首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regeneration by seeds for cork oak (Quercus suber) and companion oaks (holm oak Quercus ilex and downy oak Quercus pubescens) is likely to be poor in the fire-prone Maures massif (southern France) but the causes are poorly known. Our objective was to assess the effective recruitment for these three oak species and their temporal pattern of recruitment, in order to determine the main limitation factors and the regeneration window of each species. We studied oak recruits (height <3 m) in naturally regenerated populations according to a gradient of fire recurrence and in five main vegetation types including shrublands and mixed mature woodlands. Fire recurrence was the main explanatory factor of oak recruitment, either directly or through vegetation type and microsite characteristics. The results indicate nil to low recruitment for holm oak and downy oak in shrublands, especially those recurrently burned and dominated by Cistus species. Cork oak recruited better than the other oaks in medium and high shrublands dominated by Erica arborea. In contrast, recruitment was high for holm and downy oak in mixed oak stands and mixed pine-oak stands that have not burned for decades. Microsite conditions such as coverage by litter and shrubs influenced oak recruitment, whereas landscape configuration and stand basal area had no influence. Our results suggest that strategic shrub-clearing, oak planting and protection of mixed oak woodlands as seed sources would help maintaining oak populations in the woodland–shrubland mosaic.  相似文献   

2.
Although oaks (Quercus spp.) have historically dominated much of the forest land in eastern North America, a great deal of fragmentary and sometimes anecdotal evidence suggests that they have been yielding dominance in recent decades to other, typically more shade-tolerant species. Using FIA data, our work formally quantifies the change in oak abundance in the eastern U.S. during the period of 1980-2008. The results indicate that most areas in the eastern U.S. experienced some decline in oak abundance, but the decrease was not universal either geographically or among species. Declines were especially marked in the Central Hardwood Region, which lost oak abundance on 81% its forested area as measured by importance value (IV). Areas with a high oak abundance were more likely to see a reduction in abundance. Among all 25 species analyzed, eight species decreased significantly in IV while two increased. Both the top two most prevalent white oak species (white oak (Quercus alba) and post oak (Quercus stellata)) and red oak species (northern red oak (Quercus rubra) and black oak (Quercus velutina)) had significant decreases in density and IV. Water oak (Quercus nigra) is one of the red oak species that had a near universal increase of its abundance throughout its native range (83% of area). This study provided a comprehensive quantification of the dynamic of oak species in a regional-wide geographic context, which will provoke forest researchers and managers to revisit the oak decline problem by using knowledge from other regions and other species.  相似文献   

3.
  • ? Cork oak mortality is a recurrent problem in southwestern Portugal. Despite the perception of increasingly visible damage in oak woodlands on drought-prone sites, the role of the various environmental factors in their decline is not clear.
  • ? To describe the spatial patterns of cork oak (Quercus suber L.) mortality, a cork oak mortality index (MI) was determined for each landscape feature (agroforestry system, soil type, slope and aspect) using a GIS approach. To achieve this goal, a logistic regression model was formulated analyzing interactions between landscape attributes and allowing a prediction of cork oak mortality.
  • ? Maximum values of MI were found in (i) shrublands and open woodlands with shrub encroachment (MI 6 and 3, respectively), where competition for soil water between tree and understory increases; and (ii) on lower slopes in the rounded hilltops and smooth hillsides or shallow soils where access to groundwater resources during summer drought is difficult.
  • ? The model highlighted the importance of the agroforestry systems on cork oak mortality and may be used to identify sensitive areas where mitigation actions should be employed in a scenario of increasing drought severity in these Mediterranean ecosystems.
  •   相似文献   

    4.
    Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica) form mixed-evergreen forests along the northern California coast. This study measured tree mortality over a gradient of disease in three time periods. Direct measurements of current mortality were taken during 2004, representing a point-in-time estimate of present and ongoing mortality. Past stand conditions, c. 1994, were estimated using a stand reconstruction technique. Future stand conditions, c. 2014, were calculated by assuming that, given a lack of host resistance, live trees showing signs of the disease in 2004 would die. Results indicate that coast live oaks died at a rate of 4.4–5.5% year−1 between 1994 and 2004 in highly impacted sites, compared with a background rate of 0.49% year−1, a ten-fold increase in mortality. From 2004 to 2014, mortality rates in the same sites were 0.8–2.6% year−1. Over the entire period, in highly impacted sites, a 59–70% loss of coast live oak basal area was predicted, and coast live oak decreased from 60% to 40% of total stand basal area, while bay laurel increased from 22% to 37%. Future stand structures will likely have greater proportions of bay laurel relative to coast live oak.  相似文献   

    5.

    Context

    Loss of woodlands and degradation of vegetation and soil have been described for all Mediterranean-type ecosystems worldwide. In the Western Iberian Peninsula, overexploitation of evergreen cork oak land use systems has led to soil erosion, failures in oak recruitment, and loss of forests. Degraded and dry sites are quickly colonised by pioneer heathland rockrose (Cistus spp.) shrubs forming highly persistent patches.

    Aims

    Although traditionally shrublands have been considered as a transient successional state, we present evidence that they can represent persistent alternative states to former cork oak forests.

