首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

2.
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing season to mitigate N2O evolution and thus global warming.  相似文献   

3.
Even if it is less polluting than other farm sectors, grape growing management has to adopt measures to mitigate greenhouse gas (GHG) emissions and to preserve the quality of grapevine by-products. In viticulture, by land and crop management, GHG emissions can be reduced through adjusting methods of tillage, fertilizing, harvesting, irrigation, vineyard maintenance, electricity, natural gas, and transport until wine marketing, etc. Besides CO2, nitrous oxide (N2O) and methane (CH4), released from fertilizers and waste/wastewater management are produced in vineyards. As the main GHG in vineyards, N2O can have the same harmful action like large quantities of CO2. Carbon can be found in grape leaves, shoots, and even in fruit pulp, roots, canes, trunk, or soil organic matter. C sequestration in soil by using less tillage and tractor passing is one of the efficient methods to reduce GHG in vineyards, with the inconvenience that many years are needed for detectable changes. In the last decades, among other methods, cover crops have been used as one of the most efficient way to reduce GHG emissions and increase fertility in vineyards. Even if we analyze many references, there are still limited information on practical methods in reducing emissions of greenhouse gases in viticulture. The aim of the paper is to review the main GHG emissions produced in vineyards and the approached methods for their reduction, in order to maintain the quality of grapes and other by-products.  相似文献   

4.
Management of plant residues plays an important role in maintaining soil quality and nutrient availability for plants and microbes. However, there is considerable uncertainty regarding the factors controlling residue decomposition and their effects on greenhouse gas (GHG) emissions from the soil. This uncertainty is created both by the complexity of the processes involved and limitations in the methodologies commonly used to quantify GHG emissions. We therefore investigated the addition of two soil residues (durum wheat and faba bean) with similar C/N ratios but contrasting fibres, lignin and cellulose contents on nutrient dynamics and GHG emission from two contrasting soils: a low-soil organic carbon (SOC), high pH clay soil (Chromic Haploxerert) and a high-SOC, low pH sandy-loam soil (Eutric Cambisol). In addition, we compared the effectiveness of the use of an infrared gas analyser (IRGA) and a photoacoustic gas analyser (PGA) to measure GHG emissions with more conventional gas chromatography (GC). There was a strong correlation between the different measurement techniques which strengthens the case for the use of continuous measurement approaches involving IRGA and PGA analyses in studies of this type. The unamended Cambisol released 286% more CO2 and 30% more N2O than the Haploxerert. Addition of plant residues increased CO2 emissions more in the Haploxerert than Cambisol and N2O emission more in the Cambisol than in the Haploxerert. This may have been a consequence of the high N stabilization efficiency of the Haploxerert resulting from its high pH and the effect of the clay on mineralization of native organic matter. These results have implication management of plant residues in different soil types.  相似文献   

5.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   

6.
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%) probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches between simulated and measured \textNH4+ {\text{NH}}_4^ + , \textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated and measured N2O emissions pattern from the MT fields.  相似文献   

7.
The only known sink for nitrous oxide (N2O) is biochemical reduction to dinitrogen (N2) by N2O reductase (N2OR). We hypothesized that the application of N2O-reducing denitrifier-inoculated organic fertilizer could enhance soil N2O consumption while the disruption of nosZ genes could result in inactivation of N2O consumption. To test such hypotheses, a denitrifier-inoculated granular organic fertilizer was applied to both soil microcosms and fields. Of 41 denitrifier strains, 38 generated 30N2 in the end products of denitrification (30N2 and 46N2O) after the addition of Na15NO3 in culture condition, indicating their high N2O reductase activities. Of these 41 strains, 18 were screened in soil microcosms after their inoculation into the organic fertilizer, most of which were affiliated with Azospirillum and Herbaspirillum. These 18 strains were nutritionally starved to improve their survival in soil, and 14 starved and/or non-starved strains significantly decreased N2O emissions in soil microcosms. However, the N2O emission had not been decreased in soil microcosms after inoculating with a nosZ gene-disruptive strain, suggesting that N2O reductase activity might be essential for N2O consumption. Although the decrease of N2O was not significant at field scales, the application of organic fertilizer inoculated with Azospirillum sp. TSH100 and Herbaspirillum sp. UKPF54 had decreased the N2O emissions by 36.7% in Fluvisol and 23.4% in Andosol in 2014, but by 21.6% in Andosol in 2015 (H. sp. UKPF54 only). These results suggest that the application of N2O-reducing denitrifier-inoculated organic fertilizer may enhance N2O consumption or decrease N2O emissions in agricultural soils.  相似文献   

