 chloride. As nitrate and chloride concentrations are stable with respect to the depth of the groundwater table, degradation processes or other protective effects of the unsaturated zone can be omitted.  相似文献   

8.
Abstract. In response to the European Community Nitrate Directive (91/676) a catchment scale Geographical Information System (GIS) model of nitrate leaching has been developed to map nitrate vulnerability and predict average weekly fluxes of nitrate from agricultural land units to surface water. This paper presents a pilot study which investigated the spatial variability of soil nitrates in order to: (1) define an appropriate pixel size for modelling N leaching; (2) quantify the within-unit variability of soil nitrate concentrations for pasture and arable fields; and (3) assist in the design of an efficient sampling strategy for estimating mean nitrate concentrations. Soil samples, taken from two 800 m transects in early September 1994, were analysed for water soluble nitrate. The arable soils had a mean nitrate-nitrogen concentration of 0.693 μg/g (S.E. 0.054 μg/g) and the pasture soils had a higher mean nitrate-nitrogen concentration of 0.86 μg/g (S.E. 0.085 μg/g). Spatial variability was investigated using variograms. The pasture data had a weak spatial relationship, whereas the arable data exhibited a strong spatial relationship which fitted a spherical variogram model (r2 0.87), with a range of 40 m. A pixel size of 40 m is suggested for nitrate modelling within the GIS based on the arable variogram and an improved sampling strategy for model validation is suggested, involving bulking sub-samples over a 40 m grid for estimating mean nitrate concentrations in combined land use and soil units.  相似文献   

9.

Purpose

Previous studies in the Mezquital Valley evidenced that irrigation with untreated sewage effluent supplies two- to tenfold larger nitrogen doses to crops than common fertilizer recommendations. However, nitrate concentrations in the groundwater are only slightly above threshold concentrations for drinking water. To understand the N dynamics in this agroecosystem, we quantified nitrogen inputs, outputs, and transformations within the rooting zone and in the vadose zone down to the aquifer (i.e., in the critical zone).

Materials and methods

Single irrigation events were monitored in three different fields cropped with either annual rye grass (Lolium rigidum) or oats (Avena sativa L.) harvested for fodder. For each irrigation event, the total amount of water entering and leaving the field was quantified with a flowmeter. Soil pore water was collected with either microsuction cups or observation wells and groundwater was sampled at two wells. All water samples were analyzed for total nitrogen (Nt), ammonium nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N), chloride (Cl?1), and pH. Organic N was calculated as the difference between total N and inorganic N. The water tension and the soil water content were monitored before, during, and after the irrigation with tensiometers and TDR probes, respectively, installed at different depths and at three sites within each field. Batch experiments were conducted to assess the NH4 + adsorption capacity of the soils.

Results and discussion

The irrigations added 537 to 727 kg ha?1 N in form of organic N (40 %) and NH4 +–N (60 %) to the fields. Crops absorbed 65 % of the N and 31 to 66 kg NO3 ?–N ha?1 leached out beyond the rooting zone (>40 to 130 cm). Batch experiments evidenced an ammonium adsorption capacity of 43 and 53 % of the input ammonium mass. Nitrification dominated over denitrification as the water infiltrated through the soil, evidenced by changes in nitrate concentrations and pH values in the soil pore water. The behavior of the total N/Cl ratio with depth indicated possible N losses due to NH3 volatilization at the field surface, a temporal withdrawal of N from the soil solution due to NH4 +–N adsorption in the rooting zone, as well as probable denitrification losses in the vadose zone.

