首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Western juniper (Juniperus occidentalis Hook.) encroachment and exotic annual grass (medusahead [Taeniatherum caput-medusae L. Nevski] and cheatgrass [Bromus tectorum L.]) invasion of sagebrush (Artemisia L.) communities decrease ecosystem services and degrade ecosystem function. Traditionally, these compositional changes were largely confined to separate areas, but more sagebrush communities are now simultaneously being altered by juniper and exotic annual grasses. Few efforts have evaluated attempts to restore these sagebrush communities. The Crooked River National Grassland initiated a project to restore juniper-encroached and annual grass-invaded sagebrush steppe using summer (mid-July) applied prescribed fires and postfire seeding. Treatments were unburned, burned, burned and seeded with a native seed mix, and burned and seeded with an introduced seed mix. Prescribed burning removed all juniper and initially reduced medusahead cover but did not influence cheatgrass cover. Neither the native nor introduced seed mix were successful at increasing large bunchgrass cover, and 6 yr post fire, medusahead cover was greater in burned treatments compared with the unburned treatment. Large bunchgrass cover and biological soil crusts were less in treatments that included burning. Exotic forbs and bulbous bluegrass (Poa bulbosa L.), an exotic grass, were greater in burned treatments compared with the unburned treatment. Sagebrush communities that are both juniper encroached and exotic annual grass invaded will need specific management of both juniper and annual grasses. We suggest that additional treatments, such as pre-emergent herbicide control of annuals and possibly multiple seeding events, are necessary to restore these communities. We recommend an adaptive management approach in which additional treatments are applied on the basis of monitoring data.  相似文献   

2.
Agricultural land use is known to alter ecological processes, and native plant communities can require decades to centuries to recover from the disturbance of cultivation. “Recovery” is typically measured by comparison to undisturbed adjacent sites as a control. Recovery following cultivation in sagebrush ecosystems of the Great Basin remains largely unexamined even though nearly a half million hectares of land were dry-farmed and abandoned in the early 1900s. We tested the hypothesis that the native vegetation has not recovered from this exotic disturbance by evaluating differences in canopy cover of shrubs, grasses, and forbs between paired sets of historically dry-farmed land and adjacent never-cultivated areas. Paired sites were located in three ecological sites in northwestern Utah. We found that vegetation recovery from cultivation is variable by growth form, species, and ecological site. Shrub recovery was different among sagebrush (Artemisia) species. Yellow rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.) and black greasewood (Sarcobatus vermiculatus [Hook.] Torr.), which often increase following disturbance, maintained higher cover inside old fields. At one of the paired sets, shrub composition was altered from a mix of four species to dominance of mainly Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young). Total forb cover was generally lower in cultivated areas and some species, such as spiny phlox (Phlox hoodii Richardson), had not recovered. The most common grass species encountered across all ecological sites, bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), had higher cover in cultivated areas. Surprisingly, exotic annual species, such as cheatgrass (Bromus tectorum L.), did not dominate these sites as they have for decades after cultivation in other areas of the Great Basin. This study demonstrates that the land-use legacy of dry farming on vegetation remains nearly a century after cultivation has ceased, and has direct implications for describing ecological site conditions.  相似文献   

3.
Ecological studies often suggest that diverse communities are most resistant to invasion by exotic plants, but relatively few local species may be available to a rehabilitation practitioner. We examine the ability of monocultures and diverse assemblages to resist invasion by an exotic annual grass (cheatgrass) and an exotic biennial forb (dyer's woad) in experimental rehabilitation plots. We constructed seven assemblages that included three monocultures of grass, forb, or shrub; three four-species mixtures of grasses, forbs, or shrubs; and a three-species mixture of one species from each growth form in an experimental field setting to test resistance to invasion. Assemblages were seeded with cheatgrass and dyer's woad for two consecutive years and quantified as biomass and density of individuals from each exotic species. Soil NO3- and leaf-area index were examined as predictors of invasive plant abundance. Cheatgrass invasion was greatest in forb and shrub assemblages, and least in mixed grass or grass monoculture; dyer's woad invasion was greatest into mixed grass or grass monoculture, but least into monoculture or mixed-species assemblages composed of forbs or shrubs. The community composed of grasses, forbs, and shrubs suppressed invasion by both species. Consequently, assemblages were most resistant to invasion by species of the same growth form. Moreover, these monocultures and mixtures were generally similar in conferring resistance to invasion, but a monoculture of big sagebrush was more resistant than a mixture of shrubs. Soil NO3- was correlated with invasion by cheatgrass, whereas LAI was correlated with invasion by dyer's woad, suggesting these species were more limited by belowground and aboveground resources, respectively. Overall, increasing diversity with limited species did not necessarily enhance resistance to invasion.  相似文献   

