首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical procedure for the determination of exchangeable Cr(VI) was developed. In order to optimise the extraction procedure, the efficiency of extraction of exchangeable Cr(VI) in soil samples was investigated in KH2PO4–K2HPO4 buffer solutions (0.015 up to 0.2 mol l?1), adjusted to the pH of the soil. Phosphate buffer was used to efficiently desorb Cr(VI) from soil particles. The extraction time (mechanical shaking) ranged from 1 up to 72 h. Cr(VI) in soil extracts was determined by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption detection (FPLC-ETAAS). The study was performed on soil samples from the field treated with the tannery waste for seventeen years. Samples were analysed in the 16 year after the last waste application. It was experimentally proven that the optimal phosphate buffer concentration was 0.1 mol l?1 and extraction time 16 h. An additional experiment was done to confirm that during the extraction, soluble Cr(III) was not oxidised to Cr(VI) by Mn(IV) oxides present in soil samples. For this purpose soil with the same characteristics, but not treated with tannery waste, was spiked with Cr(III) and the analytical procedure performed. No measurable Cr(VI) concentrations were detected. The repeatability of measurement was 2.5%, while the reproducibility of measurement was 6.9%. The accuracy of the analytical procedure was tested by spiking of soil samples with Cr(VI). The recoveries were better than 95%. The analytical procedure with limit of detection (LOD) 15 ng g?1 of Cr(VI) was sensitive enough for the determination of exchangeable Cr(VI) in soils. In field soil samples analysed the concentrations of exchangeable Cr(VI) were found to be about 200 ng g?1.  相似文献   

2.
The main purpose of this work was to conduct a kinetic study on cell growth and hexavalent chromium [Cr(VI)] removal by Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor. The yeast was batch-cultivated in a 5.2-l airlift bioreactor containing culture medium with an initial Cr(VI) concentration of 1.5 mM. The maximum specific growth rate of Candida sp. FGSFEP in the airlift bioreactor was 0.0244 h?1, which was 71.83% higher than that obtained in flasks. The yeast strain was capable of reducing 1.5 mM Cr(VI) completely and exhibited a high volumetric rate [1.64 mg Cr(VI) l?1 h?1], specific rate [0.95 mg Cr(VI) g?1 biomass h?1] and capacity [44.38 mg Cr(VI) g?1 biomass] of Cr(VI) reduction in the airlift bioreactor, with values higher than those obtained in flasks. Therefore, culture of Candida sp. FGSFEP in a concentric draft-tube airlift bioreactor could be a promising technological alternative for the aerobic treatment of Cr(VI)-contaminated industrial effluents.  相似文献   

3.
Abstract

Phytotoxicity, due to chromium [Cr (VI)] additions from low to very high levels in a swell–shrink clayey soil (Haplustert), in maize and spinach was studied in a pot culture experiment. Six levels of Cr (VI) (0, 5, 10, 25, 50, and 75 mg kg?1 soil) for maize and five levels for spinach (0, 2, 5, 10, and 25 mg kg?1 soil) were applied singly and in combination with two doses (0 and 20 t ha?1) of city compost. At levels of more than 75 mg Cr (VI) kg?1 soil for maize there was virtually no growth after germination, whereas 25 mg Cr (VI) kg?1 soil hindered the germination of spinach crop. Initial symptoms of Cr (VI) toxicity appeared as severe wilting of the tops of treated plants. Maize plants suffering from severe Cr (VI) toxicity had smaller roots and narrow brownish red leaves covered with small necrotic spots. In spinach, severe chlorosis was observed in leaves. Higher levels of Cr (VI) inhibited the growth and dry‐matter yield of the crops. However, application of city compost alleviated the toxic effect of Cr (VI). The concentration of Cr (VI) in plant parts increased when Cr (VI) was applied singly but decreased considerably when used in combination with city compost. There was evidence of an antagonistic effect of Cr (VI) on other heavy‐metal (Mn, Cu, Zn, and Fe) concentrations in plant tops. Thus, when Cr (VI) concentration increases, the concentration of other beneficial metals decreases. Chromium (VI) concentration in maize roots ranged from traces (control) to 30 mg kg?1and were directly related to soil Cr (VI) concentration. At 25 mg Cr (VI) kg?1 soil, yield of maize was reduced to 41% of control plants, whereas in spinach, 10 mg Cr (VI) kg?1 soil caused a 33% yield reduction. Experimental results revealed that the maize top (cereal) is less effective in accumulating Cr (VI) than spinach (leafy vegetables). Laboratory studies were also conducted to know Cr (VI) sorption capacity of a swell–shrink clayey soil with and without city compost, and it was found that Cr (VI) sorption reaction was endothermic and spontaneous in nature.  相似文献   