Conclusions

Although the studied agroecosystem muses the large N inputs relative efficiently, between 7 and 10 % of the added N with each irrigation leaches beyond the crop root zone as nitrate. This is triggered by overflow irrigation, since up to 8,699,000 L of water with N concentrations of up to 50 mg total N L?1 infiltrate rapidly through macropores beyond the rooting zone. Additionally, ammonia volatilization and denitrification seem to be occurring. The latter could provide a self-cleaning potential to the system, if it reaches N2 and needs further verification. Nevertheless, N inputs to the system should match crop uptake to avoid groundwater and atmospheric pollution.
  相似文献   

10.
Pharmaceuticals and personal care products (PPCPs) can reach soil and aquatic environments through land application of wastewater effluent and agricultural runoff. The objective of this research was to assess the fate of PPCPs at field scale. PPCPs were measured systematically in a wastewater treatment plant (WWTP), and in soil and groundwater receiving treated effluent from the WWTP. A land application site in West Texas was used as the study site; it has received treated wastewater effluent from the WWTP for more than 70 years in order to remove additional nutrients and irrigate non-edible crops. Target compounds (estrone, 17??-estradiol, estriol, 17??-ethynylestradiol, triclosan, caffeine, ibuprofen, and ciprofloxacin) in wastewater, sewage sludge, soil, and groundwater were determined using HPLC/UV with qualitative confirmatory analyses using GC/MS. Samples were collected quarterly over 12 months for wastewater and sludge samples and over 9 months for soil and groundwater samples. Results indicated that concentrations of PPCPs in wastewater influent, effluent, sludge solid phase, and sludge liquid phase were in the range of non-detected (ND)-183 ??g/L, ND-83 ??g/L, ND-19 ??g/g, and ND-50 ??g/L, respectively. Concentrations in soil and groundwater samples were in the range of ND-319 ng/g and ND-1,745 ??g/L, respectively. GC/MS confirmation data were consistent with the results of HPLC/UV analyses. Overall, data indicate that PPCPs in the wastewater effluent from the WWTP transport both vertically and horizontally in the soil, and eventually reach groundwater following land application of the effluent.  相似文献   

11.
Leaching of Nitrates under agricultural crops in the protected area of the waterworks Mussum Leaching of nitrates was measured within the protected area of the waterworks in Mussum near Bocholt, which had to be closed for some weeks in 1970 because of the excessive nitrate concentration of ground water. The nitrate output of the prevailing sandy soils has been determined at 10 stations since 1974 by weekly measurements of water flow and nitrate concentration of the seepage below the roots, both under normally fertilized fields and pasture and under heavily fertilized vegetables (up to 660 kg · ha?1 · y?1 N). Water percolation and thus nitrate output is almost exclusively restricted to winter, beginning in November. The nitrate concentration of seepage amounted to (a) 170-520, (b) 80-100, and (c) 40-80 mg · I?1 under (a) vegetables, (b) cereals, and (c) pasture, whereas the loss of nitrogen (N) reached values of (a) 120-350, (b) 55-70, and (c) 30-55 kg · ha?1 · y?1 respectively. The nitrate concentration under formerly heavily fertilized areas decreased to 35 mg · I?1 NO, in summer 1978 after the last application of fertilizers in spring 1977, whereas the nitrate concentration remained at 300 mg. I?1 NO, in summer 1978 after the last application of fertilizers in spring 1977, whereas the nitrate concentration remained at 300 mg · I?1 NO3 further on. The investigations prove a strong relationship between N-fertilizing and leaching of nitrates. Finally the restrictions on the land management of the legally protected area of the waterworks are reported.  相似文献   

12.
In regions with intensive agriculture and shallow hydrological systems, headstreams are often polluted with nitrate even at the springs. In North-West France, nitrate concentration was seen to decrease downstream during baseflow conditions when the stream flows on granite, but this does not occur on schist. In order to explain this difference in behaviour, we analysed the groundwaters and surveyed the redox conditions (using a field test for ferrous iron) in near-bank wet meadows as well as in the hyporheic zone. We show that the wet meadow groundwater was denitrified and that oxygen and nitrate were presentaround the stream channel in a wide zone on granite,compared with a very restricted zone on schist. Ongranite, exchanges between the stream and the hyporheic zone are favoured by sandy or peaty material having high hydraulic conductivity. This gives rise to two processes (1) lateral inflow of denitrified water from wet meadows, (2) in the opposite direction, supply of stream nitrate to denitrification sites in the hyporheic zone. In the second case, a high hydraulic conductivity also reduces the water residence time and limits denitrification, resulting in high levels of oxygen and nitrate. On schist, the low hydraulic conductivity prevents an efficientconnection between surface and subsurface waters.  相似文献   