8.
Seasonal changes of the soil CO2 concentration and the rate of CO2 fluxes emission from the soil formed on the sediments of the former Lake Texcoco, which occupied a significant part of the Mexico Valley until the mid-17th century, were studied. The soils (Fluvic Endogleyic Phaeozems) were characterized by a low CO2 fluxes rate, which is related to their high alkalinity. The mean values of soil respiration were 6.0–14.1 mg C/(m2 h) depending on vegetation type, which corresponds to 60–157 g C/(m2 yr). The contribution of plants to the CO2 fluxes insignificantly varied by seasons and depended on the species composition of vegetation. The soil CO2 concentration and soil respiration in eucalypt (Eucalyptus globulus Labill.) plantation were two times higher than those in the grass–subshrub area, the ground cover of which consisted of Distichlis spicata (L.) Greene and Suaeda nigra (Raf.) J.F. Macbr. species. This can be related to the significant volumes of gas production during the respiration of eucalypt roots and associated rhizosphere community. The contribution of the root systems of grass cover to the soil CO2 fluxes in eucalypt plantation slightly varied within the year and was equal to 24% on the average. In the grass–subshrub area, its value varied from 41% in the cold season to 60% in the warm season. The spatial variability of soil CO2 concentration and its flux rate to the atmosphere was due to the differences in plant species composition and hydrothermal conditions, and their temporal trend was closely related to the seasonal accumulation of plant biomass and soil temperature.  相似文献   

9.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

10.
11.

Purpose

Ecosystem restorations can impact carbon dioxide (CO2) and nitrous oxide (N2O) emissions which are important greenhouse gasses. Alpine meadows are degraded worldwide, but restorations are increasing. Because their soils represent large carbon (C) and nitrogen (N) pools, they may produce significant amounts of CO2 and N2O depending on the plant species used in restorations. In addition, warming and N deposition may impact soil CO2 and N2O emissions from restored meadows.

Materials and methods

We collected soils from degraded meadows and plots restored using three different plant species at Wugong Mountain (Jiangxi, China). We measured CO2 and N2O emissions when soils were incubated at different temperatures (15, 25 or 35 °C) and levels of N addition (control vs. 4 g m?2) to understand their responses to warming and N deposition.

Results and discussion

Dissolved organic C was higher in restored plots (especially with Fimbristylis dichotoma) compared to non-restored bare soils, and their soil inorganic N was lower. CO2 emission rates were increased by vegetation restorations, decreased by N deposition, and increased by warming. CO2 emission rates were similar for the three grass species at 15 and 25 °C, but they were lower with Miscanthus floridulus at 35 °C. Soils from F. dichotoma and Carex chinensis plots had higher N2O emissions than degraded or M. floridulus plots, especially at 25 °C.

