首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lima bean (Phaseolus lunatus L.) is an important food source in Brazil, especially in the northeast region, where its production and consumption are high. The goals of the present study were to estimate natural outcrossing rates and genetic diversity levels of Lima bean from Brazil, using ten microsatellite loci to obtain information for their conservation and breeding. Fourteen accessions were selected from an experiment in field with open-pollinated and with the presence of pollinating insects. Twelve seeds of each of the 14 selected accessions were grown in screenhouse for tissue harvest and DNA extraction. The multilocus model was used to determine the reproductive system. The outcrossing rate was 38.1 % (tm = 0.381; ts = 0.078), and the results indicated a mixed mating system with a predominance of selfing (1 ? tm = 61.9 %). The biparental inbreeding rate was high (t m  ? t s  = 0.303) and the multilocus correlated paternity was quite high (r p(m) = 0.889), indicating that the progeny was mostly composed of full sibs. The average effective number of pollen donors per maternal plant (N ep ) was low (1.12), and the fixation index for maternal genotypes (F m ) was 0.945, indicating that most genitors resulted from inbreeding. The studied families presented considerable genetic variability: A = 6.10;  %P = 30; H e  = 0.60 and H o  = 0.077. Total diversity was high (H T = 0.596), and a portion was distributed within families (H S = 0.058). In addition, diversity was higher between families (D ST = 0.538), and genetic differentiation was high (G ST = 0.902). The results presented here can be used in the implementation of Lima bean conservation and breeding programs in Brazil.  相似文献   

2.
This study was conducted to assess the hyperaccumulation and phytoremediation potential of copper (Cu) and lead (Pb) in Hardy ‘Limelight’ Hydrangea (Hydrangea paniculata) and the common sunflower (Helianthus annuus). The study also investigated the capacity of these two plants to transpire the metals in a temperature-controlled greenhouse. Plants were grown for 4 weeks and periodically watered with known elemental concentrations of copper oxide nanoparticles, copper sulfate, and lead nitrate. Both H. annuus and H. paniculata accumulated significant amounts of Cu and Pb to be classified as hyperaccumulator species. H. annuus took up significant amounts of Cu in the shoots, specifically the leaves (Cu max.?=?1368 ppm), and easily translocated it from stem to leaf (translocation factor (TF) ranged from 2.7 to 81.0). Pb was not as easily taken up and translocated (TF?=?0.6) as Cu was by this species. H. paniculata took up Cu and Pb in high concentrations but preferentially stored more metals in the stems (Cu max.?=?1757 ppm; Pb max.?=?780 ppm) than in the leaves (Cu max.?=?126 ppm; Pb max.?=?35 ppm). The translocation ability of H. paniculata was much lower for both metals compared to H. annuus. Both Cu and Pb transpired from H. annuus at concentrations of 0.04 and 0.005 ppm, respectively.  相似文献   

3.

Purpose

Evaluate the efficiency of Populus alba clone Villafranca in the uptake and translocation of Zn from contaminated soils.

Materials and methods

The effects of 48 days of zinc treatment (Zn t ) on the growth and the photosynthetic activities of P. alba L. clone Villafranca were studied using ZnSO4 (375 ppm per unit of soil dry weight) added in sand and peat moss substrate at the beginning of the treatment (T 0) and again after 30 days (T 1) in order to reach a target Zn concentration of 375 ppm at T 0 and 750 ppm at T 1 per unit of soil dry weight.

Results and discussion

Zn uptake in the different organs was analyzed after 30 (T 1) and 48 days (T 2) from the beginning of treatment, showing the following order: root ? leaves ≥ woody cutting = stem. The leaf area increased by 12 % in comparison to control plants at the end of second treatment (48 days). Cutting radial growth showed a high synchronicity in the growth rate fluctuation among control and Zn t plants, but a higher increase in radial diameter of Zn t cutting was observed starting from day 38 (after 8 days of second Zn t ) reaching after 48 days 38 % higher than control plants.

