首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to estimate whether genetic dissection of QTL on chromosomes 1, 2, 4, and 7, detected in an F2 Meishan x Large White population, can be achieved with a recombinant back-cross progeny test approach. For this purpose, a first generation of backcross (BC1) was produced by using frozen semen of F1 Large White x Meishan boars with Large White females. Four BC1 boars were selected because of their heterozygosity for at least 1 of the 4 regions. The BC1 boars were crossed with Large White sows, and the resulting BC2 offspring were measured for several growth and body composition traits. Contrary to the F2 animals, BC2 animals were also measured for meat quality traits in adductor, gluteus superficialis (GS), longissimus dorsi, and biceps femoris (BF) muscles. Each BC1 boar was tested for a total of 39 traits and for the 4 regions with statistical interval mapping analyses. The QTL effects obtained in BC1 families showed some differences compared with those described in F1 families. However, we confirmed QTL effects for growth in the SW1301-SW2512 markers interval on chromosome 1 and also for body composition in the SW1828-SW2512 markers interval on chromosome 1, in the SW2443-SWR783 markers interval on chromosome 2, and in the SW1369-SW632 markers interval on chromosome 7. In addition, we detected new QTL for growth traits on chromosome 2 and for meat quality traits on chromosomes 1 and 2. Growth of animals from weaning to the end of the test was influenced by the IGF2 gene region on chromosome 2. Concerning meat quality, ultimate pH of adductor, longissimus dorsi, and BF were affected by the interval delimited by UMNP3000 and SW2512 markers on chromosome 1, and a* of GS, L* of BF, and water-holding capacity of GS were affected by QTL located between marker loci SW2443 and SWR783 on chromosome 2. Recombinant progeny testing appeared to be a suitable strategy for the genetic dissection of the QTL investigated.  相似文献   

2.
Infectious bovine keratoconjunctivitis, also known as pinkeye, is an economically important disease in cattle. The objective of this study was to detect QTL associated with infectious bovine keratoconjunctivitis in offspring from a Brahman x Hereford sire. The sire was mated to Hereford, Angus, and F1 cows to produce 288 offspring in 1994 and mated to MARC III ((1/4) Hereford, (1/4) Angus, (1/4) Red Poll, and (1/4) Pinzgauer) cows in 1996 to produce 259 offspring (547 animals total). Infectious bovine keratoconjunctivitis was diagnosed by physical examination in 36 animals of the family. Records included unilateral and bilateral frequency, but not severity. Records were binary: 0 for unaffected and 1 for affected cattle. A putative QTL for infectious bovine keratoconjunctivitis was identified on chromosome 1, with a maximum F-statistic (F = 10.15; P = 0.0015) at centimorgan 79 of the linkage group. The support interval spanned centimorgans 66 to 110. There was also evidence suggesting the presence of a QTL for infectious bovine keratoconjunctivitis on chromosome 20, with a maximum F-statistic (F = 10.35; P = 0.0014) at centimorgan 16 of the linkage group. The support interval ranged from centimorgan 2 to 35. This report provides the initial evidence of QTL for infectious bovine keratoconjunctivitis. Although a candidate gene was identified for one of the regions of interest, further studies are needed to identify the genetic basis of resistance to the disease.  相似文献   

3.
1. An F2 cross of a broiler male line and a White Leghorn layer line was used to identify quantitative trait loci (QTL) for bone density at the onset of lay and at the end of the laying period. A total of 686 measures of humeral bone density were available for analysis.

2. There was no evidence for epistasis.

3. Genome-wide significant QTL for bone density at the onset of lay were identified on chromosomes 1 (311?cM) and 8 (2?cM) and on chromosomes 1 (311?cM), 3 (57?cM) and 8 (2?cM) with a covariate for the number of yellow follicles (a proxy for the concentration of circulating oestrogen).