13.
The present study aims to understand the hydrochemistry vis-à-vis As-exposure from drinking groundwater in rural Bengal. The characteristic feature of the groundwaters are low Eh (range, ?151 to ?37 mV; mean, ?68 mV) and nitrate (range, 0.01–1.7 mg/l; mean, 0.14 mg/l) followed by high alkalinity (range, 100–630 mg/l; mean, 301 mg/l), Fe (range, 0.99–38 mg/l; mean, 8.1 mg/l), phosphate (range, 0.01–15 mg/l; mean, 0.54 mg/l), hardness (range, 46–600 mg/l; mean, 245 mg/l) and sulphate (range, 0.19–88 mg/l; mean, 7.2 mg/l), indicating reducing nature of the aquifer. The land use pattern (sanitation, surface water bodies, sanitation coupled with surface water bodies and agricultural lands) demonstrates local enrichment factor for As/Fe in groundwater. Among these, sanitation is the most prevailing where groundwater is generally enriched with As (mean, 269 μg/l) and Fe (mean, 9.8 mg/l). Questionnaire survey highlights that ~70% of the villagers in the study area do not have proper sanitation. This demonstrating the local unsewered sanitation (organic waste, anthropogenic in origin) could also cause As toxicity in rural Bengal. In the agricultural lands, higher mean values of alkalinity, phosphate, sulphate, hardness and electrical conductivity was observed, and could be linked with the excessive use of fertilizers for agricultural production. Bio-markers study indicates that the accumulation of As in hair and nail is related with the construction of exposure scenario with time dimension. The strength and weakness of the on-going West Bengal and Bangladesh drinking water supply scenario and achievability towards alternative options are also evaluated.  相似文献   

14.
This study compares a traditional agricultural approach to minimise N pollution of groundwater (incorporation of crop residues) with applications of small amounts of biodiesel co-product (BCP) to arable soils. Loss of N from soil to the aqueous phase was shown to be greatly reduced in the laboratory, mainly by decreasing concentrations of dissolved nitrate-N. Increases in soil microbial biomass occurred within 4 days of BCP application—indicating rapid adaptation of the soil microbial community. Increases in biomass-N suggest that microbes were partly mechanistic in the immobilisation of N in soil. Straw, meadow-grass and BCP were subsequently incorporated into experimental soil mesocosms of depth equal to plough layer (23 cm), and placed in an exposed netted tunnel to simulate field conditions. Leachate was collected after rainfall between the autumn of 2009 and spring of 2010. Treatment with BCP resulted in less total-N transferred from soil to water over the entire period, with 32.1, 18.9, 13.2 and 4.2 mg N kg?1 soil leached cumulatively from the control, grass, straw and BCP treatments, respectively. More than 99 % of nitrate leaching was prevented using BCP. Accordingly, soils provided with crop residues or BCP showed statistically significant increases in soil N and C compared to the control (no incorporation). Microbial biomass, indicated by soil ATP concentration, was also highest for soils given BCP (p?<?0.05). These results indicate that field-scale incorporation of BCP may be an effective method to reduce nitrogen loss from agricultural soils, prevent nitrate pollution of groundwater and augment the soil microbial biomass.  相似文献   