Conclusions

Although our data of leaf Zn concentration were in the range usually reported as toxic for plants, Villafranca clone in Zn t substrate were unaffected in terms of net CO2 assimilation and stomatal conductance to water vapor.
  相似文献   

4.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

5.
Three wild carrot species have been reported in the argentinian flora: Daucus montanus Humb. et Bonpl. ex Schult., D. montevidensis Link ex Sprengel and D. pusillus Michx. There is a discrepancy among authors about the distinctive morphological traits of the last two species; thus, it is difficult to ascertain if they are truly two distinct taxa. Based on the available literature and in the search of a paradigmatic site, four collection trips were carried out in 2004 and 2005 in Buenos Aires and Southern Entre Ríos provinces. Populations were sampled at 30 sites, and local environmental parameters and associated plant species were recorded. Morphological observations and chromosome counts were carried out on 10 plants/population. Three morphological phenotypes were distinguished: one in 18 populations, all with 2n = 2x = 18, and two in the remaining 12, with 2n = 2x = 22 or aneusomaty (2n = 2x = 20, 22). Populations of the first phenotype were assigned to wild D. carota and the rest, tentatively, to D. pusillus (D. montevidensis?), till further evaluations are carried out in test sites to verify this tentative conclusion.  相似文献   

6.
Saponins occur in numerous plants, including agaves, determining benefic and harmful properties to humans; their presence may favor using plants as soap and other products, but also they may cause caustic effects producing contact dermatitis. In domestication, favorable and unfavorable properties of saponins may cause an increase or decrease of their content, respectively. This study quantified and identified saponins among wild and managed populations of three agave species: A. cupreata Trel. et Berger, A. inaequidens Koch with wild and cultivated populations used for mescal production, and A. hookeri Jacobi, existing exclusively cultivated, used for production of the fermented beverage pulque. We studied 272 plants from 19 populations, quantifying contents of crude saponins through spectrometry. In 12 populations, the saponins types were identified by High Performance Liquid Chromatography–Mass-Spectrography-Time-of-Flight HPLC-MS-TOF. The highest crude saponins content was recorded in A. hookeri (26.09 mg/g), followed by A. cupreata (19.85 and 15.17 mg/g in wild and cultivated populations, respectively). For A. inaequidens, we recorded 14.21, 12.95, and 10.48 mg/g in wild, silvicultural managed and cultivated populations, respectively. We identified 18 saponins types, A. inaequidens showing all of them. A hecogenin glycoside (HG1) is found in high amounts in A. hookeri but in low quantities in A. inaequidens and A. cupreata. A. inaequidens had the greatest diversity of saponins. The contents of crude saponins in A. inaequidens and A. cupreata decrease with management intensity, but contrarily to what we expected, it was the highest in A. hookeri. We hypothesize that such high amount could be due to some saponins, probably HG1, may be precursors of sugars.  相似文献   

7.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

8.

Purpose

The dynamics and uncertainties in wetland methane budgets affected by the introduction of Alnus trabeculosa H. necessitate research on production of methane by methanogenic archaea and consumption by methane-oxidizing microorganisms simultaneously.

Materials and methods

This study investigated methane emission in situ by the closed chamber method, and methanogenic and methanotrophic communities using denatured gradient gel electrophoresis (DGGE) and quantitative PCR based on mcrA (methyl coenzyme M reductase), pmoA (particulate methane monooxygenase) genes in the rhizosphere and non-rhizosphere soils in the indigenous pure Phragmites australis T., and A. trabeculosaP. australis mixed communities in Chongxi wetland.

Results and discussion

Methane flux rate from the pure P. australis community was 2.4 times larger than that of A. trabeculosaP. australis mixed community in the rhizosphere and 1.7 times larger in the non-rhizosphere, respectively. The abundance of methanogens was lower in the mixed community soils (3.56?×?103–6.90?×?103 copies g?1 dry soil) compared with the P. australis community (1.47?×?104–1.89?×?104 copies g?1 dry soil), whereas the methanotrophs showed an opposite trend (2.08?×?106–1.39?×?106 copies g?1 dry soil for P. australis and 6.20?×?106–1.99?×?106 copies g?1 dry soil for mixed community soil). A liner relationship between methane emission rates against pmoA/mcrA ratios (R 2?=?0.5818, p?<?0.05, n?=?15) was observed. The community structures of the methane-cycling microorganism based on mcrA and pmoA suggested that acetoclastic methanogens belonging to Methanosarcinaceae and a particular type II methanotroph, Methylocystis, were dominant in these two plant communities.