4. Evidence for only 4 chromosome-wide suggestive QTL were detected at the end of lay (72 weeks).

5. Analysis of the combined data confirmed two genome-wide suggestive QTL on chromosome 1 (137 and 266?cM) and on chromosomes 8 (2?cM) and 9 (10?cM) in analyses with or without the covariate.

6. Positive QTL alleles came from the broiler line with the exception of 2 suggestive QTL at the onset of lay on chromosomes 3 and 5 in an analysis with the covariate.

7. In general, QTL acted additively, except that dominant effects were identified for three suggestive QTL at the onset of lay on chromosomes 3 (57 and 187?cM) and 5 (9?cM).

8. The significant QTL in this study were at similar locations to QTL identified in a range of crosses in other publications, suggesting that they are prime candidates for the search for genes and mutations that could be used as selection criteria to improve bone strength and decrease fractures in commercial laying hens.  相似文献   

4.
Feed intake and feed efficiency of beef cattle are economically relevant traits. The study was conducted to identify QTL for feed intake and feed efficiency of beef cattle by using genotype information from 100 microsatellite markers and 355 SNP genotyped across 400 progeny of 20 Angus, Charolais, or Alberta Hybrid bulls. Traits analyzed include feedlot ADG, daily DMI, feed-to-gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F)], and residual feed intake (RFI). A mixed model with sire as random and QTL effects as fixed was used to generate an F-statistic profile across and within families for each trait along each chromosome, followed by empirical permutation tests to determine significance thresholds for QTL detection. Putative QTL for ADG (chromosome-wise P < 0.05) were detected across families on chromosomes 5 (130 cM), 6 (42 cM), 7 (84 cM), 11 (20 cM), 14 (74 cM), 16 (22 cM), 17 (9 cM), 18 (46 cM), 19 (53 cM), and 28 (23 cM). For DMI, putative QTL that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (93 cM), 3 (123 cM), 15 (31 cM), 17 (81 cM), 18 (49 cM), 20 (56 cM), and 26 (69 cM) in the across-family analyses. Putative across-family QTL influencing F:G that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 3 (62 cM), 5 (129 cM), 7 (27 cM), 11 (16 cM), 16 (30 cM), 17 (81 cM), 22 (72 cM), 24 (55 cM), and 28 (24 cM). Putative QTL influencing RFI that exceeded the chromosome-wise P < 0.05 threshold were detected on chromosomes 1 (90 cM), 5 (129 cM), 7 (22 cM), 8 (80 cM), 12 (89 cM), 16 (41 cM), 17 (19 cM), and 26 (48 cM) in the across-family analyses. In addition, a total of 4, 6, 1, and 8 chromosomes showed suggestive evidence (chromosome-wise, P < 0.10) for putative ADG, DMI, F:G, and RFI QTL, respectively. Most of the QTL detected across families were also detected within families, although the locations across families were not necessarily the locations within families, which is likely because of differences among families in marker informativeness for the different linkage groups. The locations and direction of some of the QTL effects reported in this study suggest potentially favorable pleiotropic effects for the underlying genes. Further studies will be required to confirm these QTL in other populations so that they can be fine-mapped for potential applications in marker-assisted selection and management of beef cattle.  相似文献   

5.
We performed quantitative trait locus (QTL) mapping analysis for litter size (total number of pups born and/or number of pups born alive) in 255 backcross mice derived from C57BL/6J and RR/Sgn inbred mice. We identified one significant QTL on chromosome 7 and 4 suggestive QTLs on chromosomes 3, 5, 10 and 13. In addition, two suggestive QTLs were identified on chromosomes 1 and 4 for the number of stillbirth. These results suggested that both litter size and number of stillbirth were heritable traits, although they were controlled by distinct genes. The RR allele was associated with reduced litter size and increased stillbirth at all QTLs. Therefore, RR mothers were observed to have reduced prolificacy in this particular genetic cross.  相似文献   