15.
Abstract

The aim of this study was to evaluate the impact of land use on nitrate nitrogen (NO3-N) in shallow groundwater (G-N) and total nitrogen (N) in river water (R-N). The study area consisted of 26 watersheds (1342 km2) covering 72% of Kagawa Prefecture in Japan. We estimated G-N specific concentrations, which showed the magnitude of the upland fields, paddy fields, forests and urban land-use contributions to watershed-mean G-N. G-N specific concentrations were gained as partial regression coefficients using a multiple regression analysis of the watershed-mean G-N concentrations and the land-use ratios in each of the 26 watersheds. The results showed that the G-N specific concentration, which was gained as the partial regression coefficient for the multiple regression analysis, was 15.2 mg L?1, 10.3 mg L?1, 2.3 mg L?1 and 2.5 mg L?1 for the upland fields, paddy fields, forests and urban land-use types, respectively. R-N pollution load runoff to the river mouth was calculated by multiplying R-N specific concentration (previously reported) by river flow at the river mouth. Similarly, G-N pollution load arrival to groundwater was calculated by multiplying G-N specific concentration by the groundwater flow. The R-N pollution load runoff was 19.3 kg ha?1 y?1, 7.7 kg ha?1 y?1, 1.7 kg ha?1 y?1 and 7.6 kg ha?1 y?1, while the G-N pollution load arrival was 7.3 kg ha?1 y?1, 5.0 kg ha?1 y?1, 1.1 kg ha?1 y?1 and 1.2 kg ha?1 y?1, for upland fields, paddy fields, forests and urban areas, respectively. These results showed that the N in river water and groundwater was derived mainly from runoff and leaching from croplands. Therefore, the relationships between watershed-mean non-absorbed, applied nitrogen (NAA-N: nitrogen applied to cropland via fertilizer and manure without being absorbed by crops), R-N concentration and watershed-mean G-N concentration were investigated. A curvilinear correlation was observed between NAA-N and R-N concentrations (r2 = 0.68) except for one small, high-density, urban watershed, and a weak linear correlation was observed between NAA-N and G-N concentrations (r2 = 0.42).  相似文献   

16.
Abstract. The Pilot Nitrate Sensitive Areas Scheme was set up in England in 1990 to test measures aimed at reducing nitrate losses from agricultural land. Ten groundwater catchments were chosen to typify the geology and farming of areas where nitrate concentrations in abstracted water were high. Voluntary and compensated controls on farming, based on recent research, were introduced. Scheme membership was for 5 years from 1990 or 1991, and 86% of the agricultural land entered the Scheme. On all farms entering the Scheme, manure and fertilizer use were restricted and green cover crops were required over winter (Basic Scheme). Additional payments were available for conversion of arable land to zero or low-input grassland (Premium Scheme). Intensive pig and poultry farmers were assisted with the costs of transporting manure for spreading over a wider area. The most effective changes were improved management of livestock manures, especially of the very large local quantities from housed pig or poultry units; conversion of arable land to low-input grassland; and use of cover crops. There were no indications of reduced crop yields but some requirements increased costs and management complexities. Estimates based on both model calculations and measurements indicated that nitrate losses from agricultural land decreased by about 30%, with considerable variation between areas.  相似文献   

17.
This study focuses on spatial and temporal nutrient pollution of groundwater in the unconfined sandy aquifers of Kalpitiya peninsula, Sri Lanka, where agricultural activities are intense. The study covers two consecutive dry and rainy seasons during the period from 2008 to 2010. Nitrate is the dominant nutrient pollutant in groundwater. The values of Nitrate-N contents ranged from 0.60 to 212.40 mg/L in the dry seasons and 0.20?C148.50 mg/L in rainy seasons. Phosphate in groundwater ranged from 0.20 to 5.70 mg/L in dry seasons and 0.04?C10.35 mg/L with few exceptions in rainy seasons. About 50% of the studied water samples had Nitrate-N concentrations above WHO drinking water guideline values both in dry and rainy periods. These high concentrations were recorded from wells in agricultural lands. Although there is a slight decrease in the Nitrate-N concentrations at random in rainy seasons, an increasing trend of average concentrations became evident over the study period as a whole, probably indicating building up of Nitrate-N in groundwater in the vegetable growing areas. The spatial distribution of Nitrate-N too shows a good match of high Nitrate-N bearing zones with vegetable cultivated areas indicating intensive leaching from application of excessive chemical fertilizers. High Nitrate-N zones also showed fairly steady lateral distribution indicating slow lateral mobility of Nitrate-rich groundwater probably due to low hydraulic gradients. Low phosphate concentrations in both groundwater and surface soils either indicates their less use in the area or that the available phosphate is leached and removed from the aquifer water and (sandy) soil solutions and probably adsorbed in clayey deeper horizons. Low concentrations of major cations (especially K, Ca, and Na) indicate less impact on cation concentrations in groundwater by the fertilizer application or sea water intrusions/up-coning.  相似文献   