4.
5.
Downy brome or cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) are the most problematic invasive annual grasses in rangelands of the western United States, including sagebrush communities that provide habitat to sage grouse. Rehabilitation of infested sites requires effective weed control strategies combined with seeding of native plants or desirable competitive species. In this study, we evaluated the effect of three fall-applied pre-emergence herbicides (imazapic, rimsulfuron, and chlorsulfuron + sulfometuron), and one spring-applied postemergence herbicide (glyphosate) on the control of downy brome and medusahead and the response of seeded perennial species and resident vegetation in two sagebrush communities in northeastern California. All pre-emergence treatments gave > 93% control of both invasive species at both sites in the first year. Glyphosate was less consistent, giving > 94% control at one site and only 61% control of both species at the other site. Imazapic was the only herbicide to maintain good control (78–88%) of both species 2 yr after treatment. No herbicide caused detectible long-term damage to either perennial grasses or annual forbs, and imazapic treatment resulted in an increase in resident native forb cover 3 yr after treatment. Broadcast seeding with or without soil incorporation did not result in successful establishment of perennial species, probably due to below-average precipitation in the year of seeding. These results indicate that several chemical options can give short-term control of downy brome and medusahead. Over the course of the study, imazapic provided the best management of both invasive annual grasses while increasing native forb cover.  相似文献   

6.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

7.
A key goal in land management is to prevent ecosystem shifts that affect human well-being. Like other types of sagebrush shrublands, large areas dominated by the common but little-studied mountain silver sagebrush may have shifted to a less productive shrub-dominated alternate state under heavy livestock grazing in the 19th century. The goals of this study are to 1) describe long-term vegetation change in a silver sagebrush mountain park and 2) evaluate evidence that these changes constitute alternate states. We examined vegetation change over the last 57 yr in California Park, Colorado, USA, using monitoring data from 15 permanent transects at six sites. We analyzed change in species composition over time and related it to management and climatic drivers using nonmetric multidimensional scaling. We found that management practices influenced species composition. Spraying herbicides resulted in decreases of sagebrush and a dominant, unpalatable forb (Wyethia amplexicaulis), but sagebrush recovered. Spraying also triggered a temporary increase in native palatable grasses and forbs. Native grasses have since decreased again, coinciding with increases in the cattle stocking rate and elk population. The nonnative pasture grass Phleum pratense has increased to become one of the dominant grasses in 2010. Sagebrush and herbaceous understory dynamics were not consistent with a shrub-dominated alternate state: changes were gradual and not persistent. However, historic Wyethia dominance and the widespread increase in the nonnative grass Phleum were persistent and may represent alternate states. We used these findings to update a state-and-transition model of high-elevation silver sagebrush shrubland dynamics for land management decision making. Our analysis differentiated gradual, nonpersistent changes from potentially irreversible changes, as is necessary for identifying alternate states that are important for land management and ecosystem function. The gradual but persistent increase in the nonnative grass Phleum reinforces others' observations that even incremental changes may lead to irreversible shifts.  相似文献   

8.
Stable bunchgrass populations are essential to resilience and restoration of sagebrush steppe rangelands, yet few studies have assessed long-term variation in plant abundance from a known starting point. We capitalized on a previous paddock study by reestablishing in 2011 nine replicate blocks consisting of 29 × 29 grid of cells, each planted in 1998 with a single individual of one of eight sagebrush steppe bunchgrasses, including the widely planted exotic, crested wheatgrass (Agropyron cristatum). Plant species and numbers were determined in 2011 for each cell, which were classified as holds or cedes, with ceded cells used to determine species-specific gains. We hypothesized the competitive crested wheatgrass would proportionally occur more in gained cells compared with native grasses. While crested wheatgrass did proportionally hold and gain the greatest number of cells, the relative number of plants within holds and gains was constant across all species, with most plants (80 ? 87%) occurring outside cells originally planted with them. Crested wheatgrass had greater proportions of holds and gains where it was the only species within the cell and showed even presence across all cells planted with other grass species in 1998. Native grasses were underrepresented in 1998 crested wheatgrass cells and sometimes overrepresented in other native species cells. The ratio of total crested wheatgrass to native bunchgrass plants followed a sigmoidal step increase with increasing crested wheatgrass density. These results show population changes in sagebrush steppe bunchgrasses are determined by seed production and emergent seedling survival, both of which are stronger in the exotic bunchgrass. This study also showed that native grasses can maintain presence via seed in areas depending on crested wheatgrass density. This information could help shape management strategies capitalizing on the utility of crested wheatgrass and sustaining desirable levels of native grass productivity and diversity.  相似文献   