6.
This study was conducted to detect quantitative trait loci (QTL) affecting growth and beef carcass fatness traits in an experimental population of Angus and Brahman crossbreds. The three-generation mapping population was generated with 602 progeny from 29 reciprocal backcross and three F2 full-sib families, and 417 genetic markers were used to produce a sex-averaged map of the 29 autosomes spanning 2,642.5 Kosambi cM. Alternative interval-mapping approaches were applied under line-cross (LC) and random infinite alleles (RA) models to detect QTL segregating between and within breeds. A total of 35 QTL (five with genomewide significant and 30 with suggestive evidence for linkage) were found on 19 chromosomes. One QTL affecting yearling weight was found with genomewide significant evidence for linkage in the interstitial region of bovine autosome (BTA) 1, and an additional 19 QTL were detected with suggestive evidence for linkage under the LC model. Many of these QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects the fact that heterosis for growth is known to be appreciable in crosses among Brahman and British breeds. Four QTL affecting growth were detected with genomewide significant evidence for linkage under the RA model on BTA 2 and BTA 6 for birth weight, BTA 5 for yearling weight, and BTA 23 for hot carcass weight. An additional 11 QTL were detected with suggestive evidence for linkage under the RA model. None of the QTL (except for yearling weight on BTA 5) detected under the RA model were found by the LC analyses, suggesting the segregation of alternate alleles within one or both of the parental breeds. Our results reveal the utility of implementing both the LC and RA models to detect dominant QTL and also QTL with similar allele frequency distributions within parental breeds.  相似文献   

7.
In an experimental cross between Meishan and Dutch Large White and Landrace lines, 785 F2 animals with carcass information and their parents were typed for molecular markers covering the entire porcine genome. Linkage was studied between these markers and eight meat quality traits. Quantitative trait locus analyses were performed using interval mapping by regression under two genetic models: 1) the line-cross approach, where the founder lines were assumed to be fixed for different QTL alleles and 2) a half-sib model where a unique allele substitution effect was fitted within each of the 38 half-sib families. The line-cross approach included tests for genomic imprinting and sex-specific QTL effects. In total, three genome-wide significant and 26 suggestive QTL were detected. The significant QTL on chromosomes 3, 4, and 13, affecting meat color, were only detected under the half-sib model. Failure of the line-cross approach to detect the meat color QTL suggests that the founder lines have similar allele frequencies for these QTL. This study provides information on new QTL affecting meat quality traits. It also shows the benefit of analyzing experimental data under different genetic and statistical models.  相似文献   

8.
Quantitative trait loci for reproductive traits in a three-generation resource population of a cross between low-indexing pigs from a control line and high-indexing pigs from a line selected 10 generations for increased index of ovulation rate and embryonic survival are reported. Phenotypic data were collected in F2 females for birth weight (BWT, n = 428), weaning weight (WWT, n = 405), age at puberty (AP, n = 295), ovulation rate (OR, n = 423), number of fully formed pigs (FF, n = 370), number of pigs born alive (NBA, n = 370), number of mummified pigs (MUM, n = 370), and number of stillborn pigs (NSB, n = 370). Grandparent, F1, and F2 animals were genotyped for 151 microsatellite markers. Sixteen putative QTL (P < 0.10) for reproductive traits were identified in previous analyses of these data with single QTL line-cross models. Data were reanalyzed with multiple QTL models, including imprinting effects. Data also were analyzed with half-sib models. Permutation was used to establish genome-wide significance levels ( = 0.01, 0.05, and 0.10). Thirty-one putative QTL for reproductive traits and two QTL for birth weight were identified (P < 0.10). One Mendelian QTL for FF (P < 0.05), one for NBA (P < 0.05), three for NSB (P < 0.05), three for NN (P < 0.05), seven for AP (P < 0.10), five for MUM (P < 0.10), and one for BWT (P < 0.10) were found. Partial imprinting of QTL affecting OR (P < 0.01), BWT (P < 0.05), and MUM (P < 0.05) was detected. There were four paternally expressed QTL for NN (P < 0.10) and one each for AP (P < 0.05) and MUM (P < 0.10). Maternally expressed QTL affecting NSB (P < 0.10), NN (P < 0.10), and MUM (P < 0.10) were detected. No QTL were detected with half-sib analyses. Multiple QTL models with imprinting effects are more appropriate for analyzing F2 data than single Mendelian QTL line-cross models.  相似文献   

