首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effects of high hydrostatic pressure (HHP) treatment (100-500 MPa) on solubility and structural properties of ethanol (EtOH)-denatured soy β-conglycinin and glycinin were investigated using differential scanning calorimetry, Fourier transform infrared and ultraviolet spectroscopy. HHP treatment above 200 MPa, especially at neutral and alkaline pH as well as low ionic strength, significantly improved the solubility of denatured soy proteins. Structural rearrangements of denatured β-conglycinin subjected to high pressure were confirmed, as evidenced by the increase in enthalpy value (ΔH) and the formation of the ordered supramolecular structure with stronger intramolecular hydrogen bond. HHP treatment (200-400 MPa) caused an increase in surface hydrophobicity (F(max)) of β-conglycinin, partially attributable to the exposure of the Tyr and Phe residues, whereas higher pressure (500 MPa) induced the decrease in F(max) due to hydrophobic rearrangements. The Trp residues in β-conglycinin gradually transferred into a hydrophobic environment, which might further support the finding of structural rearrangements. In contrast, increasing pressure induced the progressive unfolding of denatured glycinin, accompanied by the movement of the Tyr and Phe residues to the molecular surface of protein. These results suggested that EtOH-denatured β-conglycinin and glycinin were involved in different pathways of structural changes during HHP treatment.  相似文献   

2.
Changes induced by high pressure (HP) treatment (200-600 MPa) on soybean protein isolates (SPI) at pH 3 (SPI3) and pH 8 (SPI8) were analyzed. Changes in protein solubility, surface hydrophobicity (Ho), and free sulfhydryl content (SH(F)) were determined. Protein aggregation and denaturation and changes in secondary structure were also studied. An increase in protein Ho and aggregation, a reduction of free SH, and a partial unfolding of 7S and 11S fractions were observed in HP-treated SPI8. Changes in secondary structure were also detected, which led to a more disordered structure. HP-treated SPI3 was partially denatured and presented insoluble aggregates. A major molecular unfolding, a decrease of thermal stability, and an increase of protein solubility and Ho were also detected. At 400 and 600 MPa, a decrease of the SH(F) and a total denaturation were observed.  相似文献   

3.
Rice endosperm protein was modified to enhance solubility and emulsifying properties by controlled enzymatic hydrolysis. The optimum degree of hydrolysis (DH) was determined for acid, neutral, and alkaline type proteases. Solubility and emulsifying properties of the hydrolysates were compared and correlated with DH and surface hydrophobicity. DH was positively associated with solubility of resulting protein hydrolysate regardless of the hydrolyzing enzyme, but enzyme specificity and DH interactively determined the emulsifying properties of the protein hydrolysate. The optimum DH was 6–10% for good emulsifying properties of rice protein, depending on enzyme specificity. High hydrophobic and sulfhydryl disulfide (SH-SS) interactions contributed to protein insolubility even at high DH. The exposure of buried hydrophobic regions of protein that accompanied high-temperature enzyme inactivation promoted aggregation and cross-linking of partially hydrolyzed proteins, thus decreasing the solubility and emulsifying properties of the resulting hydrolysate. Due to the highly insoluble nature of rice protein, surface hydrophobicity was not a reliable indicator for predicting protein solubility and emulsifying properties. Solubility and molecular flexibility are the essential factors in achieving good emulsifying properties of rice endosperm protein isolates.  相似文献   