9.
Revegetation of exotic annual grass−invaded rangelands is a primary objective of land managers following wildfires. Controlling invasive annual grasses is essential to increasing revegetation success; however, preemergent herbicides used to control annual grasses prohibit immediate seeding due to nontarget herbicide damage. Thus, seeding is often delayed 1 yr following herbicide application. This delay frequently allows for reinvasion of annual grasses, decreasing the success of revegetation efforts. Incorporating seeds into herbicide protection pods (HPPs) containing activated carbon (AC) permits concurrent high preemergent herbicide application and seeding because AC adsorbs and renders herbicides inactive. While HPPs have, largely in greenhouse studies, facilitated perennial bunchgrass emergence and early growth, their effectiveness in improving establishment of multiple species and functional groups in the field has not been assessed. Five bunchgrass species and two shrub species were seeded at two field sites with high imazapic application rates as bare seed and seed incorporated into HPPs. HPPs significantly improved establishment of sagebrush (Artemesia tridentata Nutt. Spp. wyomingensis Beetle & Young) and crested wheatgrass (Agropyron cristatum [L.] Gaertn.) over the 2-yr study. Three native perennial grass species were protected from herbicide damage by HPPs but had low establishment in both treatments. The two remaining shrub and grass species did not establish sufficiently to determine treatment effects. While establishment of native perennial bunchgrasses was low, this study demonstrates that HPPs can be used to protect seeded bunchgrasses and sagebrush from imazapic, prolonging establishment time in the absence of competition with annual grasses.  相似文献   

10.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

11.
Greater sage-grouse (Centrocercus urophasianus) habitat management involves vegetation manipulations to increase or decrease specific habitat components. For sage-grouse habitat management to be most effective, an understanding of the functional response of sage-grouse to changes in resource availability is critical. We investigated temporal variation in diet composition and nutrient content (crude protein, calcium, and phosphorus) of foods consumed by preincubating female sage-grouse relative to food supply and age of hen. We collected 86 preincubating female greater sage-grouse at foraging areas during early (18–31 March) and late (1–12 April) preincubation periods during 2002–2003. Females consumed 22 food types including low sagebrush (Artemisia arbuscula Nutt.), big sagebrush (Artemisia tridentata Nutt.), 15 forb species, 2 insect taxa, sagebrush galls, moss, and a trace amount of unidentified grasses. Low sagebrush was the most common food item, but forbs were found in 89% of the crops and composed 30.1% aggregate dry mass (ADM) of the diet. ADM and species composition of female diets were highly variable between collection periods and years, and coincided with temporal variation in forb availability. Adult females consumed more forbs and less low sagebrush compared to yearling females. Because of higher levels of crude protein, calcium, and phosphorus, forbs were important diet components in comparison with low sagebrush, which had the lowest nutrient content of all foods consumed. Our results indicate that increased forb abundance in areas used by female sage-grouse prior to nesting would increase their forb consumption and nutritional status for reproduction. We recommend that managers should emphasize delineation of habitats used by preincubating sage-grouse and evaluate the need for enhancing forb abundance and diversity.  相似文献   

12.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) and other exotic annual grasses have invaded millions of hectares of sagebrush (Artemisia L.) steppe. Revegetation of medusahead-invaded sagebrush steppe with perennial vegetation is critically needed to restore productivity and decrease the risk of frequent wildfires. However, it is unclear if revegetation efforts provide long-term benefits (fewer exotic annuals and more perennials). The limited literature available on the topic questions whether revegetation efforts reduce medusahead abundance beyond 2 or 3 yr. We evaluated revegetation of medusahead-invaded rangelands for 5 yr after seeding introduced perennial bunchgrasses at five locations. We compared areas that were fall-prescribed burned immediately followed by an imazapic herbicide treatment and then seeded with bunchgrasses 1 yr later (imazapic-seed) with untreated controls (control). The imazapic-seed treatment decreased exotic annual grass cover and density. At the end of the study, exotic annual grass cover and density were 2-fold greater in the control compared with the imazapic-seed treatment. The imazapic-seed treatment had greater large perennial bunchgrass cover and density and less annual forb (predominately exotic annuals) cover and density than the untreated control for the duration of the study. At the end of the study, large perennial bunchgrass density average 10 plant ? m? 2 in the imazapic-seed treatment, which is comparable with intact sagebrush steppe communities. Plant available soil nitrogen was also greater in the imazapic-seed treatment compared with the untreated control for the duration of the study. The results of this study suggest that revegetation of medusahead-invaded sagebrush steppe can provide lasting benefits, including limiting exotic annual grasses.  相似文献   