9.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

10.
A QTL analysis of female reproductive data from a 3-generation experimental cross between Meishan and Large White pig breeds is presented. Six F(1) boars and 23 F(1) sows, progeny of 6 Large White boars and 6 Meishan sows, produced 502 F(2) gilts whose reproductive tract was collected after slaughter at 30 d of gestation. Five traits [i.e., the total weight of the reproductive tract, of the empty uterine horns, of the ovaries (WOV), and of the embryos], as well as the length of uterine horns (LUH), were measured and analyzed with and without adjustment for litter size. Animals were genotyped for a total of 137 markers covering the entire porcine genome. Analyses were carried out based on interval mapping methods, using a line-cross regression and a half-full sib maximum likelihood test. A total of 18 genome-wide significant (P < 0.05) QTL were detected on 9 different chromosomes (i.e., SSC 1, 5, 6, 7, 9, 12, 13, 18, and X). Five genome-wide significant QTL were detected for LUH, 4 for weight of the empty uterine horns and WOV, 2 for total weight of the reproductive tract, and 1 for weight of the embryos. Twenty-two additional suggestive QTL were also detected. The largest effects were obtained for LUH and WOV on SSC13 (9.2 and 7.0% of trait phenotypic variance, respectively). Meishan alleles had both positive (e.g., on SSC7) and negative effects (e.g., on SSC13) on the traits investigated. Moreover, the QTL were generally not fixed in founder breeds, and opposite effects were in some cases obtained in different families. Although reproductive tract characteristics had only a moderate correlation with reproductive performances, most of the major QTL detected in this study were previously reported as affecting female reproduction, generally with reduced significance levels. This study thus shows that focusing on traits with high heritability might help to detect loci involved in low heritability major traits for breeding.  相似文献   

11.
Three Iberian boars were bred to 31 Landrace sows to produce 79 F1 pigs. Six F1 boars were mated to 73 F1 sows. The F2 progeny from 33 full-sib families (250 individuals) were genotyped for seven microsatellites spanning the length of chromosome 4. Least squares procedures for interval mapping were used to detect quantitative trait loci (QTL). A permutation test was used to establish nominal significance levels associated with QTL effects, and resulting probability levels were corrected to a genomewide basis. Observed QTL effects were (genomewide significance, position of maximum significance in centimorgans): percentage of linoleic acid in subcutaneous adipose tissue (< 0.01, 81); backfat thickness (< 0.01, 83); backfat weight (< 0.01, 80); longissimus muscle area (0.02, 83); live weight (0.19, 88); and percentage of oleic acid in subcutaneous adipose tissue (0.25, 81). Gene action was primarily additive. The Iberian genotypes were fatter, slower growing, and had lower linoleic and higher oleic acid contents than Landrace genotypes. The interval from 80 to 83 cM contains the FAT1 and A-FABP loci that have been shown previously to affect fat deposition in pigs. This is the first report of a QTL affecting fatty acid composition of subcutaneous adipose tissue in pigs and provides a guide for the metabolic pathways affected by candidate genes described in this region of chromosome 4.  相似文献   

