首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite‐based oceanographic data of sea surface temperature (SST), sea surface chlorophyll‐a concentration (SSC), and sea surface height anomaly (SSHA) together with catch data were used to investigate the relationship between albacore fishing ground and oceanographic conditions and also to predict potential habitats for albacore in the western North Pacific Ocean. Empirical cumulative distribution function and high catch data analyses were used to calculate preferred ranges of the three oceanographic conditions. Results indicate that highest catch per unit efforts (CPUEs) corresponded with areas of SST 18.5–21.5°C, SSC 0.2–0.4 mg m?3, and SSHA ?5.0 to 32.2 cm during the winter in the period 1998–2000. We used these ranges to generate a simple prediction map for detecting potential fishing grounds. Statistically, to predict spatial patterns of potential albacore habitats, we applied a combined generalized additive model (GAM) / generalized linear model (GLM). To build our model, we first constructed a GAM as an exploratory tool to identify the functional relationships between the environmental variables and CPUE; we then made parameters out of these relationships using the GLM to generate a robust prediction tool. The areas of highest CPUEs predicted by the models were consistent with the potential habitats on the simple prediction map and observation data, suggesting that the dynamics of ocean eddies (November 1998 and 2000) and fronts (November 1999) may account for the spatial patterns of highest albacore catch rates predicted in the study area. The results also suggest that multispectrum satellite data can provide useful information to characterize and predict potential tuna habitats.  相似文献   

2.
When the spring seasonal warming starts, North Atlantic albacore (Thunnus alalunga) juveniles and pre‐adults perform a trophic migration to the northeastern Atlantic, to the Bay of Biscay and to the southeast of Ireland. During this migration, they are exploited by Spanish trolling and baitboat fleets. The present study analyzes the relationship between the albacore spatio‐temporal distribution and the thermal environment. For this approach, several analyses have been performed on a database including fishing logbooks and sea surface temperature (SST) images, covering the period between 1987 and 2003. SST values and the SST gradients at the catch locations have been statistically compared to broader surrounding areas to test whether the thermal environment determines the spatial distribution of albacore. General additive models (GAM) have been used also to evaluate the relative importance of environmental variables and fleet behaviour. The results obtained show that, although juvenile albacore catch locations are affected by fleet dynamics, there is a close spatial and temporal relationship with the seasonal evolution of a statistically significant preferential SST window (16–18°C). However, differences have been identified between the relationship of albacore with SST within the Bay of Biscay in July and August (higher temperature). Such differences are found also in the spatial distribution of the catch locations; these reflect clearly the presence of two groups, differentiated after the third week of the fishing campaign at the end of June. The analysis undertaken relating the distribution of North Atlantic albacore juveniles with thermal gradients did not provide any evidence of a relationship between these catch locations and the nearby occurrence of thermal gradients.  相似文献   

3.
Spatio‐temporal modeling estimates a species distribution function that represents variation in population density over space and time. Recent studies show that the approach may precisely identify spatial hotspots in species distribution, but have not addressed whether seasonal hotspots are identifiable using commonly available fishery data. In this study, we analyzed the seasonal spatio‐temporal distribution of pelagic sharks in the western and central North Pacific using fishery catch rates and a generalized linear mixed model with spatio‐temporal effects. Different spatial distribution patterns were observed between two shark species. The hotspots of shortfin mako (SFM) appeared in the vicinity of the coastal and offshore waters of Japan and the Kuroshio‐Oyashio transition zone (TZ), whereas the hotspots of blue shark (BSH) were widely distributed in the areas from the TZ to the waters of the Emperor Seamount Chain. Shortfin mako distribution changes seasonally with clear north‐south movement, which follows higher sea surface temperatures (SST). However, preferred spring and summer water temperature was still colder than those in fall and winter, but not as cold as for BSH, which did not show seasonal north‐south movement. BSH exhibits seasonal east‐west movement apparently unrelated to temperature. The spatial fishing effort by season generally follows the seasonal movement of temperature possibly making SFM more vulnerable to the fishery than BSH. These findings could be used to reduce the capture risk of bycatch sharks and to better manage the spatial distribution of fishing for targeted sharks.  相似文献   