4.
Abstract

A rapid, sensitive, and accurate method for the separation and speciative determination of chromium (Cr)(VI) and Cr(III) in water samples has been developed using sorption as the separation technique in conjunction with final determination by electrothermal atomic absorption spectroscopy (ETAAS). The present method, where granular calcite is used as selective sorbent, separates Cr(III) with retention values up to 99%, resulting in high accuracy determination of Cr(VI). Total Cr was likewise determined by ETAAS after an efficient reduction of Cr(VI) to Cr(III) using ascorbic acid as reducing agent, deriving Cr(III) concentration from the difference between total Cr and Cr(VI). The parameters of the separation technique, solution pH (4.5–5.5), solution flow rate through the calcite column (0.14–0.42 mL min?1), and calcite column internal diameter (1.5–3.0 cm), were evaluated. Best results were achieved with pH of 5.5, flow rate of 0.42 mL min?1, and column internal diameter of 1.5 cm. Optimum determination conditions were found using magnesium nitrate [Mg(NO3)2] as chemical modifier, pyrolysis, and atomization temperatures of 1400 and 2200°C, respectively. In such conditions, the detection limits (n=10) were 1.5 and 0.8 µg L?1 for Cr(III) and Cr(VI), respectively.  相似文献   

5.

Purpose

The Todos os Santos Bay is the largest bay in Brazil and receives drainage from various watersheds. For more than 450 years, it was the main destination for the domestic and hospital sewage from the city of Salvador, Bahia. With the growing concern regarding the presence of pharmaceutical and personal care products (PPCPs) in the environment, an investigation was undertaken to determine the presence and levels of some commonly used drugs (i.e., atenolol, caffeine, carbamazepine, diazepam, diclofenac, erythromycin, ibuprofen) and personal care products (i.e., galaxolide, tonalide), using sediments as an indicator of their presence in the water column.

Material and methods

Surficial sediment samples from 17 stations located in the intertidal zone of the Todos os Santos Bay and infralittoral zone along the north coast of Salvador were tested for the presence of some PPCPs using LC-MS/MS (for drugs) and GC-MS/MS (for fragrances).

Results and discussion

The PPCPs examined were present in all sediment samples at levels of parts per billion of dry sediment. The highest concentrations were found for the fragrances galaxolide (52.5 ng g?1) and tonalide (27.9 ng g?1), followed by caffeine (23.4 ng g?1) and pharmaceuticals ibuprofen (14.3 ng g?1), atenolol (9.84 ng g?1), carbamazepine (4.81 ng g?1), erythromycin (2.29 ng g?1), diclofenac (1.06 ng g?1), and diazepam (0.71 ng g?1).

Conclusions

Pharmaceuticals were found to be ubiquitous in the sediments of the study areas. The texture of the sediment was an important factor in PPCPs fixation and deposition. The concentrations of all PPCPs had statistically significant positive correlations with the percentage of clay in the sediments.  相似文献   

6.
The purpose of this study is to evaluate the combined Cr(VI) removal capacities of nonliving (untreated rubber wood sawdust, URWS) and living biomass (URWS-immobilized Acinetobacter haemolyticus) in a continuous laboratory scale downward-flow two column system. Synthetic solutions of Cr(VI) between 237 and 320 mg L?1 were mixed with 1 g L?1 brown sugar in a nonsterile condition. Final Cr(VI) of between 0 and 1.6 mg L?1 indicate a Cr(VI) removal capacity of 99.8–100%. The bacterial Cr(VI) reduction capacity increased with column length. This study shows the feasibility of using the two column system consisting of living (bacteria) and nonliving biomass (URWS) as a useful alternative treatment for Cr(VI) contamination in the aqueous system.  相似文献   