4.
The properties of cast films from hemp protein isolate (HPI) including moisture content (MC) and total soluble mass (TSM), tensile strength (TS) and elongation at the break (EAB), and surface hydrophobicity were investigated and compared to those from soy protein isolate (SPI). The plasticizer (glycerol) level effect on these properties and the interactive force pattern for the film network formation were also evaluated. At some specific glycerol levels, HPI films had similar MC, much less TSM and EAB, and higher TS and surface hydrophobicity (support matrix side), as compared to SPI films. The TS of HPI and SPI films as a function of plasticizer level (in the range of 0.3-0.6 g/g of protein) were well fitted with the exponential equation with coefficient factors of 0.991 and 0.969, respectively. Unexpectedly, the surface hydrophobicity of HPI films (including air and support matrix sides) increased with increasing the glycerol level (from 0.3 to 0.6 g/g of protein). The analyses of protein solubility of film in various solvents and free sulfydryl group content showed that the disulfide bonds are the prominent interactive force in the HPI film network formation, while in the SPI case, besides the disulfide bonds, hydrogen bonds and hydrophobic interactions are also to a similar extent involved. The results suggest that hemp protein isolates have good potential to be applied to prepare protein film with some superior characteristics, e.g., low solubility and high surface hydrophobicity.  相似文献   

5.
Functional properties related to water protein interactions of soy protein isolates depend on the structural and aggregation characteristics of their major components (storage globulins 7S and 11S) that could be modified by the preparation procedure, thermal and/or chemical treatments, and drying methods. Commercial and laboratory isolates with different functionalities resulting from their structural modifications were compared. Isolates with high solubility or excessive thermally induced insolubilization or compact calcium-induced aggregates caused low water-imbibing capacity (WIC) values. The highest WIC results from the balance between intermediate solubility and the formation of aggregates with good hydration properties. The apparent viscosity of dispersions of commercial (spray dried) and laboratory (lyophilized) isolates depends on the WIC, the morphology and size of the particles, and the interaction of the hydrated particles. The hydration properties and viscosity of protein isolate suspensions were strongly determined by the amount and properties of the insoluble fraction.  相似文献   

6.
The functional properties of proteins from Tarom and Shiroodi cultivars were determined and compared with technological aspects of food and nutraceutical applications. Shiroodi has higher protein content than Tarom, and the yields of protein obtained were 72.88 and 66.36%, respectively. Nitrogen solubilities of rice bran protein of Tarom were more than Shiroodi at all pH levels. In addition, higher solubility was found in acidic or alkaline conditions. Although the rice bran proteins had lower emulsifying properties than bovine serum albumin, they had similar foaming properties in comparison with egg white. Tarom isolates had a significantly higher solubility, emulsifying property, and foaming stability and greater surface properties than Shiroodi isolates. The results showed the surface hydrophobicities of rice bran protein were greater than casein and ovalbumin and lower than other proteins such as bovine serum albumin. Water and oil absorption capacities were 1.03 and 1.66 for Tarom and 87.3 and 75.3 for Shiroodi, respectively. The bulk densities of Tarom and Shiroodi were also 0.55 and 0.53 g/mL, which make them suitable for weaning food and other industrial applications. As a result, these rice bran proteins showed higher hydrophobicity than that of other rice bran protein varieties as well as more functionality. Thus, they have good potential in the food and pharmaceutical industries.  相似文献   

7.
We evaluated the influence of heat treatment on interfacial properties (adsorption at the oil-water interface and dilatational rheology of interfacial layers) of soy protein isolate. The related structural properties of protein affecting these interfacial behaviors, including protein unfolding and aggregation, surface hydrophobicity, and the state of sulfhydryl group, were also investigated. The structural and interfacial properties of soy protein depended strongly on heating temperature (90 and 120 °C). Heat treatment at 90 °C induced an increase in surface hydrophobicity due to partial unfolding of protein, accompanied by the formation of aggregates linked by disulfide bond, and lower surface pressure at long-term adsorption and similar dynamic interfacial rheology were observed as compared to native protein. Contrastingly, heat treatment at 120 °C led to a higher surface activity of the protein and rapid development of intermolecular interactions in the adsorbed layer, as evidenced by a faster increase of surface pressure and dilatational modulus. The interfacial behaviors of this heated protein may be mainly associated with more flexible conformation and high free sulfhydryl group, even if some exposed hydrophobic groups are involved in the formation of aggregates. These results would be useful to better understand the structure dependence of protein interfacial behaviors and to expand utilization of heat-treated protein in the formulation and production of emulsions.  相似文献   