13.
Traditional management of sand sagebrush (Artemisia filifolia) rangelands has emphasized sagebrush control to increase forage for livestock. Since the 1950s shrub removal has been primarily achieved with herbicides. Concerns over declining lesser prairie-chicken (Tympanuchus pallidicinctus; LPC) populations have led to increased scrutiny over the use of herbicides to control shrubs. The objective of our research was to describe changes to LPC habitat qualities following chemical control of sand sagebrush in northwest Oklahoma. Study pastures ranged in size from 10 to 21 ha. Five pastures were sprayed with 2,4-dichlorophenoxyacetic acid (2,4-D) in 2003 (RECENT), five were sprayed with 2,4-D in 1984 (OLD), and four received no treatment (SAGE). We measured habitat structure (sagebrush cover, sagebrush density, visual obstruction &lsqb;VO], and basal grass cover), and dietary resources (forb density, forb richness, and grasshopper density) in all pastures from 2003 to 2006. OLD and RECENT pastures had less sagebrush (cover and density) and VO than SAGE pastures. OLD pastures produced more annual forbs than either SAGE or RECENT pastures. SAGE pastures had more perennial forbs than RECENT pastures. Herbicide application reduced protective cover while providing no increase in forb abundance in RECENT pastures. Our results indicated that it may take several years to realize increases in annual forbs following application of 2,4-D. However, loss of protective cover may persist for multiple years (20+ yr), and removal of sagebrush did not increase forb richness or grasshopper abundance. Thus, 2,4-D may have limited use as a habitat management tool because it takes numerous years to reap the benefit of increased forb abundance while reducing habitat structure in the long term.  相似文献   

14.
Interference from crested wheatgrass (Agropyron cristatum [L.] Gaertn.) seedlings is considered a major obstacle to native species establishment in rangeland ecosystems; however, estimates of interference at variable seedling densities have not been defined fully. We conducted greenhouse experiments using an addition-series design to characterize interference between crested wheatgrass and four key native species. Crested wheatgrass strongly interfered with the aboveground growth of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young), rubber rabbitbrush (Ericameria nauseosa [Pall. ex Pursh] G. L. Nesom & Baird subsp. consimilis [Greene] G. L. Nesom & Baird), and to a lesser extent with bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve). Alternatively, bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey subsp. californicus [J. G. Sm.] Barkworth) and crested wheatgrass had similar effects on each other’s growth, and interference ratios were near 1.0. Results indicate that the native grasses more readily establish in synchrony with crested wheatgrass than these native shrubs, but that once established, the native shrubs are more likely to coexist and persist with crested wheatgrass because of high niche differentiation (e.g., not limited by the same resource). Results also suggest that developing strategies to minimize interference from crested wheatgrass seedlings emerging from seed banks will enhance the establishment of native species seeded into crested wheatgrass–dominated communities.  相似文献   

15.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis &lsqb;Beetle & A. Young] S.L. Welsh) plant communities with degraded native herbaceous understories occupy vast expanses of the western United States. Restoring the native herbaceous understory in these communities is needed to provide higher-quality wildlife habitat, decrease the risk of exotic plant invasion, and increase forage for livestock. Though mowing is commonly applied in sagebrush communities with the objective of increasing native herbaceous vegetation, vegetation response to this treatment in degraded Wyoming big sagebrush communities is largely unknown. We compared mowed and untreated control plots in five Wyoming big sagebrush plant communities with degraded herbaceous understories in eastern Oregon for 3 yr posttreatment. Native perennial herbaceous vegetation did not respond to mowing, but exotic annuals increased with mowing. Density of cheatgrass (Bromus tectorum L.), a problematic exotic annual grass, was 3.3-fold greater in the mowed than untreated control treatment in the third year posttreatment. Annual forb cover, largely consisting of exotic species, was 1.8-fold greater in the mowed treatment compared to the untreated control in the third year posttreatment. Large perennial grass cover was not influenced by mowing and remained below 2%. Mowing does not appear to promote native herbaceous vegetation in degraded Wyoming big sagebrush plant communities and may facilitate the conversion of shrublands to exotic annual grasslands. The results of this study suggest that mowing, as a stand-alone treatment, does not restore the herbaceous understory in degraded Wyoming big sagebrush plant communities. We recommend that mowing not be applied in Wyoming big sagebrush plant communities with degraded understories without additional treatments to limit exotic annuals and promote perennial herbaceous vegetation.  相似文献   