12.
Colleagues and I previously performed quantitative trait locus (QTL) analysis on plasma total-cholesterol (T-CHO) levels in C57BL/6J (B6) x RR F2 mice. We identified only one significant QTL (Cq6) on chromosome 1 in a region containing the Apoa2 gene locus, a convincing candidate gene for Cq6. Because Cq6 was a highly significant QTL, we considered that the detection of other potential QTLs might be hindered. In the present study, QTL analysis was performed in B6.KK-Apoa2b N(8) x RR F2 mice [B6.KK-Apoa2b N(8) is a partial congenic strain carrying the Apoa2b allele from the KK strain, and RR also has the Apoa2b allele] by controlling of the effects of the Apoa2 allele, for identifying additional QTLs. Although no significant QTLs were identified, 2 suggestive QTLs were found on chromosomes 2 and 3 in place of the effects of the Apoa2 allele. A significant body weight QTL was identified on chromosome 3 (Bwq7, peak LOD score 5.2); its effect on body weight was not significant in previously analyzed B6 x RR F2 mice. Suggestive body weight QTL that had been identified in B6 x RR F2 mice on chromosome 4 (LOD score 3.8) was not identified in B6.KK-Apoa2b N(8) x RR F2 mice. Thus, contrary to expectation, the genetic control of body weight was also altered significantly by controlling of the effects of the Apoa2 allele. The QTL mapping strategy by controlling of the effects of a major QTL facilitated the identification of additional QTLs.  相似文献   

13.
Understanding of the genetic control of female reproductive performance in pigs would offer the opportunity to utilize natural variation and improve selective breeding programs through marker-assisted selection. The Chinese Meishan is one of the most prolific pig breeds known, farrowing 3 to 5 more viable piglets per litter than Western breeds. This difference in prolificacy is attributed to the Meishan's superior prenatal survival. Our study utilized a 3-generation resource population, in which the founder grandparental animals were purebred Meishan and Duroc pigs, in a genome scan for QTL. Grandparent, F1, and F2 animals were genotyped for 180 microsatellite markers. Reproductive traits, including number of corpora lutea (number of animals = 234), number of fetuses per animal (n = 226), number of teats (n = 801), and total number born (n = 288), were recorded for F2 females. Genome-wide significance level thresholds of 1, 5, and 10% were calculated using a permutation approach. We identified 9 QTL for 3 traits at a 10% genome-wise significance level. Parametric interval mapping analysis indicated evidence of a 1% genome-wise significant QTL for corpora lutea on SSC 3. Nonparametric interval mapping for number of teats found 4 significant QTL on chromosomes SSC3 (P < 0.01), SSC7 (P < 0.01), SSC8 (P < 0.01), and SSC12 (P < 0.05). Partial imprinting of a QTL affecting teat number (P < 0.10) was detected on SSC8. Using the likelihood-ratio test for a categorical trait, 2 QTL for pin nipples were detected on SSC2 and SSC16 (P < 0.01). Fine mapping of the QTL regions will be required for their application to introgression programs and gene cloning.  相似文献   

14.
A genome scan was conducted using 196 microsatellite DNA markers spanning 29 autosomal bovine chromosomes and Warner-Bratzler shear force collected at d 2 and 14 postmortem on steaks from the longissimus muscle of 294 progeny from one Brahman x Hereford bull mated to Bos taurus cows to identify QTL for beef tenderness. One QTL was identified and located 28 cM (95% confidence interval is 17 to 40 cM) from the most centromeric marker on BTA15. The QTL interacted significantly with slaughter group. The difference in shear force of steaks aged 14 d postmortem between progeny with the Brahman paternally inherited allele vs those with Hereford was 1.19 phenotypic standard deviations (explained 26% of phenotypic variance) for one slaughter group and was not significant for three other slaughter groups. Apparently, unknown environmental factors present for three of the four slaughter groups were capable of masking the effect of this QTL. The sensitivity of the QTL effect to environmental factors may complicate utilization of markers for genetic improvement. Future research to elucidate the cause of the QTL x slaughter group interaction may lead to improved strategies for controlling variation in meat tenderness via marker-assisted selection, postmortem processing, or live animal management.  相似文献   