4.
We report results from 28 yr of a midwater trawl survey of pelagic juvenile rockfish (Sebastes spp.) conducted off the central California coast. The fishery‐independent survey is designed to provide pre‐recruit indices of abundance for use in groundfish stock assessments. Standardized catch rate time series for 10 species were developed from delta‐generalized linear models that include main effects for year, station, and calendar date. Results show that interannual fluctuations of all 10 species are strongly coherent but highly variable, demonstrating both high‐ and low‐frequency components. A similarly coherent result is observed in the size composition of fish, with large fish associated with elevated catch rates. In contrast, spatial and seasonal patterns of abundance show greater species‐specific differences. A comparison of the shared common trend in pelagic juvenile rockfish abundance, derived from principal components analysis, with recruitments from five rockfish stock assessments shows that the time series are significantly correlated. An examination of oceanographic factors associated with year‐to‐year variability indicates that a signature of upwelled water at the time of the survey is only weakly related to abundance. Likewise, basin‐scale indices (the Multivariate El Niño‐Southern Oscillation Index, the Pacific Decadal Oscillation, the North Pacific Gyre Oscillation, and the Northern Oscillation Index) are poorly correlated with abundance. In contrast, sea level anomalies in the months preceding the survey are well correlated with reproductive success. In particular, equatorward anomalies in the alongshore flow field following the spawning season are associated with elevated survival and poleward anomalies with poor survival.  相似文献   

5.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

6.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

7.
We explored the seasonal potential fishing grounds of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific using maximum entropy (MaxEnt) models fitted with squid fishery data as response and environmental factors from remotely sensed [sea surface temperature (SST), sea surface height (SSH), eddy kinetic energy (EKE), wind stress curl (WSC) and numerical model‐derived sea surface salinity (SSS)] covariates. The potential squid fishing grounds from January–February (winter) and June–July (summer) 2001–2004 were simulated separately and covered the near‐coast (winter) and offshore (summer) forage areas off the Kuroshio–Oyashio transition and subarctic frontal zones. The oceanographic conditions differed between regions and were regulated by the inherent seasonal variability and prevailing basin dynamics. The seasonal and spatial extents of potential squid fishing grounds were largely explained by SST (7–17°C in the winter and 11–18°C in the summer) and SSS (33.8–34.8 in the winter and 33.7–34.3 in the summer). These ocean properties are water mass tracers and define the boundaries of the North Pacific hydrographic provinces. Mesoscale variability in the upper ocean inferred from SSH and EKE were also influential to squid potential fishing grounds and are presumably linked to the augmented primary productivity from nutrient enhancement and entrainment of passive plankton. WSC, however, has the least model contribution to squid potential fishing habitat relative to the other environmental factors examined. Findings of this work underpin the importance of SST and SSS as robust predictors of the seasonal squid potential fishing grounds in the western and central North Pacific and highlight MaxEnt's potential for operational fishery application.  相似文献   

8.
A generalized additive model (GAM) was constructed to separate and quantify the effects of fishery‐based (operational) and oceanographic parameters on the bigeye tuna (Thunnus obesus) catch rates at Palmyra Atoll in the central Tropical Pacific. Bigeye catch, the number of hooks per set, and set location from 4884 longline sets spanning January 1994 to December 2003 were used with a temporally corresponding El Niño‐Southern Oscillation (ENSO) indicator built from sea surface height (SSH) data. Observations of environmental data combined with the results from the GAM indicated that there is an increase in bigeye catch rates corresponding to an increase in eastward advection during the winter months of El Niño events. A seasonal pattern with higher bigeye catch rates from December to April and a spatial pattern with higher rates to the northeast and northwest of the atoll were observed during this study period. It is hypothesized that the combination of the eastward advection of the warm pool coupled with vertical changes in temperature during the winter months of El Niño events increases the availability of bigeye tuna in this region. This increase in availability may be due to a change in exploitable population size, location, or both.  相似文献   

9.
Blue marlin is distributed throughout tropical and temperate waters in the Pacific Ocean. However, the preference of this species for particular habitats may impact its vulnerability to being caught. The relationship between spatio‐temporal patterns of blue marlin abundance and environmental factors is examined using generalized additive models fitted to catch and effort data from longline fisheries. The presence of blue marlin, and the catch rate given presence, are modeled separately. Latitude, longitude, and sea‐surface temperature explain the greatest proportion of the deviance. Spatial distributions of relative density of blue marlin, based on combining the probability of presence and relative density given presence, indicate that there is seasonal variation in the distribution of blue marlin, and that the highest densities occur in the tropics. Seasonal patterns in the relative density of blue marlin appear to be related to shifts in SST. The distribution and relative abundance of blue marlin are sufficiently heterogeneous in space and time that the results of analyses of catch and effort data to identify ‘hotspots’ could be used as the basis for time‐area management to reduce the amount of blue marlin bycaught in longline fisheries.  相似文献   