Conclusions

The introduction of A. trabeculosa would promote the proliferation of methanotrophs, especially the dominant Methylocystis, but not methanogens, ultimately diminishing methane emission in the wetland.
  相似文献   

9.
A hybrid between Erianthus arundinaceus (Retz.) Jeswiet and Saccharum spontaneum L. which are wild related species of sugarcane (Saccharum L., Family Poaceae), was repeatedly crossed as female parent with sugarcane commercial varieties to develop near commercial sugarcane clones. The cytoplasm type of the hybrid derivatives were confirmed to be of E. arundinaceus through the mitochondrial and chloroplast DNA polymorphism of nad 4/3-4 intron segment and psbC–trnS segment, respectively. The E. arundinaceus × S. spontaneum hybrid with somatic chromosome number 2n = 62 was confirmed to have 30 chromosomes from E. arundinaceus through genomic in situ hybridization (GISH). The (E. arundinaceus × S. spontaneum) × sugarcane hybrid (2n = 118) had 24 chromosomes from E. arundinaceus whereas its next generation hybrid with sugarcane (2n = 108) had only 12 Erianthus chromosomes. The commercial sugarcane hybrid Co 15015, which is the third generation hybrid with 2n = 106 was confirmed to have two E. arundinaceus chromosomes through GISH. It is the first report of sugarcane with both alien cytoplasm and chromosome contributions from E. arundinaceus.  相似文献   

10.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

11.
Microbial food webs tolerate toxic compounds depending on individualistic species resistance and their ability of using alternate food sources. Soil polluted with low-molecular weight volatile organics, such as hexane, diminishes bacterial and fungal communities despite its short residence time. Survival of microbial species depends on perturbation intensity, which in turn restricts resources for amoebae survival in polluted soil. Soil functional recovery from anthropogenic perturbations depends on microbial organic matter (OM) metabolization of pollutants. However, reconfiguration of amoebae community after soil exposure remains largely unknown. A microcosms study was carried out to determine the effects of hexane on the community structure of soil amoebae as well as the importance of Medicago sativa on amoebae community recovering. Hexane had a negative impact on species richness and structure of the amoebae community 24 h after pollution. There was a significant increase in species richness and number of amoebae 30 days after contamination. These two parameters further increased after 60 days from contamination. After 30 days of the initial trophozoites extinction caused by Hexane, M. sativa’s. Root zone showed a significant increase of both species richness and number of individuals. This recovery trend was kept after 60 days when the highest values in species richness and abundance of individuals were shown in both polluted and non-polluted microcosms. In conclusion, M. sativa’s root zone speeds up recovery of the amoebae community structure after pollution exposure.  相似文献   

12.
Vitellaria paradoxa C. F. Gaertn., commonly known as shea tree or Vitellaria, is ranked the most important tree species of the savannah regions in the most African countries due to its ecological and economic importance for livelihoods and national economies. However, the savannah regions are the most vulnerable areas to the global climate change. Moreover, the Vitellaria populations on farmlands are threatened by the dominance of old trees with low or lack of regeneration. In this study both morphological and genetic diversity were assessed using several phenotypic traits and 10 microsatellite markers, respectively, to assess the impact of land use and agro-ecozone types on Vitellaria in Ghana. The land use types were forests and farmlands, and the agro-ecozone types included the Transitional, Guinea, and Sudan savannah zones. The mean values of morphological traits, such as diameter at breast height (DBH) and canopy diameter (CD), were statistically different between forest (DBH = 22.20, CD = 5.37) and farmland (DBH = 39.85 CD = 7.49) populations (P < 0.00001). The Sudan savannah zone with mean petiole length of 4.96 cm showed significant difference from the other zones, likely as a result of adaptation to drier climate conditions. Genetic data analysis was based on 10 microsatellite markers and revealed high genetic diversity of Vitellaria in Ghana: mean expected heterozygosity, H e was 0.667, and allelic richness, measured as number of effective alleles A e , was 4.066. Both farmlands and forests were very diverse indicating lack of negative influence of farmer’s selection on genetic diversity. Fixation index was positive for all populations (mean F IS = 0.136) with farmlands recording relatively higher values than forests in all ecological zone types studied, probably indicating less gene flow in the farmlands. Moderate differentiation (F′ ST = 0.113) was comparable to other similar tree species. Both land use and ecological zone types influenced genetic differentiation of Vitellaria at varying levels. The species was spatially structured across three ecozones and following climatic gradient. The forest reserves are used in situ conservation for Vitellaria in Ghana. High diversity observed in the most arid zones provides opportunity to find and use appropriate plant materials for breeding climate change resilient trees.  相似文献   