Conclusions

These results show that the effects of restorations on soil greenhouse gas emissions depended on plant species. In addition, these differences varied with temperature suggesting that future climate should be considered when choosing plant species in restorations to predict soil CO2 and N2O emissions and global warming potential.
  相似文献   

12.
The effect of the temperature and moisture on the emission of N2O from arable soils was studied in model experiments with arable soils at three contrasting levels of wetting and in a wide temperature range (from −5 to +25°C), including freeze-thaw cycles. It was shown that the losses of fertilizer nitrogen from the soils with water contents corresponding to 60 and 75% of the total water capacity (TWC) did not exceed 0.01–0.09% in the entire temperature range. In the soils with an elevated water content (90% of the TWC) at 25°C, the loss of fertilizer nitrogen in the form of N2O reached 2.35% because of the active denitrification. The extra N2O flux initiated by the freeze-thaw processes made up 88–98% of the total nitrous oxide flux during the entire experiment.  相似文献   

13.
Cultivation of rice in unsaturated soils covered with mulch is receiving more attention in China because of increasingly serious water shortage; however, greenhouse gas emission from this cultivation system is still poorly understood. A field experiment was conducted in 2001 to compare nitrous oxide (N2O) and methane (CH4) emission from rice cultivated in unsaturated soil covered with plastic or straw mulch and the traditional waterlogged production system. Trace gas fluxes from the soil were measured weekly throughout the entire growth period using a closed chamber method. Nitrous oxide emissions from unsaturated rice fields were large and varied considerably during the rice season. They were significantly affected by N fertilizer application rate. In contrast, N2O emission from the waterlogged system was very low with a maximum of 0.28 mg N2O m–2 h–1. However, CH4 emission from the waterlogged system was significantly higher than from the unsaturated system, with a maximum emission rate of 5.01 mg CH4 m–2 h–1. Our results suggested that unsaturated rice cultivation with straw mulch reduce greenhouse gas emissions.  相似文献   

14.
The aim of this study was to investigate the effect of biochar addition on the denitrification process and N2O emission in Cd-contaminated soil. Four different biochars, i.e., dairy manure and rice straw pyrolyzed at 350 and 550 °C, respectively, were added into a Cd-contaminated soil and incubation experiments were conducted for 8 weeks. Results showed that Cd had an inhibitory effect on denitrifying reductase enzymes and reduced the abundance of functional genes. On the contrary, amendment with the biochars increased denitrifying enzyme activity and gene abundance, and thus, enhanced the denitrification process. Labile carbon (C) in the biochar-amended soil, which was calculated based on the two-pool exponential model, was the key factor to facilitate this process. As a less important factor, elevated soil pH by biochar addition also increased denitrifying activity as well as the nosZ abundance. Decrease of Cd bioavailability by the biochar addition was beneficial to the denitrification process. Addition of the biochars with higher amount of NO3 ?-N, especially the rice straw-derived biochars, increased cumulative N2O emission by more than ten times relative to the Cd-contaminated soil. With the great amount of labile C and NO3 ?-N, the treatment of biochars prepared at 350 °C released the larger amount of CO2 and N2O than other treatments. The biochar addition could totally release the heavy metal stress and restore the Cd-contaminated soil in terms of bacterial community.  相似文献   

15.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

16.
The effects of intense moistening and alternating freezing-thawing cycles on the N2O emission from soils of an oak forest (brown forest soil in Lower Saxony, Germany) and southern tundra (cryozem in the area of Tal’nik Station near the city of Vorkuta) were studied in a model experiment. A sharp rise in the N2O emission reaching 350–670 μg N/m2 per h was recorded during the thawing of the brown forest soil, and the loss of nitrogen initiated by the freezing-thawing cycles comprised 74% of the total N2O emission during the whole experiment. No significant fluxes of N2O from the tundra soil were recorded during the experiment.  相似文献   

