首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用自行设计的抽屉式生物滤器应用于漠斑牙鲆(Paralichthys lethostigma)闭合循环水养殖系统,研究其对循环养殖水的处理效果及漠斑牙鲆的增重和饲料利用率的影响。结果表明:经过60 d的循环水养殖,漠斑牙鲆从初始时的(225.4±11.9)g增加到结束时的(337.5±10.3)g,增重率49.97%;试验饲料系数1.06,养殖密度24.1 kg/m3,成活率100%;抽屉式生物滤器对于NH4+-N、NO2--N和COD去除率分别为(10.61±1.88)%、(14.90±3.06)%和(16.11±1.70)%,可满足漠斑牙鲆养殖水体的水质要求。  相似文献   

2.
本文介绍了虹鳟鱼在双层浮球式生物滤器封闭循环式养殖系统中的养殖试验。该养殖系统主要包括射流暴气增氧、沉淀分离和双层浮球生物过滤器过滤,过滤悬浮物能力达到90%,氨氮处理能力达到149~(gm-3.d-1)(在养殖水体15度条件下),利用臭氧催化氧化法完成杀菌、消毒及二次去除氨氮作用。在8个养殖水体为1m~3的养殖池,放养1015尾平均体重240g虹鳟鱼的循环水养殖系统中,应用动力为0.75kW、处理能力为20 T/h的BAF—20型双层浮球生物过滤设备进行循环养殖水体的处理。在养殖试验过程中,对养殖水体的pH、DO、COD、悬浮物、氨氮、亚硝酸盐、硝酸盐等水化学指标进行了监测,并对虹鳟鱼在养殖过程中不同阶段的生长情况进行了测量。结果表明,在水体循环周期为2次/h,换水周期为一次/每两周的条件下COD≤15mg/l、氨氮≤1mg/l、亚硝酸盐≤0.13mg/l、硝酸盐≤24mg/l,经对比养殖试验表明,没有循环鱼池的水体和经过浮球式生物滤器封闭循环系统的循环水体的各项指标具有明显的差别。试验表明浮球式生物滤器封闭循环水系统完全满足虹鳟鱼工厂化养殖生产的要求,确保虹鳟鱼养殖水体的水质和鱼类生长环境,达到良好养殖效果。  相似文献   

3.
循环海水养殖中生物滤器生物膜研究现状与分析   总被引:2,自引:0,他引:2  
综述了循环海水养殖中生物滤器生物膜的研究进展,包括生物膜的形成、结构、原理、生物多样性以及功能,重点阐述生物膜的微生物学特征,介绍微生物生态学方法,特别是分子生态学方法在生物膜研究中的应用及其在生物膜微生物群落结构与功能研究的最新成果.  相似文献   

4.
过滤器和工厂化循环水养殖   总被引:1,自引:0,他引:1  
过滤器是工厂化循环水养殖和水族馆养殖的核心部分,对水质状况和鱼类健康起着至关重要的作用。在一个典型的循环水水处理系统中,通常需要使用三种类型的过滤器:机械滤器、化学滤器和生物滤器。每一类型均有不同的设计,使用不同的过滤介质,以适应不同的需要。  相似文献   

5.
生物—电氧化法去除海水养殖循环水污染物   总被引:1,自引:0,他引:1  
为提高海水养殖循环水处理效率,降低处理成本,本研究采用曝气生物滤器与电化学阳极氧化组合工艺,考察了不同阳极电势、进水氨氮和亚硝酸盐浓度下系统对氨氮及亚硝酸盐等污染物的去除效果,研究了微生物与工作电极之间的相互作用,并分析了电化学反应能耗。在水力停留时间为45 min、1.4 V阳极电压、进水氨氮和亚硝酸盐浓度分别为4.5和1.3 mg/L条件下,生物—电氧化法对氨氮去除率达88.8%,高出对照组7.6%,出水氨氮和亚硝酸盐浓度分别为0.5和0.9 mg/L,COD去除率为88.2%,高出对照组19.4%,平均能耗0.040 kWh/m3,电极表面微生物生长对阳极电氧化过程有促进作用,微生物功能预测显示实验组硝化功能占比为0.03%,对照组为0.07%。研究表明,生物—电氧化法对海水养殖循环水的污染物有良好的去除效果,具有一定的发展应用潜力。  相似文献   