13.
Plants of the Pilocarpus genus (Rutaceae) are popularly known as jaborandi and are the only source of pilocarpine, an imidazole alkaloid used in eye-drops for the treatment of glaucoma as well as for the stimulation of sweat and lachrymal glands. Alkaloid extracts from leaf samples of seven species of Pilocarpus, from the states of São Paulo and Maranhão in Brazil, were analyzed using HPLC–ESI–MS/MS. The samples contained between 0.88 ± 0.04 and 1.00 ± 0.14% of alkaloids in relation to the dry weight of their leaves, with significant differences in results (P ≤ 0.05) found only between Pilocarpus microphyllus planted in the state of Maranhão and Pilocarpus spicatus, Pilocarpus trachyllophus, Pilocarpus pennatifolius and Pilocarpus jaborandi; as well as between Pilocarpus spicatus and Pilocarpus racemosus. Pilocarpine was not found in P. spicatus, whereas in the other species it ranged from 2.6 ± 0.1 to 70.8 ± 1.2% of total alkaloids. P. microphyllus planted in the state of Maranhão for pilocarpine extraction had the highest total alkaloid content, but it had only 35% of pilocarpine in relation to total alkaloids. Three other species contained more pilocarpine in relation to total alkaloids: P. jaborandi (70.8%), P. racemosus (45.6%) and P. trachyllophus (38.7%); and could be candidates for pilocarpine extraction. Differences in alkaloid content were significant for all these samples (P ≤ 0.05). Imidazole alkaloids were observed and partially characterized based on their retention times and high resolution mass. The seven species analyzed had different imidazole alkaloid profiles, but only one did not present quantifiable pilocarpine contents in its leaves. The Pilocarpus genus shows potential for the prospection of novel alkaloids.  相似文献   

14.
Significant genetic diversity was observed in 218 out of a total of 1309 accessions of amaranth (Amaranthus hypochondriacus L.) and its seven wild relatives, A. spinosus L., A. dubius Mart. ex Thell., A. hybridus L., A. tricolor L., A. cruentus L., A. caudatus L., A. retroflexus L. for 24 nutritional parameters including total oil content, fatty acid profile, total protein content and amino acid profile. Diversity for total oil content (6.42–12.53%), linoleic acid (25.68–54.34%), oleic acid (21.97–42.01%) of the total fatty acids, total protein content (7.84–18.01%), among important essential amino acids; lysine content (0.66–11.12 g/16 g N), methionine (0.35–4.80 g/16 g N) and half cystine and (0.12–8.32 g/16 g N) was reported. The un-weighted pair-group method using arithmetic average cluster analysis based on pair wise Euclidean genetic distance grouped the accessions into seven major clusters. Histidine, half cystine, tyrosine, essential amino acids, total oil content, linoleic acid and oleic acid content were the major parameters contributing significantly to genetic diversity. Present findings indicate that significant diversity exists for nutritional parameters in amaranth germplasm. The promising accessions with higher multiple nutritive traits; protein content (>16%), oil content (>11%), lysine content (>7.5 g/16 g N) and EAA higher than the FAO reported values, were identified. This is the first report on detailed nutritional analysis of diversity collected worldwide. These could be used as potential breeding material for nutritional enhancement through genetic improvement. This will help in overcoming the “triple burden” of malnourishment, hidden hunger, and obesity.  相似文献   

15.
Biodegradability of chlorhexidine (CH), triclosan (TC), and benzalkonium chloride (CBA) has been tested in 18 surface water sampling points in the urban area of Buenos Aires. Sampling points were located in both the Reconquista and the Matanza-Riachuelo basins as well as in the La Plata River. High tolerance to the three disinfectants was found and indigenous strains capable of degrading CBA and TC were isolated. Neither tolerance nor biodegradation were correlated with sewage pollution. A strain that degrades CBA was identified as belonging to the genus Pseudomonas using the API20NE system and 16SRNA sequencing. In batch assays, the strain was capable of degrading 100, 200, and up to 500 mg L?1 of CBA in 10, 25, and 46 h respectively with specific growth rates (μ) of 0.56, 0.30, and 0.14 h?1. The efficiency of the process was between 99.5–98.0% in terms of compound removal and between 93.8–89.1% in terms of chemical oxygen demand (COD). The detoxification of the compound as a result of the biodegradation was assessed using Pseudokirchneriella subcapitata, Vibrio fischeri, and Lactuca sativa as test organisms.  相似文献   