7.
The research goal was to determine if onsite wastewater system (OWS) density had an influence on the concentrations and watershed exports of Escherichia coli and enterococci in urbanizing watersheds. Eight watersheds with OWS densities ranging from <?0.1 to 1.88 systems ha?1 plus a watershed served by sewer (Sewer) and a mostly forested, natural watershed (Natural) in the Piedmont of North Carolina served as the study locations. Stream samples were collected approximately monthly during baseflow conditions between January 2015 and December 2016 (n?=?21). Median concentrations of E. coli (2014 most probable number (MPN) 100 mL?1) and enterococci (168 MPN 100 mL?1) were elevated in streams draining watersheds with a high density of OWS (>?0.77 system ha?1) relative to watersheds with a low (<?0.77 system ha?1) density (E. coli: 204 MPN 100 mL?1 and enterococci: 88 MPN 100 mL?1) and control watersheds (Natural: E. coli: 355 MPN 100 mL?1 and enterococci: 62 MPN 100 mL?1; Sewer: 177 MPN 100 mL?1 and 130 MPN 100 mL?1). Samples collected from watersheds with a high density of OWS had E. coli and enterococci concentrations that exceeded recommended thresholds 88 and 57% of times sampled, respectively. Results show that stream E. coli and enterococci concentrations and exports are influenced by the density of OWS in urbanizing watersheds. Cost share programs to help finance OWS repairs and maintenance are suggested to help improve water quality in watersheds with OWS.  相似文献   

8.
The removal efficiency and tolerance of Typha domingensis to Cr(VI) in treatments with and without organic matter (OM) addition were evaluated in microcosm-scale wetlands. Studied Cr(VI) concentrations were 15 mg L?1, 30 mg L?1, and 100 mg L?1, in treatments with and without OM addition, arranged in triplicate. Controls (without neither metal nor OM addition—without metal with OM addition) were disposed. Cr(VI) was removed efficiently from water in all treatments. OM addition enhanced significantly Cr(VI) and total Cr removals from water. In the treatments with OM addition, significantly higher Cr concentrations were found in sediment than the treatments without OM addition. Plants of the treatments without OM addition showed significantly higher Cr concentrations in tissues but lower biomass increase than the treatments with OM addition. The highest Cr concentrations in tissues were observed in submerged parts of leaves, followed by roots. According to SEM analysis, in the 100 mg L?1 treatments, the highest Cr accumulation was observed in the epidermis of old leaves. Although Cr(VI) produced changes in root morphology, the OM addition favored the plant growth. In T. domingensis, root morphological plasticity is an important mechanism to improve metal tolerance and Cr uptake in wetland systems minimizing the environmental impact.  相似文献   

9.
Continual discharge of textile wastewaters loaded with a variety of synthetic dyes and metals is considered as a huge threat to surrounding ecosystems. In order to treat these undesirable pollutants, microbial bioremediation is considered as an efficient and economical technique. This study was conducted to evaluate the use of bacterial strains for simultaneous removal of azo dyes and hexavalent chromium [Cr(VI)]. Fifty-eight bacterial strains were isolated from Paharang drain wastewater and tested for their potential to decolorize reactive red-120 (RR-120) in the presence of 25 mg L?1 of Cr(VI). Among the tested isolates, FA10 decolorized the RR-120 most efficiently and was identified as Acinetobacter junii strain FA10. Based on quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), Cr concentration and pH were found to be the main factors governing the RR-120 decolorization by FA10. The strain FA10 also exhibited a substantial salt resistance since it showed a considerable decolorization of RR-120 even in the presence of 150 g L?1 of NaCl. Moreover, the strain FA10 also showed the potential to simultaneously remove the Cr(VI) and the selected azo dyes in the same medium. More than 80 % of the initially added Cr(VI) was removed over 72 h of incubation along with the appreciable decolorization efficiency. The strain FA10 also exhibited good tolerance to considerable levels of different heavy metals. The findings of this study suggest that the strain FA10 might serve as an efficient bioresource to develop the biotechnological approaches for simultaneous removal of different azo dyes and heavy metals including Cr(VI).  相似文献   