8.
《Cereal Chemistry》2017,94(1):89-97
The goal of this research was to investigate the physicochemical and functional properties of protein isolates obtained from several pea cultivars grown at two locations in Canada. The functionalities of the pea protein isolates (PPIs) were then compared with those of commercial food protein ingredients derived from milk, egg, pea, soy, and wheat. Six pea cultivars (Agassiz, CDC Golden, CDC Dakota, CDC Striker, CDC Tetris, and Cooper) were collected from two years over two locations in Saskatchewan (Canada). Samples were evaluated for composition, surface properties, and functional properties. All PPIs had protein levels of ≈91% (db) and isolate and protein yields of ≈18 and ≈72%, respectively. Cultivars exhibited legumin/vicilin ratios from 0.36 (Agassiz) to 0.79 (CDC Golden). Differences among cultivars as well as significant cultivar × environment interactions were found only for maximum intrinsic fluorescence (195–267 arbitrary units), solubility (63–75%), and foaming capacity (167–244%). No differences owing to either cultivar or environment were observed for surface charge (zeta potential = approximately –24 mV), oil holding capacity (≈3.2 g/g), foam stability (≈75%), or emulsion stability (≈96%). Relative to the commercial isolates, PPIs prepared under laboratory conditions behaved most similarly to soy isolates, with the exception of solubility. Whey and egg were superior in solubility and foaming properties, whereas wheat and the commercial pea protein product were significantly lower in nearly all of the functionality tests. Based on their oil holding properties, the laboratory‐prepared PPIs may serve as good meat extenders. The findings also suggest that pea processors may not need to specify either the cultivar or the environment when acquiring raw material, thus creating advantages in their feedstock sourcing.  相似文献   

9.
为提升大豆分离蛋白(soy protein isolate,SPI)的功能性质,该文引入大豆可溶性多糖(soybean soluble polysaccharides,SSPS),构建大豆分离蛋白-大豆可溶性多糖体系(SPI-SSPS),研究动态高压微射流(dynamic high-pressure microfluidization,DHPM)处理对SPI-SSPS功能特性的影响。分别采用0,60,100,140和180 MPa的 DHPM压力处理SPI-SSPS,探究不同压力对SPI-SSPS起泡特性、乳化特性、溶解性、粒度分布和表面疏水性的影响。结果表明,DHPM处理能提高SPI的溶解性和起泡特性,且SSPS的存在能显著提高DHPM对SPI功能性质的改善效果(P<0.05)。100和60 MPa的DHPM处理能使SPI-SSPS呈现较高的起泡能力和起泡稳定性,分别为未处理样品的1.2和2.4倍。140 MPa的DHPM处理使SPI-SSPS溶解性较强,为未处理样品的1.8倍。然而,DHPM处理会显著降低SPI-SSPS的乳化特性、粒径和表面疏水性(P<0.05)。随着处理压力的增加,SPI-SSPS的粒度和表面疏水性逐渐降低,在180MPa的DHPM处理下SPI-SSPS具有较小的粒径和较低的荧光强度。综上所述,DHPM结合SSPS改性技术可用于改善SPI的功能性质(如溶解性、起泡性),促进SPI在食品工业的应用。该文的研究结果可为SPI的功能性质改性提供参考。  相似文献   

10.
The functional properties of cod myosin and washed cod mince (myofibrillar protein fraction) treated at high (11) and low (2.5) pH were investigated after pH readjustment to 7.5. The solubility of refolded myosin was essentially the same as the native myosin. The pH-treated myofibrillar proteins had increased solubility over the whole ionic strength range studied. Acid and alkali treatment gave myosin and myofibrillar proteins improved emulsification properties, which were correlated with an increase in surface hydrophobicity and surface/interfacial activity. Enhanced gel strength was observed with acid- and alkali-treated myosin compared to native myosin, while the same treatment did not significantly improve the gel strength of acid- and alkali-treated myofibrillar proteins. The acid- and alkali-treated protein samples unfolded and gelled at a lower temperature than did the native proteins, suggesting a less conformationally stable structure of the refolded proteins. Functional studies show that acid and alkali treatment, which leads to partial unfolding of myosin may improve functional properties of cod myosin and myofibrillar proteins, with the greatest improvement being from the alkali treatment. The results also show that improvements in functionality were directly linked to the extent of partial unfolding of myosin on acid and alkali unfolding and refolding.  相似文献   