6.
氨氮是养殖水体主要的控制指标,自养硝化过程将水体中的氨氮经亚硝酸盐转化成硝酸盐,是水体中氨氮最常见的一种转化途径,也是循环水养殖系统中常用的氨氮控制方式。根据国内外关于循环水养殖水体中自养硝化过程的研究报道,结合养殖水体特征,分析了利用固定膜式自养硝化过程控制养殖水体氨氮的优势和劣势、水产养殖过程中影响自养硝化效率的因素以及在实际使用过程中的注意事项,对自养硝化过程的建立进行重点介绍,为实际应用提供参考。  相似文献   

7.
史氏鲟是我国重要的经济鱼类,也是国际二级保护水生野生动物。但是近年来,由于种种原因,资源严重减少,人工繁育增殖势在必行.科学研究工作也正在广泛开展。史氏鲟是淡水大型鱼类,怀卵量高,寿命长,性成熟晚,自然条件下,雌性9~10年性成熟,雄鱼6~7年性成熟。但是自然条件下雌鱼产卵后,鱼卵的敌害较多,鱼苗的成活率低,  相似文献   

8.
为了探索健康、高效的对虾养殖模式,利用移动床生物滤器水处理技术和藻类净化技术,构建凡纳滨对虾(Litopenaeus vannamei)工厂化循环水养殖系统,并进行养殖试验研究。结果表明:在养殖期间DO为(5.85±1.09)mg/L;pH为8.11±0.40,TAN为(0.39±0.12)mg/L,水质指标符合养殖要求;对虾生长情况良好,经过92 d的养殖,收成时养殖密度4.96 kg/m2,成活率80.9%,饲料系数1.34,取得了健康、经济、高产、高效的养殖结果。  相似文献   

9.
为了解凡纳滨对虾(Litopenaeus vannamei)养殖过程中挂膜式生物滤器内不同位置间微生物群落结构多样性的差异,采集已运行46 d的挂膜式生物滤器内挂膜上部外侧和内侧、下部内侧和外侧及收集盘5个不同位置的微生物,采用分子生物学手段,通过16S rRNA基因高通量测序法对生物滤器内微生物进行多样性分析,并对不同位置间功能性微生物进行对比.结果显示,在门水平上,5个不同位置共鉴定出10个主要类群,其中,变形菌门(Proteobacteria)所占丰度比例较大,为主要优势类群,硝化螺旋菌门(Nitrospirae)在挂膜内外两侧检出比例均较高(平均4.3%),收集盘内则较低(0.33%),存在显著性差异.共鉴定出41种优势属,其中地杆菌属(Pedobacter)为绝对优势种属,短小盒菌属(Parvularcula)为次优势属,二者丰度比例均在10%以上,硝化螺旋菌属(Nitrospira)为第三优势属,挂膜不同位置丰度比例(平均4.31%)显著高于收集盘内比例(0.28%).挂膜上氨氧化细菌(AOB)平均丰度比例为1.70%,硝化细菌(NOB)平均比例为6.99%,是系统中主要去除氨氮和亚硝酸氮的微生物.生物滤器各部位微生物物种多样性丰富,微生态系统稳定,可有效维持循环水系统的水质.生物滤器硝化作用主要在上部进行,下部净化能力较弱,收集盘内基本没有硝化能力.生产中应合理配置挂膜数量,科学设计挂膜长度以提高生物滤器的净化效率.  相似文献   