10.
Chromium occurs naturally at trace levels in most soils and water, but disposal of industrial waste and sewage sludge containing chromium compounds has created a number of contaminated sites, which could pose a major environmental threat. This study was conducted to enumerate and isolate chromium-resistant microorganisms from sediments of evaporation ponds of a metal processing plant and determine their tolerance to other metals, metalloids and antibiotics. Enumeration of the microbiota of Cr-contaminated sediments and a clean background sample was conducted by means of the dilution-plate count method using media spiked with Cr(VI) at concentrations ranging from 10 to 1000 mg L?1. Twenty Cr(VI) tolerant bacterial isolates were selected and their resistance to other metals and metalloids, and to antibiotics was assessed using a plate diffusion technique. The number of colony-forming units (cfu) of the contaminated sediments declined with increasing concentrations from 10 to 100 mg L?1 Cr(VI), and more severely from 100 to 1000 mg L?1 Cr(VI). The background sample behaved similarly to 100 mg L?1 Cr(VI), but the cfu declined more rapidly thereafter, and no cfu were observed at 1000 mg L?1 Cr(VI). Metals and metalloids that inhibited growth (from the most to least inhibitory) were: Hg > Cd > Ag > Mo = As(III) at 50 μg mL?1. All 20 isolates were resistant to Co, Cu, Fe, Ni, Se(IV), Se(VI), Zn, Sn, As(V), Te and Sb at 50 μg mL?1 and Pb at 100 μg mL?1. Eighty-five percent of the isolates had multiple antibiotic resistance. In general, the more metal-tolerant bacteria were among the more resistant to antibiotics. It appears that the Cr-contaminated sediments may have enriched for bacterial strains with increased Cr(VI) tolerance.  相似文献   

11.
Soil contaminated by chromium (Cr) is a major concern for sustainable agriculture. Considering this as a basis, the present study was designed to isolate Cr(VI)-reducing and plant growth-promoting bacterial strain from contaminated sampling sources. In this study, Rhizobium strain ND2 was isolated from the root nodules of Phaseolus vulgaris grown in leather industrial effluent contaminated soil. The strain ND2 exhibited strong resistance to different heavy metals and reduced 30 and 50 µg ml?1 concentrations of Cr(VI) completely after 80 and 120 h of incubation, respectively, as well as chromium adsorption and immobilization were confirmed by scanning electron microscopic equipped with energy X-ray spectroscopy. In addition, the strain produced 21.73 and 36.86 µg ml?1 of indole-3-acetic acid at 50 and 100 µg ml?1 of L-tryptophan supplimentations, respectively. Strain ND2 positively affected the exo-polysaccharide, ammonia, protease and catalase production and stimulated root length of various test crops under Cr(VI) stress. Moreover, Rhizobium strain ND2 has the potential to colonize the diverse agricultural crops. Thus, the present findings strongly suggested that the multipotential properties of ND2 could be exploited for bioremediation of contaminated sites with Cr(VI) as well as potential bio fertilizer for enhancing the agricultural productivity.  相似文献   

12.
The objective of this research was to assess the hexavalent chromium (Cr(VI)) reducing efficiency of sulfur-based inorganic agents including calcium polysulfide (CPS), iron sulfide (FeS), pyrite (FeS2) and sodium sulfide (Na2S) in three soils. An alkaline soil (soil 1), a neutral soil (soil 2) and a slightly acid soil (soil 3) constituted the investigated soils. The soils were spiked with two levels of Cr(VI) (100 and 500 mg Cr(VI) kg?1 soil) and incubated at field capacity (FC) for one month. Then, CPS, FeS, FeS2 and Na2S were added at 0, 5 and 10 g kg?1 and the concentrations of exchangeable Cr(VI) were measured after 0.5, 4, 48 and 168 h in a batch experiment. The pH and organic carbon content of the soils played predominant role in Cr(VI) self-reduction by the soil itself. Complete self-reduction of Cr(VI) from soils 1, 2 and 3 was achieved at maximum Cr(VI) levels of 1, 50 and 500 mg kg?1, respectively. Therefore, the concentration of Cr(VI) should not exceed the given levels in order to ensure that Cr(VI) is not released into the environment from contaminated sites. Moreover, decreasing pH in the alkaline soil caused significant increase of Cr(VI) reducing efficiency. Na2S, CPS and FeS, in contrast to FeS2, were efficient Cr(VI) reducing agents in all three soils. For all added amendments the following order of Cr(VI) reducing capacity was observed: Na2S > CPS > FeS > FeS2 in soil 1, Na2S ? CPS ~ FeS > FeS2 in soil 2 and Na2S ? FeS > CPS ~ FeS2 in soil 3.  相似文献   