16.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

17.
C-banded pattern in two accessions of Thinopyrum bessarabicum (Save ex Rayss) A. Löve (2n = 2x = 14, EbEb) and their idiogram was established. C-banding analysis was further used to identify the chromosomes of Tritipyrum amphiploid (2n = 6x = 42, AABBEbEb) and a BC1F2 genotype from wheat and Tritipyrum. Two 18S-26S rDNA loci were detected on Th. bessarabicum chromosomes by in situ hybridization using an 18S-26S rDNA probe. Eb chromosomes in Tritipyrum generally were identified by their distinctive C-banding patterns which reflected heterochromatin regions. C-banding procedure resulted in sharp and distinct bands in one or both ends of Eb chromosomes without interval bands. Observed C-bands in Eb genome mainly reflected the telomeric and subtelomeric sequences which also showed more strong signals in genomic in situ hybridization. Results showed the importance of the C-banding technique as a screening tool in identification of addition and substitution lines in the progenies of wheat and Tritipyrum crosses during segregating generations.  相似文献   

18.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

19.
Little is known regarding the effect of fragmentation and human agricultural management on the genetic variation and gene flow of Cucurbita pepo L., 1753 in moderate fragmented areas in central Guatemala. We hypothesize that the genetic variation of C. pepo is affected by forest fragmentation and by traditional agricultural management. Therefore, we aim to determine: (1) the genetic diversity and genetic structure of C. pepo in the Cloud Forest Corridor (CFC) (2) the extent of genetic admixture between commercial variety (CV) and traditional landraces (TL) of C. pepo, (3) the effect of habitat fragmentation in the population genetics of C. pepo with a landscape approach, and (4) the potential relationship between traditional management practices and genetic diversity of C. pepo in the CFC. We detected the existence of high level of genetic diversity (AR = 3.43; He = 0.50), inbreeding (Fis = 0.25) and moderate population structure of C. pepo in the CFC (Fst = 0.16). No correlation between landscape and genetics was found. Also, we found high genetic admixture between CV and TL. It seems that human practices, mainly related with seed exchange patterns, could affect genetic diversity of C. pepo in the CFC. C. pepo populations in the CFC are structured, with inbreeding, and show admixture with the CV, an aspect that could affect its genetic diversity. The agricultural management influenced the population genetics of C. pepo in the CFC, but the landscape did not. We suggest that special efforts should be made to preserve the diversity of this important indigenous food source for Guatemalan people as well as their management practices.  相似文献   

20.
Maize (Zea mays L.) and Asian rice (Oryza sativa L.), two most important cereals for human nutrition, have undergone strong artificial selection during a long period of time. Currently, a number of genes with stronger signals of selection have been identified through combining genomic and population genetic approach, but research on artificial selection of maize and Asian rice is scarcely done from the perspective of phenotypic difference of a number of agronomic traits. In this study, such an investigation was carried out on the basis of 179 published studies about phenotypic quantitative trait locus (QTL) mapping of Zea and Oryza species via QTL sign test. At the overall level, the proportions of antagonistic QTLs of Zea and Oryza species were 0.2446 and 0.2382 respectively, deviating significantly from neutrality. It indicated that these two genera have undergone similar selection strength during their evolutionary process. A previous study showed that 4 traits undergoing the directional selection during domestication were identified in Asian rice via QTL sign test, and 16 individual traits in Asian rice and 38 ones in maize that newly detected in this study deviated significantly from neutrality as well, demonstrating the dominant influence of artificial selection on them. Moreover, analysis of different categories of cross type including O. sativa × Oryza rufipogon (perennial and annual forms) crosses, maize × teosinte (Zea mays subsp. parviglumis) crosses, O. sativa × O. sativa crosses, and maize × maize crosses showed that their proportions of antagonistic QTLs were 0.1869, 0.1467, 0.2649, and 0.2618 respectively. These results revealed that selection strength of domestication is significantly stronger than that of modern genetic improvement. However, interestingly, the proportion of antagonistic QTLs (0.1591) in maize × maize with long-term selection was very similar to that (0.1467) in the maize × teosinte (Zea mays subsp. parviglumis) crosses. It suggested that some favorable traits could be cultivated within a few decades if we carry out strong selection. In addition, the proportions of antagonistic QTLs of the widely cultivated hybrids of rice (Minghui 63 × Zhenshan 97) and maize (Zheng 58 × Chang 7-2) in China were 0.309 and 0.3472 respectively. It suggested that selection during modern genetic improvement has significantly acted on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号