16.
Restoring western US rangelands from a site dominated by invasive annuals, such as cheatgrass and medusahead, to a diverse, healthy, perennial plant ? dominated ecosystem can be difficult with native grasses. This study describes the establishment and trends in persistence (plant/m2) of native grass cultivars and germplasm compared with typically used crested and Siberian wheatgrasses at four locations in Idaho (one), Wyoming (one), and Utah (two) that range in mean average annual precipitation (MAP) from 290 to 415 mm. Sites were cultivated and fallowed 1 yr before planting using two glyphosate applications to control weeds. We monitored seedling establishment of 10 perennial cool-season grass species and plant persistence over 5 yr. Precipitation during the seeding year varied with the Utah sites locations reviving below MAP (4% and 14%), while the Wyoming and Idaho sites received above MAP at 8% and 26%, respectively. Across these four sites, native grass seedling establishment of bottlebrush squirreltail (29 ± 0.08 [standard error] seedling/m2), bluebunch (28 ± 0.05), slender (30 ± 0.05), and Snake River wheatgrasses (28 ± 0.08) was similar to “Vavilov II” Siberian wheatgrass (36 ± 3.20). By yr 5, western, Snake River, and thickspike wheatgrasses were the only native grasses to have plant densities similar to Vavilov II (37 ± 0.29) Siberian and “Hycrest II” (36 ± 0.29) crested wheatgrasses. On sites receiving between 290 and 415 mm MAP, our data suggest that native grasses are able to establish but in general lack the ability to persist except for western, Snake River, and thickspike wheatgrasses, which had plant densities similar to crested and Siberian wheatgrasses after 5 yr.  相似文献   

17.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Invasion by medusahead is problematic because it decreases livestock forage production, degrades wildlife habitat, reduces biodiversity, and increases fire frequency. Revegetation of medusahead-invaded sagebrush steppe is needed to increase ecosystem and economic productivity. Most efforts to revegetate medusahead-infested plant communities are unsuccessful because perennial bunchgrasses rarely establish after medusahead control. The effects of prescribed burning (spring or fall), fall imazapic application, and their combinations were evaluated for medusahead control and the establishment of seeded large perennial bunchgrasses. One growing season after treatments were applied, desert wheatgrass (Agropyron desertorum [Fisch. ex Link] Schult.) and squirreltail (Elymus elymoides [Raf.] Swezey) were drill seeded into treatment plots, except for the control treatment. Vegetation characteristics were measured for 2 yr postseeding (second and third year post-treatment). Medusahead was best controlled when prescribed burned and then treated with imazapic (P < 0.05). These treatments also had greater large perennial bunchgrass cover and density compared to other treatments (P < 0.05). The prescribed burned followed by imazapic application had greater than 10- and 8-fold more perennial bunchgrass cover and density than the control treatment, respectively. Prescribed burning, regardless of season, was not effective at controlling medusahead or promoting establishment of perennial bunchgrasses. The results of this study question the long-term effectiveness of using imazapic in revegetation efforts of medusahead-infested sagebrush steppe without first prescribed burning the infestation. Effective control of medusahead appears to be needed for establishment of seeded perennial bunchgrasses. The results of this study demonstrate that seeding desert wheatgrass and squirreltail can successfully revegetate rangeland infested with medusahead when medusahead has been controlled with prescribed fire followed by fall application of imazapic.  相似文献   