10.
Understanding the links between large scale spatial structuring of fish assemblages and shaping factors is essential to develop comprehensive ecosystem-based fisheries management. In this study, we investigated spatial patterns of bottom fish assemblages in the North Sea in relation to prevailing water masses in the region. We based our analysis on catch data from the German Small-Scale Bottom Trawl Survey conducted between 1987 and 2005 and used both ordination techniques and Mantel tests. Spatial variability of bottom fish assemblages was larger than inter-annual variability. Five significantly different bottom fish assemblages were associated with the following prevailing hydrographical regimes: i) the English Channel, ii) Continental Coastal, iii) central North Sea, iv) northern North Sea, and v) northern Atlantic water masses. Associations were generated by gradients in relative proportions of abundant species such as grey gurnard ( Eutrigla gurnardus ), dab ( Limanda limanda ), whiting ( Merlangius merlangus ), haddock ( Melanogrammus aeglefinus ) and Norway pout ( Trisopterus esmarki ). Taking into account large scale spatial structuring of catch data Mantel tests confirmed significant correlation between the fish assemblages and hydrographical variables. In summary, our results strongly support the hypotheses that hydrographical features such as water masses, fronts, and residual currents could shape bottom fish associations in the North Sea. Spatial demarcations of bottom fish assemblages indicated by this study can be used to support ecosystem-based fisheries management strategies.  相似文献   

11.
《Fisheries Research》2007,84(2-3):319-331
Pacific herring (Clupea pallasii) and walleye pollock (Theragra chalcogramma) are important forage species in the North Pacific Ocean, but their seasonal abundance patterns are poorly known. During three consecutive years of monthly acoustic surveys in Lynn Canal, southeastern Alaska, large schools of herring dominated during winter and were present in a 60-km long submarine gully; this gully appears to provide critical winter habitat for herring when their prey are less available and energy expenditure must be reduced. The salient change in pollock distribution is a shift from shallow waters during summer to deeper waters during winter, such that shallow (<40 m) waters are nearly devoid of pollock during winter. The shift presumably occurs in response to the build-up of secondary productivity during summer and predator avoidance during winter. The seasonal changes in herring abundance drove seasonal changes in predator abundance, as Steller sea lions (Eumetopias jubatus) and humpback whales (Megaptera novaeangliae) preyed upon the winter aggregation of herring. Such seasonal links likely serve an important role in structuring trophic relationships in the North Pacific Ocean ecosystem.  相似文献   

12.
都煜  徐宾铎  薛莹  纪毓鹏  任一平  张崇良 《水产学报》2017,41(12):1888-1895
日本枪乌贼和短蛸是头足类中重要的经济种类,一般为一年生,其空间分布受季节变化的影响较大。由于受调查时间的限制,鲜有在该方面的研究报道。本研究根据2011年春季(5月)、秋季(9月)和冬季(12月)在海州湾及邻近海域进行的渔业资源底拖网调查数据,运用全局空间自相关、热点分析以及变异函数等方法分析了日本枪乌贼和短蛸的空间结构的季节性变化。研究表明:(1)日本枪乌贼和短蛸全局空间自相关性不强,存在局部空间热点,变异函数分析结果与全局空间自相关结果基本一致。(2)日本枪乌贼和短蛸空间自相关的尺度存在季节变化,两个物种均表现为在春季的空间结构性较强,而在秋、冬季的空间结构性较弱,春季的空间自相关性程度高于秋、冬季。(3)在春季,二者均在35.0°~35.5°N、120.0°~121.0°E海域存在一个空间热点,在资源密度最高的季节时其空间分布呈现出随机性特征。物种的空间分布模式可能与环境的季节变化以及其洄游分布和摄食习性相关。本研究有利于深入了解日本枪乌贼和短蛸的生活史特性及其栖息地,可为该资源的合理利用和保护以及后续研究提供理论参考。  相似文献   

13.
Movement influences the annual distribution patterns of a species and is an important determinant of stock structure. In situations where monitoring programs have quantified movement or distribution patterns by sampling during particular times of the year, seasonal changes in abundance as well as the degree of connectivity among adjacent stocks can be underestimated. Here, a summer abundance trawl survey was combined with a 1-year mark-recapture tagging study to infer seasonal changes in distribution within and among American lobster (Homarus americanus) stocks. Within the study area, lobsters were concentrated in central Northumberland Strait (Canada) during August, yet their observed dispersal behaviour implied that density declined in the central portion and increased in the northern portion of Northumberland Strait during winter. Stock mixing among management zones was not observed and individual tendencies to move were predicted to decline precipitously in early December. These movement patterns are consistent with the hypothesis of seasonal limitation by hard-substrate habitat availability causing population redistribution. Such information can ultimately be useful when assessing changes in abundance or exploitation rates, and for guiding management efforts.  相似文献   