13.
A peanut shell-derived oxidized activated carbon (OAC) with high surface area was prepared by zinc chloride (ZnCl2) chemical activation and subsequent nitric acid oxidation. OAC was characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption. The results showed that OAC had the surface area of 1807 m2 g?1, with the total pore volume of 0.725 cm3 g?1 and average pore diameter of 3.8 nm. More importantly, when OAC acted as an adsorbent, it exhibited high efficiency to remove basic blue 41 (BB-41), congo red (CR), phenol, Cr(VI), and Pb(II) from aqueous solution due to its universality in adsorption. Batch adsorption experiments were carried out to study the effect of various parameters such as pH, initial concentration, temperature, and contact time. Also, the isotherms, kinetic models, and thermodynamics of adsorption process were investigated. The equilibrium data for CR and Pb(II) were fitted to Langmuir isotherm model, while Freundlich model was suitable for the equilibrium isotherm of BB-41, phenol, and Cr(VI), respectively. As the result indicated, peanut shell was a suitable raw material to synthesize OAC which could be employed as an efficient and universal adsorbent for removing organic pollutants and heavy metal ions from wastewater.  相似文献   

14.
Hexavalent chromium (Cr(VI)), which has been classified as a Group A human carcinogens list by the United States Environmental Protection Agency, possesses stronger biological toxicity, and its discharge into farmland has become a pressing environmental problems. To screen the cost-efficient Cr(VI)-contaminated soil in situ amended materials, the effects of ordinary zero-valent iron (ZVI), nanoscale zero-valent iron (nZVI), biochar (B), biochar/zero-valent iron (BZVI), and biochar/nanoscale zero-valent iron (BnZVI) on the immobilization of Cr(VI) in spiked soil (Cr(VI) = 325 mg kg?1, Crtotal = 640 mg kg?1) were compared in this paper. After 15 days remediation by those materials, toxicity characteristic leaching procedure and physiological-based extraction test showed that the Cr(VI) leachability and bioaccessibility were reduced by 14–92% and 4.3–92% respectively, and the order of immobilization was found to be nZVI > BnZVI > BZVI > ZVI > B. Moreover, sequential extraction procedure indicated that all materials can increase the proportion of the residual Cr, and nZVI had the most significant effect. Plant seedling growth test proved that the nanoscale zero-valent iron was able to reduce the toxicity of chromium in plants greatly in a short time, while BnZVI treatment is more favorable to the growth of plants. To sum up, the nano zero-valent iron and biochar combined treatment not only removed Cr(VI) and immobilized total chromium efficiently but also enabled plant growth in relative high chromium-containing soil.  相似文献   

15.
In order to study the potential use of microfauna as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater, an experimental sequencing batch reactor was set up and evaluated by biological and physical–chemical analyses for 12 months. Results show that microfauna (and specifically ciliate protozoa) are a good parameter for assessing effluent quality in terms of both chemical oxygen demand (COD) and ammonia and for assessing the organic and nitrogen load of the system. Specifically, the abundance of ciliates decreases from 20,000 individuals·mL?1 to ca. 2,500 individuals·mL?1 and from ca. 10,000 individuals mL?1 to ca. 200 individuals mL?1 when effluent concentration is between 550 and 750 mg L?1 and above 100 mg L?1 to the COD and ammonia concentrations, respectively. Furthermore, microfauna abundance is reduced from ca. 18,000 individuals mL?1 (organic load between 0.1 and 0.2 mg COD mg total suspended solids (TSS)?1 day?1) to ca. 500 individuals mL?1 (organic load between 0.3 and 04 mg COD mg TSS?1 day?1). Microfauna abundance also decreases as nitrogen loading increases. Nitrogen loading in the range of 5–60 mg NH4–N g TSS?1 day?1 does not have any significant effect on microfauna abundance. However, ammonia loading from 60 to 120 mg NH4–N g TSS?1 day?1 reduces microfauna abundance ca. 6-fold. Ciliate protozoa were the largest microfauna group during the whole period of study, representing ca. 75% of the total microfauna abundance. The largest group in the ciliate community was that of the free-swimming ciliates. This was followed by the group of attached and crawling ciliates. Specifically, the dominant ciliate species during the whole study period were Uronema nigricans, Vorticella microstoma-complex, Epistylis coronata, and Acineria uncinata.  相似文献   