15.
王晓蕾  王建  张庆玲  闫静  强胜  宋小玲 《草业学报》2017,26(12):138-151
如果抗除草剂转基因油菜的抗性基因渗入到野芥菜中,会给野芥菜的防除带来很大困难。因此在抗除草剂转基因油菜环境释放前对抗性基因向野芥菜的渗入开展深入的研究非常必要。以抗草丁膦转基因油菜与野芥菜的携带抗性基因回交3代子1代和子2代(BC3mF2和BC3pF2及BC3mF3和BC3pF3,m表示以野芥菜为母本的回交后代,p表示以野芥菜为父本的回交后代)为材料,在田间条件下研究了它们在不同密度(低密度为15株/区,高密度为30株/区)及不同种植比例(单种,野芥菜与回交后代以4:1、3:2、1:1混种)时的适合度成分和总适合度。结果表明,无论是低密度还是高密度条件下,单种时BC3F2和BC3F3的总适合度均与野芥菜无显著差异。低密度混种时,在4:1和3:2下,只有BC3mF3的总适合度与野芥菜无显著差异,其余各后代的总适合度均显著小于野芥菜;以1:1混种时,只有BC3mF2和BC3mF3的总适合度与野芥菜无显著差异。高密度混种时,3个比例混种下4种供试回交后代的总适合度均显著小于野芥菜。相关性分析结果表明,BC3mF3的各适合度成分都与混种比例不相关。表明携带抗性基因的BC3F2和BC3F3在野外都具有生存定植的可能性,且BC3mF3定植的可能性较其他供试回交后代更大。因此在防范转基因油菜基因逃逸的策略上,在防范初始杂交发生的同时,也应该防范回交后代的产生。  相似文献   

16.
Quantitative trait loci analyses were applied to data from Suffolk and Texel commercial sheep flocks in the United Kingdom. The populations comprised 489 Suffolk animals in three half-sib families and 903 Texel animals in nine half-sib families. Phenotypic data comprised measurements of live weight at 8 and 20 wk of age and ultrasonically measured fat and muscle depth at 20 wk. Lambs and their sires were genotyped across candidate regions on chromosomes 1, 2, 3, 4, 5, 6, 11, 18, and 20. Data were analyzed at the breed level, at the family level, and across extended families when families were genetically related. The breed-level analyses revealed a suggestive QTL on chromosome 1 in the Suffolk breed, between markers BM8246 and McM130, affecting muscle depth, although the effect was only significant in one of the three Suffolk families. A two-QTL analysis suggested that this effect may be due to two adjacent QTL acting in coupling. In total, 24 suggestive QTL were identified from individual family analyses. The most significant QTL affected fat depth and was segregating in a Texel family on chromosome 2, with an effect of 0.62 mm. The QTL was located around marker ILSTS030, 26 cM distal to myostatin. Two of the Suffolk and two of the Texel sires were related, and a three-generation analysis was applied across these two extended families. Seven suggestive QTL were identified in this analysis, including one that had not been detected in the individual family analysis. The most significant QTL, which affected muscle depth, was located on chromosome 18 near the callipyge and Carwell loci. Based on the phenotypic effect and location of the QTL, the data suggest that a locus similar to the Carwell locus may be segregating in the United Kingdom Texel population.  相似文献   

17.
A cytogenetical study was made of 9 descendants of a Charolais bull, heterozygous for a presumptive 1/29 translocation, three of the dams of some of these descendants, and three unrelated bulls which were mated to some of the descendants. Photographic karyotypes of Giemsa stained and C-banded chromosomes were prepared for each animal. The dams of the progeny showed no chromosomal abnormalities indicating that translocations were inherited from the sire. Three daughters of the Charolais bull and two of his grand daughters were heterozygous for the translocation, with a modal chromosomal number of 59, while the remaining three daughters and their progeny possessed normal karyotypes. No phenotypic abnormalities were observed in the animals examined. Measurements of the arms of the chromosomes suggested that the translocation chromosome (a large submetacentric) contained chromosomes 1 and 29. The submetacentric translocation chromosome had a single C-band, the two submetacentric X chromosomes showed no C-bands and each acrocentric autosome had a single C-band. All cattle heterozygous for the translocation showed normal fertility.  相似文献   