14.
为得到南海及临近海域黄鳍金枪鱼(Thunnus albacores)渔场最适宜栖息海表温度(SST)范围,基于美国国家海洋大气局(NOAA)气候预测中心月平均海表温度(SST)资料,结合中西太平洋渔业委员会(WCPFC)发布的南海及临近海域金枪鱼延绳钓渔业数据,绘制了月平均SST和月平均单位捕捞努力量渔获量(CPUE)的空间叠加图,用于分析南海及临近海域黄鳍金枪鱼渔场CPUE时空分布和SST的关系。结果表明,南海及临近海域黄鳍金枪鱼CPUE在16℃~31℃均有分布。在春季和夏季(3~8月),位于10°~20°N的大部分渔区CPUE较高,其南北侧CPUE较低;而到了秋季和冬季(9月到次年2月),高产渔场区域会向南拓宽。CPUE在各SST区间的散点图呈现出明显的负偏态分布,高CPUE主要集中在26℃~30℃,最高值出现在29℃附近;在22℃~26℃范围内CPUE散点分布较为零散,但在这个范围也会出现相当数量的高CPUE;在22℃以下的CPUE几乎属于低CPUE和零CPUE;零CPUE的平均SST为26.7℃(±3.2℃),低CPUE的平均SST为27.8℃(±2.1℃),高CPUE的平均SST为28.4℃(±1.5℃),高CPUE在各SST区间的分布要比零CPUE和低CPUE更为集中。采用频次分析和经验累积分布函数计算其最适SST范围,得到南海及临近海域黄鳍金枪鱼最适SST为26.9℃~29.4℃。本研究初步得到南海及临近海域黄鳍金枪鱼中心渔场时空分布特征及SST适宜分布区间,可为开展南海及临近海域金枪鱼渔情预报工作提供理论依据和参考。  相似文献   

15.
山东南部近海口虾蛄空间分布特征及其季节变化   总被引:1,自引:1,他引:1  
为研究山东南部近海口虾蛄分布特征及其影响因素,根据2016年10月,2017年1月、5月、8月在该海域进行的底拖网调查,利用Moran’s I指数和分布重心法等分析方法,比较分析了2016—2017年4个季节口虾蛄空间分布特征及空间自相关性。结果发现,山东南部近海口虾蛄相对生物量各季节间差异明显,由高至低依次为夏季春季秋季冬季,其中口虾蛄春季相对生物量为0.75 kg/h,夏季相对生物量为3.02 kg/h,秋季相对生物量为0.65 kg/h,冬季相对生物量为0.22 kg/h。口虾蛄分布重心表现出明显的季节特征,春、夏季分布重心位于水深20~30 m,秋、冬季分布重心位于30~50 m。口虾蛄的分布在各季节均呈现显著空间正相关,Moran’ I指数由高至低依次为秋季(0.34)春季(0.30)夏季(0.28)冬季(0.16)。研究表明,不同季节口虾蛄分布重心的变化可能与其繁殖习性等生活史特征有关,而分布的空间聚集性可能与口虾蛄偏好淤泥质粉砂和砂-粉砂-黏土的底质环境相关。  相似文献   

16.
Short-term fluctuations in the octopus catches off the Canary Islands have been attributed to changes in the sea surface temperature (SST) and the North Atlantic Oscillation (NAO) pattern. These results have been found using stationarity assumptions. However, the behavior of environmental systems is not always linear, and environmental time series do not always satisfy the statistical property of stationarity. Wavelet spectral analysis is a methodology which can deal with non-linear, non-stationary and noisy time series. Cross wavelet analysis (wavelet coherence) is applied to investigate the environmental effects (SST, NAO) on octopus abundance fluctuations measured as capture per unit of effort (CPUE) from 1989 to 2007 in the waters of the Canary Islands. A slightly positive correlation exists between NAO and CPUE at lags and leads of a few months. Additionally, a good relationship between SST and CPUE exists on the same seasonal scale, but there is a relatively weak relationship between SST anomalies and the NAO. When the analysis is extended to the interannual scale, the wavelet coherence identifies a statistically significant relationship between CPUE and NAO, but this does not happen when the wavelet coherence between CPUE and SST is computed. These results suggest that fluctuations in octopus catches could be the result of SST fluctuations but in synergy with other unknown environmental variables which are also affected by the NAO pattern.  相似文献   