16.
Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 G (granulated elemental iron); ZVIne (non-stabilized zerovalent iron) and ZVIcol (colloidal zerovalent iron). ZVIcol was synthesized using different experimental conditions with carboxymethyl cellulose (CMC) and ultra-sound. Chemical analysis revealed that the contaminated soil (frank clay sandy texture) presented an average Cr(VI) concentration of 456?±?35 mg kg?1. Remediation studies carried out under batch conditions indicated that 1.00 g of ZVIcol leads to a chemical reduction of ~280 mg of Cr(VI). Considering the fractions of Cr(VI) present in soil (labile, exchangeable and insoluble), it was noted that after treatment with ZVIcol (semi-batch conditions and pH 5) only 2.5% of these species were not reduced. A comparative study using iron species was carried out in order to evaluate the reduction potentialities exhibited by ZVIcol. Results obtained under batch and semi-batch conditions indicate that application of ZVIcol for the “in situ” remediation of soil and groundwater containing Cr(VI) constitutes a promising technology.  相似文献   

17.
The influence of culture medium composition on chromium(VI) quantification according to diphenylcarbazide (DPC) colorimetric determination was evaluated. Considering the eventual biospeciation of Cr(VI) as a mechanism of microbial bioremediation, the possibility to quantify Cr(III) in culture medium was also explored. Yeast nitrogen base (YNB) was identified as the least interferent culture medium for Cr(VI) quantification by DPC and it was applied to compare different strategies for Cr(III) oxidation. The most appropriate oxidation protocol consisted in the reaction with 80 mM KIO4 at room temperature for 30 min prior to DPC. Parameters like basal culture medium (vitamins + salts + oligoelements), C and N source were systematically evaluated, either independently or in combination. Results demonstrated that C source was the most interferent culture medium component, being the use of sucrose preferable to glucose. A medium arbitrarily named as YNB′ (YNB without amino acids and ammonium sulfate plus 50 g L?1 sucrose and 0.6 g L?1 (NH4)2SO4) was defined for Cr(VI)-amended fungal cultures. Kinetics of growth, Cr(VI) removal, and nutrient consumption for isolates A. pullulans VR-8, filamentous fungus PMF-1, and Lecythophora sp. NGV-1 were obtained. The order of Cr(VI) removal efficiency was as follows: A. pullulans VR-8 > Lecythophora sp. NGV-1 > filamentous fungus PMF-1, and a similar trend was observed for biomass yield and nutrients consumption. Studies on biospeciation by means of the selected Cr(III) oxidation protocol were unsuccessful, leading to Cr(VI) values much lower than expected. It revealed that this kind of protocols should be cautiously evaluated when studying microbial Cr(VI) bioremediation.  相似文献   

18.
The short term acute toxicity of potassium chromate, potassium dichromate and chromium sulphate has been compared in a simple microbial bioassay. The test parameters were, decrease in viability, genotoxicity and metal uptake. The LC50 values of Cr(III), dichromate Cr(VI) and chromate Cr(VI) for Escherichia coli were 16, 10 and 1.2 μg mL?1, respectively. Among the test substances potassium chromate was most toxic and showed no bioaccumulation while potassium dichromate was less toxic but resulted in significant bioaccumulation. Chromium sulphate was least toxic. As evident from loss of plasmid, genotoxicity was exhibited only by Cr (VI).  相似文献   

19.
Cattle manure vermicompost has been used for the adsorption of Al(III) and Fe(II) from both synthetic solution and kaolin industry wastewater. The optimum conditions for Al(III) and Fe(II) adsorption at pH?2 (natural pH of the wastewater) were particle size of ≤250?µm, 1 g/10 mL adsorbent dose, contact time of 4 h, and temperature of 25°C. Langmuir and Freundlich adsorption isotherms fitted reasonably well in the experimental data, and their constants were evaluated, with R 2 values from 0.90 to 0.98. In synthetic solution, the maximum adsorption capacity of the vermicompost for Al(III) was 8.35 mg g?1 and for Fe(II) was 16.98 mg g?1 at 25°C when the vermicompost dose was 1 g 10 mL?1, and the initial adjusted pH was 2. The batch adsorption studies of Al(III) and Fe(II) on vermicompost using kaolin wastewater have shown that the maximum adsorption capacities were 1.10 and 4.30 mg g?1, respectively, at pH?2. The thermodynamic parameter, the Gibbs free energy, was calculated for each system, and the negative values obtained confirm that the adsorption processes were spontaneous.  相似文献   

20.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号