18.
Previous comparisons between the cDNA and gene sequences for secreted folate binding protein (sFBP) indicated a 12-bp insertion/deletion (ins/del) polymorphism in exon 1 and a SNP that altered (Ser-Arg) the protein AA sequence. The effect of the Ser-Arg SNP on reproductive traits was examined in three groups of Meishan-White European breed crossbred gilts. The gilts for all three groups were unilaterally hysterectomized-ovariectomized (UHO) at 100 d of age. Group 1 gilts (n = 77) were mated at estrus, slaughtered at d 105 of pregnancy, and a blood sample was collected from each fetus to determine fetal hematocrit. The number of corpora lutea and fetuses and the fetal and placental weights were recorded. Group 2 gilts (n = 46) were mated, the remaining uterine horn was flushed with 20 mL of saline on d 11 of pregnancy, conceptuses were counted, and flushings were measured for total sFBP. Gilts were allowed an estrous cycle to recover, mated again at estrus, slaughtered at 105 d of gestation, and the data as described for Group 1 were collected. Groups 1 and 2 gilts were genotyped for the Ser-Arg SNP. In Group 3, gilts (n = 70) and boars (n = 30) were genotyped for the Ser-Arg SNP before mating, and like genotypes were mated. Gilts were then treated as described for Group 2. The effect of the 12-bp ins/del on reproductive traits was examined in 407 white crossbred UHO gilts from a randomly selected control line and from lines selected for ovulation rate (OR) and uterine capacity (UC). Gilts were mated and slaughtered at 105 d of age, and the numbers of corpora lutea and live fetuses, and fetal and placental weights and fetal hematocrits were recorded. The 12-bp ins/del also was evaluated in 131 intact gilts from the OR selected line. These gilts were mated at approximately 250 d of age and farrowed. The numbers of fully formed and live piglets were recorded. A significant effect (P < 0.05) of the Ser-Arg SNP was detected on the number of embryos present on d 11 of pregnancy and on UC. The sFBP 12-bp ins/del was associated with UC (P < 0.01) and the number of CL (P < 0.05) in UHO gilts, but not with litter size in intact gilts from the OR line. Results suggest that the 12-bp ins/del polymorphism could be exploited to increase litter size in swine, provided that the negative effect of the polymorphism on OR is overcome.  相似文献   

19.
Chinese Erhualian boars have dramatically smaller testes, greater concentrations of circulating androgens, and fewer Sertoli cells than Western commercial breeds. To identify QTL for boar reproductive traits, testicular weight, epididymal weight, seminiferous tubular diameter at 90 and 300 d, and serum testosterone concentration at 300 d were measured in 347 F(2) boars from a White Duroc x Chinese Erhualian cross. A whole genome scan was performed with 183 microsatellites covering 19 porcine chromosomes. A total of 16 QTL were identified on 9 chromosomes, including 1% genome-wide significant QTL for testicular weight at 90 and 300 d and seminiferous tubular diameter at 90 d on SSCX, and for epididymal weight and testosterone concentration at 300 d on SSC7. Two 5% genome-wide significant QTL were detected for testicular weight at 300 d on SSC1 and seminiferous tubular diameter at 300 d on SSC16. Nine suggestive QTL were found on SSC1, 2, 3, 5, 7, 13, and 14. Chinese Erhualian alleles were not systematically favorable for greater reproductive performance. This study confirmed the previous significant QTL for testicular weight on SSCX and for epididymal weight on SSC7, and reported QTL for seminiferous tubular diameter and testosterone concentration at the first time. The observed different QTL for the same trait at different ages reflect the involvement of distinct genes in the development of male reproductive traits.  相似文献   

20.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号