18.
Reducing seed germination and seedling emergence of downy brome (Bromus tectorum L.) improves the success of revegetating degraded shrubland ecosystems. While pre-emergence herbicides can potentially reduce these two processes, their impact on germination and emergence of downy brome and revegetation species in semiarid ecosystems is poorly understood and has not been comprehensively studied in soils with potentially contrasting herbicide bioavailability (i.e., residual plant activity). We designed a greenhouse experiment to evaluate the effects two pre-emergence acetolactate synthase–inhibiting herbicides (rimsulfuron and imazapic) on germination and emergence of downy brome and two revegetation grass species (crested wheatgrass &lsqb;Agropyron cristatum {L.} Gaertn.] and bottlebrush squirreltail &lsqb;Elymus elymoides {Raf.} Swezey]) that were grown in representative soils from salt desert and sagebrush shrublands. Pre-emergence herbicides significantly (P &spilt; 0.05) reduced seedling emergence and biomass production of downy brome and crested wheatgrass and increased mortality more so in sagebrush compared to salt desert soil, suggesting that these common Great Basin soils fundamentally differ in herbicide bioavailability. Also, germination and emergence of the two highly responsive species (crested wheatgrass and downy brome) were clearly more impacted by rimsulfuron than imazapic. We discuss these results in terms of how the specific soil physiochemical properties influence herbicide adsorption and leaching. Our results shed new light on the relative performance of these two promising herbicides and the importance of considering soil properties when applying pre-emergence herbicides to reduce germination and emergence of invasive annual grasses and create suitable seedbed conditions for revegetation.  相似文献   

19.
Increased cover of perennial grasses and forbs would increase the wildlife and forage value of many Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities, as well as increase their resistance to weeds. We compared six mechanical treatments in conjunction with seeding a Wyoming big sagebrush community in northern Utah over a 10-yr period. The treatments included disk plow followed by land imprinter, one-way Ely chain, one- and two-way pipe harrow, all applied in fall, and meadow aerator applied in fall and spring. A mixture of native and introduced grasses and forbs was broadcast seeded at 18.3 kg PLS ha? 1 after the disk and before the imprinter and all other treatments. The experiment was installed in three randomized blocks, and density and cover data were collected before treatment in 2001 and 1, 2, 5, and 10 yr after treatment. All treatments initially reduced sagebrush and residual herbaceous cover and increased seeded species cover compared with the untreated control. By 10 yr after treatment, sagebrush cover was 24.5% ± 0.35% on the control, 1.6% ± 0.28% on the disk imprinter treatment, and 11.7% ± 0.79% on all other treatments. At that time, seeded grass cover was 16.5% ± 1.22% on the disk imprinter treatment and an average of 2% ± 0.1% on all other mechanical treatments. Sagebrush seedlings were recruited in all of the mechanical treatments, but least in the disk imprinter treatment. After 10 yr, the untreated control was dominated by decadent sagebrush and rabbitbrush, the disk imprinter treatment was dominated by seeded perennial grasses, and the other mechanical treatments shared dominance of sagebrush and native perennial grasses. Mechanical treatments changed the composition of this community while retaining sagebrush, but greatest understory increases were associated with greatest control of sagebrush and establishment of seeded species by disk imprinting.  相似文献   

20.
Long-term control of the invasive annual grass cheatgrass is predicated on its biological suppression. Perennial grasses vary in their suppressive ability. We compared the ability of a non-native grass (“Hycrest” crested wheatgrass) and two native grasses (Snake River wheatgrass and bluebunch wheatgrass) to suppress cheatgrass. In a greenhouse in separate tubs, 5 replicates of each perennial grass were established for 96 d, on which two seeds of cheatgrass, 15 cm apart, were then sown in a semicircular pattern at distances of 10 cm, 30 cm, and 80 cm from the established perennial bunchgrasses. Water was not limiting. After 60 d growth, cheatgrass plants were harvested, dried, weight recorded, and tissue C and N quantified. Soil N availability was quantified at each location where cheatgrass was sown, both before sowing and after harvest. Relative to cheatgrass grown at 80 cm, all perennial grasses significantly reduced aboveground biomass at 30 cm (68% average reduction) and at 10 cm (98% average reduction). Sown at 10 cm from established perennial grasses, cheatgrass aboveground biomass was inversely related with perennial grass root mass per unit volume of soil. All cheatgrass sown at 10 cm from “Hycrest” crested wheatgrass died within 38 d. Before sowing of cheatgrass, soil 10 cm from established perennial grasses had significantly less mineral N than soil taken at 30 cm and 80 cm. Relative to cheatgrass tissue N for plants grown at 80 cm, cheatgrass nearest to the established perennial grasses contained significantly less tissue N. All perennial grasses inhibited the NO2 to NO3 nitrification step; for “Hycrest” crested wheatgrass, soil taken at 10 cm from the plant had a molar proportion of NO2 in the NO2 + NO3 pool of > 90%. In summary, a combination of reduced nitrogen availability, occupation of soil space by perennial roots, and attenuation of the nitrogen cycle all contributed to suppression of cheatgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号