10.
为了降低投入和提高单位水体的鱼载量,需要选择高效的水净化方法。流化床生物滤器结合了普通生物滤器和活性污泥法的优点,当生物滤器中水向上流动时,滤料会成悬浮态,流化床生物滤器可以减少固定床生物滤器经常发生的阻塞问题,实验结果:1、研究、设计制造出了养鱼生产上应用的流化床生物滤器及其配套设施,提出并优化了设计参数;流化床生物滤器的单元水处理能力为30~50t/h。2、优选了天然多孔、价廉、易得、比重适宜流化稳定的载体,与固定床生物滤器比较,流化床生物滤器的硝化率和过流率为同等条件下固定床生物滤器3倍。3、本系统养鱼可节水85~90%,建设费用和占地面积可减少50%。载鱼量为25±2Kg/m~3时,流化床生物滤器进水氨氮浓度为1.3mg/l,亚硝酸态氮为0.068mg/l。流化床生物滤器出水中,氨氮浓度为0.20mg/l,亚硝酸态氮浓度为0.024mg/l,符合渔业水质标准。氨氮去除率80~95%,亚硝酸态氮去除率65%以上。  相似文献   

11.
循环水养殖系统的关键技术是养殖废水的处理和再利用。作为循环水养殖系统水处理的核心单元,生物膜对于养殖水体中污染物的去除起着至关重要的作用。水温、盐度、pH和溶氧等环境因子都会影响生物膜的功能,环境因子的突然变化会引起生物膜脱落、影响循环水养殖系统生物膜的形成过程及运行效果。控制好水温、盐度、pH和溶氧,生物膜净化效率就能达到较为理想的状态,养殖废水的处理效果就会更好。因此,有必要研究各个环境因子变量条件下的养殖废水去除动力学特征,以期为循环水养殖系统优化设计与运行管理提供理论依据。  相似文献   

12.
双层浮球生物滤器设计及其水产养殖水处理性能试验   总被引:10,自引:0,他引:10  
曹广斌 《水产学报》2005,29(4):578-582
工厂化水产养殖水体的处钾主要包括增氧、分离(分离固体物和悬浮物)、生物过滤(降低BOD、氨氮和亚硝酸盐)、曝气(去除二氧化碳等)和杀菌消毒等处理过程。其中,悬浮物和氨氮去除是主要技术难点。自20世纪80年代,各国学者深入研究了固定滤床和流化滤床、喷淋滤床和浮球生物滤器(bead filter)等悬浮物和氨氮综合处理装置的性能。  相似文献   

13.
Six 1060 liter recirculating culture systems were tested, differing only in the quantity of filter medium and the recirculating flow rate. After a preliminary loading trial to determine approximate carrying capacities, 45·4 kg of channel catfish Ictalurus punctatus averaging 35·6 cm were stocked in each system. After 15 weeks, final loadings ranged from 67 to 85 g liter?1 system capacities (85–109 g liter?1 culture tank densities). Water quality was good to excellent when the packed towers contained the medium. Dissolved oxygen was probably the most limiting factor of total production. However, the rate of production was influenced by the combined effect of concentrations of dissolved oxygen, NH3N and/or NO2?N otherwise considered safe.  相似文献   

14.
为解决多层水槽式工厂化循环水养殖模式中人工投料操作空间局促、劳动强度大、饲料利用率低等缺点,设计了一套基于K60单片机的小微型智能投饲车。该投饲车由循迹小车、投饲装置和控制系统等组成,在特定投饲跑道上行驶,根据红外对管采集的轨道信息和压力传感器采集的饲料信息判别是否投饲或补料,进而实现智能定点定量投饲。初步试验运行结果显示,该投饲车运行稳定可靠,运行速度0. 5~2. 2 m/s,投饲的定位精度误差在2 cm以内,投饲量误差在10 g以内,基本满足设计要求。  相似文献   