18.
The decrease in nitrogen (N) use in agriculture led to improvement of upper groundwater quality in the Sand region of the Netherlands in the 1991–2009 period. However, still half of the farms exceeded the European nitrate standard for groundwater of 50 mg/l in the 2008–2011 period. To assure that farms will comply with the quality standard, an empirical model is used to derive environmentally sound N use standards for sandy soils for different crops and soil drainage conditions. Key parameters in this model are the nitrate-N leaching fractions (NLFs) for arable land and grassland on deep, well-drained sandy soils. NLFs quantify the fraction of the N surplus on the soil balance that leaches from the root zone to groundwater and this fraction represents N available for leaching and denitrification. The aim of this study was to develop a method for calculating these NLFs by using data from a random sample of commercial arable farms and dairy farms that were monitored in the 1991–2009 period. Only mean data per farm were available, which blocked a direct derivation of NLFs for unique combinations of crop type, soil type and natural soil drainage conditions. Results showed that N surplus leached almost completely from the root zone of arable land on the most vulnerable soils, that is, deep, well-drained sandy soils (95% confidence interval of NLF 0.80–0.99), while for grassland only half of the N surplus leached from the root zone of grassland (0.39–0.49). The NLF for grassland decreased with 0.015 units/year, which is postulated to be due to a decreased grazing and increased year-round housing of dairy cows. NLFs are positively correlated with precipitation surplus (0.05 units/100 mm for dairy farms and 0.10 units/100 mm for arable farms). Therefore, an increase in precipitation due to climate change may lead to an increase in leaching of nitrate.  相似文献   

19.
Nitrogen management practices associated with row crops arewidely considered as an important contributor to nitrate pollution in water resources. We studied the relations between row crops and nitrate concentration in groundwater in an agricultural basin of Iowa, U.S.A., from a spatial perspective. Nitrate concentration and row crop area wereanalyzed on a section scale (a square mile, or 2.56 km2)for three different years. Their section values were standardized to remove the effects of precipitation and non-constant sample variances in different years. The between-year differences in individual section values werecollectively analyzed as an indication of changes in the spatial distribution from year to year. Contingency table analysis was applied to test for relations of spatial changesbetween nitrate and row crops. During the study period, thenitrate concentration and row crop area on a per section basischanged considerably from one sampling year to another.However, no significant changes were found in their spatial distributions. As a result, no significant relations betweennitrate and row crops were found in terms of changes in theirspatial distributions.  相似文献   

20.
Nitrogen compounds generated by anthropogenic combustion deposits in forest watersheds and induce nitrogen saturation of the area. Because excess nitrogen is derived from atmospheric deposition, this action is expected to uniformly affect a wide area of forest soils. Geographically, heterogeneous nitrate concentration of stream water within a small area has been attributed to the tree type, geological setting and tree cut. In this article, we hypothesized that the effect of the atmospheric nitrogen deposition in the forest watershed may vary within a small area, and that such variation is induced by the degree of air mass containing a high concentration of nitrogen deposition of combustion origin. We measured major ion concentrations, including nitrate, nitrite oxygen and nitrogen stable isotope of nitrate sampled at 24 water streams in the Chichibu region, which is 50?C100 km from the Tokyo metropolitan area. The nitrate concentration showed a wide range (25.6?C237 ??mol L?1) within 300 km2, which was explained sufficiently by the air mass advection path and its contact with the mountain??s surface. The nitrate concentration showed a significant positive correlation with chloride (r?=?0.73; p?<?0.001). As chloride originates outside of the Chichibu region, the positive correlation between two ions showed that the nitrate concentration of the stream water was affected by the nitrogen compound from the Tokyo Metropolitan area as a form of atmospheric deposition. Between the nitrate concentration and the stable isotope ratio of oxygen of nitrate, there was a positive correlation until nitrate concentration of 100 ??mol L?1. When the nitrate is over 100 ??mol L?1, ??18O shows a stable value of ca. 5.7??. This indicates that the nitrification proceeds when the nitrate concentration was low to middle, but the reaction slowed when the nitrate concentration became high. Oxygen stable isotope of nitrate along with a set of nitrate concentrations can be used as a good indicator of nitrogen saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号