17.
Agricultural headwater ditches are an important source of indirect agricultural nitrous oxide (N2O) emissions, but their contribution is difficult to quantify. In the present study, the static chamber-gas chromatography technique was used for measurement of N2O emissions from vegetated (V, the whole ditch ecosystem) and non-vegetated (NV, the sediment-water interface only) zones in an agricultural headwater ditch in the Central Sichuan Basin in Southwestern China during 2014–2015. Annual N2O emissions from the agricultural headwater ditch were similar to direct N2O emissions from an adjacent N-fertilized purple soil cropland, suggesting nitrogen (N)-enriched ditches are important anthropogenic N2O sources. Mean cumulative N2O emissions during summer and autumn were higher than those in spring and winter. Overlying water nitrate (NO3 ?-N) concentration and sediment-water interface temperature were primary factors affecting seasonal N2O emissions. Heavy precipitation transported NO3 ?-N from cropland and increase NO3 ?-N in the agricultural headwater ditch water, and subsequently stimulate N2O emissions. A literature review of EF5r (the indirect N2O emission factor for rivers) revealed a mean value of 0.23%, similar to our values (0.27%), and also the default value (0.25%) proposed by the Intergovernmental Panel on Climate Change. The number of studies on indirect N2O emissions remains limited, and more in situ measurements are needed to have more accurate values of EF5r.  相似文献   

18.
A laboratory incubation experiment was conducted to demonstrate that reduced availability of CO2 may be an important factor limiting nitrification. Soil samples amended with wheat straw (0%, 0.1% and 0.2%) and (15NH4)2SO4 (200 mg N kg–1 soil, 2.213 atom% 15N excess) were incubated at 30±2°C for 20 days with or without the arrangement for trapping CO2 resulting from the decomposition of organic matter. Nitrification (as determined by the disappearance of NH4+ and accumulation of NO3) was found to be highly sensitive to available CO2 decreasing significantly when CO2 was trapped in alkali solution and increasing substantially when the amount of CO2 in the soil atmosphere increased due to the decomposition of added wheat straw. The co-efficient of correlation between NH4+-N and NO3-N content of soil was highly significant (r =0.99). During incubation, 0.1–78% of the applied NH4+ was recovered as NO3 at different incubation intervals. Amendment of soil with wheat straw significantly increased NH4+ immobilization. From 1.6% to 4.5% of the applied N was unaccounted for and was due to N losses. The results of the study suggest that decreased availability of CO2 will limit the process of nitrification during soil incubations involving trapping of CO2 (in closed vessels) or its removal from the stream of air passing over the incubated soil (in open-ended systems).  相似文献   

19.

Purpose  

A large amount of nitrogen (N) fertilizers has been broadcasted over soil surface for reliable crop production. Unfortunately, the broadcasted N vulnerable to volatilization and leaching can lead to serious environmental problems. As a new approach to mitigate N loss of broadcasted fertilizers, massive intercalation of urea into montmorillonite (MMT) was recently proposed to innovatively enhance the urea use efficiency. This study focuses on demonstrating the behaviors of the urea intercalated into MMT in soils.  相似文献   

20.
With the organic carbon of acetate (SBR-A) and propionate (SBR-P), the effect of organic carbon sources on nitrogen removal and nitrous oxide (N2O) emission in the multiple anoxic and aerobic process was investigated. The nitrogen removal percentages in SBR-A and SBR-P reactor were both 72%, and the phosphate removal percentages were 97 and 85.4%, respectively. During nitrification, both the NH4 +-N oxidation rate in the SBR-A and SBR-P had a small change without the influence of the addition of nitrite nitrogen (NO2 ?-N). With the addition of 10 mg/L NO2 ?-N, the nitrate nitrogen (NO3 ?-N) production rate, N2O accumulation rate and emission factor had increased. At the same time, the N2O emission factor of SBR-A and SBR-P reactors increased from 2.13 and 0.87% to 4.66 and 2.08%, respectively. During exogenous denitrification, when nitrite was used as electron acceptor, the N2O emission factors were 34.1 and 8.6 times more than those of NO3 ?-N as electron acceptor in SBR-A and SBR-P. During endogenous denitrification with NO2 ?-N as electron acceptor, the accumulation rate and emission factor of N2O were higher than those of NO3 ?-N as electron acceptor. High-throughput sequencing test showed that the dominant bacteria were Proteobacteria and Bacteroidetes in both reactors at the phylum level, while the main denitrification functional bacteria were Thauera sp., Zoogloea sp. and Dechloromonas sp. at the genus level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号