17.
The processes that control the spatial distribution of North Sea whiting (Merlangius merlangus) spawning adults are investigated using a statistical multi‐model approach. Models of external and internal controls on the population, such as environmental conditions, spatial constraints, present or past spatial distribution, and demographic state of the population, are evaluated, compared and ranked to select those that are the best able to predict the observed distribution of spawning adults. Model selection is greatly influenced by the selection method, either based on data fitting or prediction, as well as by the threshold value used to stop the selection. Model selection based on prediction tends to select simpler models than selection based on data fitting. The hypotheses underlying the selected models are inferred to play a significant role in controlling North Sea whiting spatial distribution. The multi‐model inference approach developed in this study enables comparison of several theoretical concepts and hypotheses and the results provide important clues on the processes involved in the control of the spatial distribution of whiting. We conclude that whiting has a high spatial fidelity to spawning site which can be linked to either geographical attachment or year‐to‐year persistence of the spatial distribution of the population. Environmental factors – temperature and salinity – appear to influence the geographical extent of spawning whiting distribution, whereas local abundance levels are primarily controlled by internal factors, i.e., population size and spatial segregation between ages.  相似文献   

18.
Several oceanographic studies have associated tuna fisheries to sea surface temperature (SST) fields, although catch per unit of effort (CPUE) has not shown a clear relationship with SST. However, most results concerned species that occur deep in the water column. In this paper, we present a study on the relationship between SST and CPUE for the skipjack tuna fisheries off the southern Brazilian coast, which take place at the sea surface. We use historical data from the Japanese fleet, which operated in the area from July 1982 to June 1992. Fishing sets occurred only in areas where SST ranged from 17°C to 30°C. Frequency of occurrence vs. SST showed a Gaussian distribution, with highest CPUEs in waters of SST 22°-26.5°C. The relationship between CPUE (or fishing set occurrence) and SST varied seasonally. Largest CPUEs occurred in summer, independently of SST. Therefore, temperature alone could not be used as a determinant of CPUE, suggesting that seasonal variability of other environmental parameters has a stronger effect on the CPUE than does SST. However, when the seasonal cycle was excluded from the data sets, a relationship between the interannual variability of SST and CPUE became apparent. Cross-correlation analysis between CPUE and SST has shown that oscillations in CPUE anomalies precede oscillations in SST anomalies by a month, but the mechanism relating them in this way is unknown.  相似文献   

19.
温健  余为  陈新军 《中国水产科学》2020,27(12):1464-1476
茎柔鱼(Dosidicus gigas)为环境敏感型头足类,气候的多元变化促使茎柔鱼栖息地发生变动。本研究利用海表温度(SST)和海表面高度(SSHA)两个关键环境因子构建栖息地适宜性指数(HSI)模型,结合太平洋年代际涛动(PDO)指数,分析1950-2015年不同气候模态下秘鲁外海茎柔鱼栖息地的季节性分布规律。结果发现,PDO冷期茎柔鱼栖息地适宜性较高;而PDO暖期栖息地适宜性较低。相较于PDO冷期,PDO暖期下茎柔鱼适宜栖息地分布向东南移动。适宜栖息地的分布位置与适宜的SST和SSHA的重叠区域重合,表明两个关键环境因子与栖息地分布显著相关。此外,适宜栖息地指数距平值与PDO指数的年际变化呈显著负相关关系。春季茎柔鱼渔场栖息地适宜性高于冬季,且冬季适宜栖息地的分布相较春季偏东南方向。茎柔鱼渔场6-11月适宜的SST和最适宜的SST在经度和纬度上的分布存在显著差异,春季(9-11月)最适宜的SST分布逐月向西北方向移动;冬季(6-8月)最适宜的SST分布逐月向东南方向移动。推测不同气候模态下茎柔鱼栖息地季节性分布差异,可能是由于最适宜的SST显著的月间分布差异所致。研究表明,不同PDO时期下茎柔鱼栖息地适宜性具有显著季节性差异,其差异可由环境因子的月间变动来解释。  相似文献   

20.
Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid‐Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re‐examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year‐class strength is decoupled from larval supply and is determined by temperature‐linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large‐scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号