11.
Emulsifying properties of native and chemically modified soy glycinins were studied. The influence of ionic strength, protein sample composition and concentration, and assay conditions on the flocculation-creaming process and coalescence resistance was analyzed. Differences in these emulsifying properties were exhibited by native glycinins, which have a variable content of 4S, 11S, and 15S forms. Structure and functionality of native glycinin were modified by means of combined treatments: mild acidic treatments without heating or with heating at variable time and with or without disulfide bonds reduction. Modified glycinins presented different degrees of deamidation, surface hydrophobicity, and molecular mass. A slight enhancement of emulsifying stability at moderated deamidation degrees was observed. In different protein samples, a positive relationship between the flocculation-creaming rate constant and equilibrium oil volume fraction of emulsions with surface hydrophobicity was detected. A remarkable difference was observed between reduced and nonreduced samples, mainly with respect to behavior at low or high ionic strength.  相似文献   

12.
Topoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system. The inhibitory activity of these peptides from soy isolates toward topoisomerase II was confirmed using three synthetic peptides, FEITPEKNPQ, IETWNPNNKP,and VFDGEL, which have IC 50 values of 2.4, 4.0, and 7.9 mM, respectively. The molecular interactions of these peptides evaluated by molecular docking revealed interaction energies with the topoisomerase II C-terminal domain (CTD) (-186 to -398 kcal/mol) that were smaller than for the ATPase domain (-169 to -357 kcal/mol) and that correlated well with our experimental IC 50 values ( R (2) = 0.99). In conclusion, three peptides released from in vitro gastrointestinal enzyme digestion of soy proteins inhibited human topoisomerase II activity through binding to the active site of the CTD domain.  相似文献   

13.
Rice proteins are nutritional, hypoallergenic, and healthy for human consumption. Efficient extraction with approved food‐grade enzymes and chemicals are essential for commercial production and application of rice protein as a functional ingredient. Rice endosperm proteins were isolated by alkali, salt, and enzymatic methods and evaluated for extractability and physicochemical properties. Alkali (RPA) and salt (RPS) methods extracted 86.9 and 87.3% of proteins with 65.9 and 58.9% yield, respectively. The enzymatic methods with Termamyl (RPET) and amylase S (RPEA) extracted 85.8 and 81.0% proteins with 85.2 and 86.2% yield, respectively. Enthalpy values of RPA (1.79 J/g), RPS (1.22 J/g), RPET (nondetectable), and RPEA (0.17 J/g), determined by differential scanning calorimetry, demonstrated that the varying level of denaturation of proteins depends on the method of extraction. Surface hydrophobicity data supported this observation. Alkali‐ and salt‐extracted proteins had higher solubility and emulsifying properties than those of enzyme‐extracted proteins. Comparatively, more favorable protein composition, lower surface hydrophobicity, higher solubility, and a lower degree of thermal denaturation of alkali‐ and salt‐extracted proteins contributed to higher emulsifying and foaming properties than those of enzyme‐extracted proteins; therefore, alkali‐ and salt‐extracted proteins can have enhanced functional use and a potential starting material for preparing tailored rice protein isolates.  相似文献   