15.
为探究凡纳滨对虾(Litopenaeus vannamei)工厂化循环水养殖系统的养殖水体水质情况以及微生物菌群的组成结构,本研究利用高通量测序技术和生物信息学分析手段,测定凡纳滨对虾工厂化循环水养殖过程一级移动床生物净化、二级固定床生物净化、养殖水体的水质指标、水体和生物净化载体以及对虾肠道微生物菌群的组成。结果显示,水体的氨氮(NH4+-N)和亚硝态氮(NO2-N)质量浓度显著降低,分别为0.85和0.21 mg/L。养殖系统水体、生物净化载体和虾肠道样品中共有的优势菌为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes),此外,一级、二级生物净化系统水体中的放线菌门(Actinobacteria)为优势菌,生物净化载体中浮霉菌门(Planctomycetes)和硝化螺旋菌门(Nitrospirae)为优势菌;对虾肠道中的厚壁菌门(Firmicutes)为优势菌。另外,对虾养殖循环水系统中生物净化载体上的细菌物种含量比水样中的细菌物种少,但微生物多样性高于养殖水体,...  相似文献   

16.
Recirculating aquaculture systems (RAS) are operated as outdoor or indoor systems. Due to the intensive mode of fish production in many of these systems, waste treatment within the recirculating loop as well as in the effluents of these systems is of primary concern. In outdoor RAS, such treatment is often achieved within the recirculating loop. In these systems, extractive organisms, such as phototrophic organisms and detritivores, are cultured in relatively large treatment compartments whereby a considerable part of the waste produced by the primary organisms is converted in biomass. In indoor systems, capture of solid waste and conversion of ammonia to nitrate by nitrification are usually the main treatment steps within the recirculating loop. Waste reduction (as opposed to capture and conversion) is accomplished in some freshwater and marine indoor RAS by incorporation of denitrification and sludge digestion. In many RAS, whether operated as indoor or outdoor systems, effluent is treated before final discharge. Such effluent treatment may comprise devices for sludge thickening, sludge digestion as well as those for inorganic phosphate and nitrogen removal. Whereas waste disposed from freshwater RAS may be treated in regional waste treatment facilities or may be used for agricultural purposes in the form of fertilizer or compost, treatment options for waste disposed from marine RAS are more limited. In the present review, estimations of waste production as well as methods for waste reduction in the recirculating loop and effluents of freshwater and marine RAS are presented. Emphasis is placed on those processes leading to waste reduction rather than those used for waste capture and conversion.  相似文献   

17.
随着可用水资源的减少,工业化循环水养殖是现代渔业的发展趋势。为了提高工业化循环水养殖的自动化程度,以及将其与物联网更好地结合起来,设计了基于易控的工业化循环水养殖系统。系统采用封闭式循环水养殖工艺,选用微滤机、流化床、低压纯氧混合装置等国内先进的循环水养殖装备构建硬件系统,使用西门子S7-300 PLC和其它智能仪表设备等构建控制系统,通过易控软件作为人机交互平台将各要素进行整合。该系统实现了工业化循环水养殖系统的养殖过程智能控制、养殖水质精准调控和养殖控制物联网化,具备自动化程度高、运行稳定、扩展性强的优点。该系统易于推广,并为将来的福利养殖系统提供了理论依据和基础数据。  相似文献   

18.
The reciprocating biofilter is automatically dewatered at regular and frequent intervals, in contrast to the conventional upflow submerged biofilter which is continually inundated. Reciprocating biofilters were compared with submerged biofilters in terms of ability to maintain water quality in small-scale fish holding units. In the first trial the reciprocating filter systems averaged 35% more fish in terms of numbers, 59% more fish in terms of weight, and a 45% greater feeding rate. In the second trial the reciprocating filter systems averaged 29% more fish in terms of numbers, 33% more fish in terms of weight, and a 29% greater feeding rate. Superior performance of the reciprocating filters appeared to be the results of resistance to clogging and improved aeration of the filter substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号