14.
The dielectric behavior of native and heat-denatured ovalbumins (OVAs) from three avian species in aqueous solution was examined over a frequency range of 100 kHz to 20 GHz, using the time domain reflectometry (TDR) method. For the native OVA solutions, three kinds of relaxation processes were observed at around 10 MHz, 100 MHz, and 20 GHz, respectively; these could be assigned to the overall rotation of protein molecules, the reorientations of the bound water, and the free water molecules, respectively. For the heat-denatured samples, three relaxation processes were also observed. However, the relaxation process at approximately 100 MHz originated via a different mechanism other than the reorientation of bound water, namely, the micro-Brownian motion of peptide chains of heat-denatured protein. From the observed relaxation process at approximately 100 MHz, the relaxation strength of heat-denatured OVA solution for duck was higher than that of OVA solutions for hen and guinea fowl and showed the pH dependency from pH 7.0 to 8.0 for OVAs obtained from all three species. Furthermore, the results demonstrated that the relaxation strength was closely related to surface hydrophobicity of protein molecules and gel rheological properties. It was suggested that the difference in the surface hydrophobicity of protein influenced the dielectric behavior of water around denatured protein, whereas the dielectric behavior of denatured protein could be an indication of the gel rheological properties. Such studies can aid in the understanding of the different network structures of OVA gels from three avian species.  相似文献   

15.
Structural and functional properties of two amaranth protein isolates as a function of pH were studied. Isolates, A9 and A11, were obtained by alkaline extraction at pH 9 and 11, respectively. Gel filtration chromatograms of A9 and A11 showed similar profiles. The A11 isolate contained mainly albumins and globulins, and a small proportion of globulin‐P aggregates, suggesting the presence of species with a higher degree of denaturation compared to A9. Differential scanning calorimetry (DSC) showed that A9 was characterized by two thermal transitions (65.8 and 98°C); A11 exhibited only a small endotherm (66.6°C) and a second, less defined one. DSC analysis of A9 at pH 2–4 did not show endotherms, but at pH 5, some protein structures were observed. A11 showed a greater degree of denaturation. FPLC results showed that the proteins in A9 are more folded and their conformation is closer to the native state than those in A11, which are more unfolded due to pH‐mediated denaturation, mainly in acid media. The surface hydrophobicity of the isolates in acid media was lower than in alkaline media. The fluorescence emission spectra of the isolates showed differences in acidic pH conditions. As expected, the highest solubility was at alkaline pH. The water‐holding capacity was similar for both isolates. The water‐imbibing capacity and speed of foaming was higher for A11 than for A9. In summary, intense pH treatment of amaranth isolates generated partial or total protein denaturation and differences in the functional properties.  相似文献   

16.
微波对大豆蛋白氧化聚集体结构及功能特性的影响   总被引:2,自引:2,他引:0  
为了探究不同时间微波处理对大豆蛋白氧化聚集体的结构和功能性质的影响,由偶氮二异丁脒盐酸盐(2,2′-azobis (2-amidinopropane) dihydrochloride,AAPH)诱导构建大豆蛋白氧化反应体系,采用功率为350 W的微波对其照射不同时间(0、10、20、30、40、50、60、70 s),探究微波处理对氧化聚集大豆蛋白的结构特性和加工特性的影响。结果表明,氧化可诱导形成粒径、分子量更大,结构更致密的蛋白质聚集体,同时对加工特性造成损害。适当时间(<30 s)的微波处理会导致氧化聚集体的分子结构打开、粒径降低和浊度降低,无序结构减少,进而改善了起泡性、乳化性和持水、持油性。长处理时间(>30 s)的微波处理导致已解聚的大豆蛋白分子重新形成更大的分子聚集体,降低功能性质。这表明微波物理场可以通过改变大豆蛋白氧化聚集体的结构和聚集行为调节其功能性质,为大豆蛋白功能性质的改善及微波在大豆蛋白氧化聚集体行为调控的应用方面提供参考。  相似文献   

17.
The influence of type of fluorescent probe on the surface hydrophobicity values determined for three native and heated proteins was assessed using uncharged [6-propionyl-2-(N, N-dimethylamino)naphthalene or PRODAN] versus anionic aliphatic (cis-parinaric acid or CPA) and aromatic (1-anilinonaphthalene-8-sulfonic acid or ANS) probes. Surface hydrophobicities of whey protein isolate, beta-lactoglobulin, and bovine serum albumin under heated (80 degrees C for 30 min) and unheated conditions and at varying pH values (3.0, 5.0, 7.0, and 9. 0) were measured using ANS, CPA, and PRODAN. ANS and CPA yielded opposing results for the effects of pH and heating on protein hydrophobicity. Hydrophobicity was lower at pH 3.0 than at other pH values for all proteins measured by PRODAN, whereas the values measured by ANS and CPA at pH 3.0 were quite high compared to those at other pH values, suggesting the influence of electrostatic interactions on anionic probe-protein binding. These results suggest that the presence or absence of a permanent charge as well as the aromatic and aliphatic nature of fluorescent probes can affect protein hydrophobicity values measured under various pH conditions.  相似文献   

18.
This article addresses the effect of moisture content (0.8-9.9%) during dry-heating (80 degrees C) on selected physicochemical (solubility, turbidity, residual denaturation enthalpy, aggregation, surface hydrophobicity, and sulfhydryl content) and functional (foaming ability, foam density, and stability) properties of freeze-dried egg white (FDEW). Moisture content during dry-heating proved to be a parameter determining the functionality of the resulting egg white powder. The degree of conformational changes induced in the egg white proteins by dry-heating was strongly dependent on the amount of water present. Preferentially, dry-heating at 80 degrees C should be performed on egg white powder with a moisture content below 6.8%, as the loss of protein solubility above this value is extensive. In addition to insoluble aggregates, soluble, strongly stabilized aggregates were also formed, especially at higher moisture contents. The decrease in denaturation enthalpy, increase in surface hydrophobicity, and exposure of SH groups previously hidden in the protein core and their subsequent oxidation were more pronounced at prolonged dry-heating times and at higher moisture contents. These conformational changes resulted in improved foaming ability and foams with lower density. No effect of dry-heating on the foam stability was observed.  相似文献   

19.
Myoglobin (Mb) and its iron have been proposed to be major prooxidants in cooked meats. To understand the mechanisms and differentiate between the prooxidant and antioxidant potential of oxymyoglobin (OxyMb) and metmyoglobin (MetMb), their prooxidant activity, iron content, solubility, free radical scavenging activity, and iron binding capacity were determined as a function of thermal processing. The ability of native and heat denatured OxyMb and MetMb to promote the oxidation of muscle microsomes was different. MetMb promoted lipid oxidation in both its native and denatured states. Conversely, OxyMb became antioxidative when the protein was heated to temperatures >or=75 degrees C. The increased antioxidant activity of heat denatured OxyMb was likely due to a decrease in its prooxidative activity due to its loss of solubility. These data show that the impact on oxidative reactions of Mb is the result of the balance between its antioxidant and prooxidant activities.  相似文献   

20.
Prolamin extracted from rice flour using 55% n-propanol contained protein impurities. Reverse phase high-performance liquid chromatography (HPLC) on a perfusion column R2/H was used to separate rice prolamin from other proteins in less than 5 min. Prolamin eluted as the major peak. The isolated prolamin migrated as a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis using a 4-12% Bis-Tris gel. Matrix-assisted laser desorption ionization mass spectrometry identified the rice prolamin as a 15 013 Da protein. The surface hydrophobicity (S(o)) of the HPLC-separated protein fractions was measured using the hydrophobic fluorescent probe PRODAN. A comparison was made with the surface hydrophobicity (S(o)) of corn prolamin and bovine serum albumin. Surface hydrophobicity values and solubility in 90% ethanol assisted in rice prolamin identification from other chromatographic peaks. The advantage of perfusion chromatography in purifying rice prolamin from other rice proteins included the reduced separation time, the speed at which the separation was carried, and the ability to regenerate the column in a short period of time and allow for more samples to be purified and separated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号