    Review trends and conclusions

    We first describe how Mediterranean vegetation evolved in the Iberian Peninsula and the role of fire and long-term human management as main disturbances. We then discuss alternative pathways through state-and-transition models indicating the ecological and land use variables that halt cork oak regeneration and recruitment and drive vegetation transitions towards persistent shrublands. Unless concerted management actions and restoration programmes are undertaken, the cork oak land use systems will not be sustainable.  相似文献   

    6.
    Openings, 0.2 ha and less, and 3–12 years old, caused by the oak wilt fungus Ceratocystis fagacearum had abundant oak reproduction, averaging 4700 stems per ha. Species of other woody reproduction made up over 27 000 stems per ha. Seedling sprouts comprised 54%, seedlings 30%, and stumps sprouts the remainder of the reproduction. No infections were found except a few on stump sprouts of diseased oak stumps. Oakhickory reproduction was abundant on all site qualities, but especially so on the poorer sites with over 8000 stems per ha. Sugar maple reproduction was much more abundant on high quality sites, also with over 8000 stems per ha. The reproduction in the oak wilt openings was judged to be similar to that of selection cuttings in disease-free but otherwise similar stands, and should respond in like manner.  相似文献   

    7.
    Recurrent problems with regeneration of oaks (Quercus spp.) have been documented across a wide range of ecosystems. In oak-dominated forests of the central and Appalachian hardwood regions of the United States, a lack of competitive oak regeneration has been tied, in part, to fire suppression in these landscapes, and managers throughout the region are using prescribed fire to address this concern. To examine fire effects on oak regeneration, researchers have generally relied on inventories or population studies of existing seedlings. These studies are valuable but do not permit examination of the role of fire in enhancing the establishment and growth of new oak seedlings stemming from oak mast events. In this study, white (Quercus alba) and chestnut oak (Quercus prinus) acorn mast crops serendipitously occurred in year three (fall 2005) of a landscape-scale prescribed fire experiment. We examined establishment, survival, height and diameter of new seedlings on sites on the Cumberland Plateau in eastern Kentucky. Treatments were fire exclusion, a single prescribed fire (1x-burn; 2003), and repeated prescribed fire (3x-burn; 2003, 2004, and after acorn drop in 2006), all conducted in late spring. Initial densities of newly established chestnut and white oak seedlings were statistically similar across treatments (P = 0.42), despite fires on the 3x-burn site having occurred after acorns were on the ground. Oak seedling density was significantly predicted by oak basal area on all sites (R2 = 0.12–0.46), except for chestnut oak on fire-excluded sites (R2 = 0.04). Litter depth was less on 3x-burn sites compared to 1x-burn and fire-excluded sites, whereas canopy openness was greater on both burn treatments compared to fire-excluded sites. Seedling mortality was generally higher on fire-excluded sites compared to burn sites, especially for white oak. Oak seedling mortality in the first two growing seasons was significantly predicted by initial litter depth and open sky, with greater litter depth and lower percent open sky leading to higher mortality. In the third growing season none of the measured variables predicted chestnut oak seedling survival; for white oak, percent open sky remained a significant predictor of mortality. Initially, seedlings on the fire-excluded sites had similar height but smaller diameter; after three growing seasons there were few differences in seedling height or diameter among treatments. Our findings suggest a potential role for prescribed fire in establishing forest floor and light conditions that may enhance the success of new oak germinants, although different responses among species may suggest the need to target management for individual oak species.  相似文献   

    8.
    Characterizing the flammability of litter fuels is of major importance for assessing wildland fire ignition hazard. Here we compared the flammability of litter within a mosaic of Quercus suber (cork oak) woodlands and shrublands in a Mediterranean fire-prone area (Maures massif, southeastern France) to test whether the characteristics and the flammability of litter vary with the vegetation types. We tested experimentally the ignitability, the sustainability, the combustibility and the consumability of undisturbed (=non-reconstructed) litter samples with a point-source mode of ignition. Although the frequency of ignition was similar between all the vegetation types, we distinguished four groups having litter of specific composition and flammability: low and sparse shrublands dominated by Cistus species, medium shrublands with cork oak, high Erica shrublands with sparse cork oak woodlands, and mixed mature oak woodlands with Q. suber, Q. ilex and Q. pubescens. As these vegetation types corresponded to a specific range of past fire recurrence, we also tested the effect of the number of fires and the time since the last fire on litter flammability. Litters of plots recurrently burned had low ability to propagate flames and low flame sustainability. We discuss how the recent fire history can modify vegetation and litter flammability, and thus the fire ignition hazard.  相似文献   

    9.
    The recent decline of Mediterranean oak woodlands in SW Iberian Peninsula is related to insect pests which affect both cork oak (Quercus suber) and holm oak (Quercus rotundifolia). We identified twenty-six bird species as potential regular predators of twenty major pests by reviewing the diet of breeding, wintering and resident species in this ecosystem. Foraging guilds are strongly associated with predation at distinct stages of the pests’ life-cycle: ground-foragers prey on overwintering pupae and larvae of seed-borers, tree-foragers prey on eggs, larvae and pupae of defoliating and wood-boring pests, and aerial-sweepers prey on airborne imagines. Bird predation can cover the complete life-cycle of pest species because different species may be complementary due to a dissimilar exploitation of foraging niches and periods. Small generalist tree-foraging passerines are important pest predators given their high densities and widespread distribution in Mediterranean oak woodlands, but management practices can have a significant negative effect in their populations.  相似文献   

    10.
    One of the arguments against using prescribed fire to regenerate oak (Quercus spp.) forests is that the improvement in species composition of the hardwood regeneration pool is temporary and multiple burns are necessary to achieve and maintain oak dominance. To explore this concern, I re-inventoried a prescribed fire study conducted in the mid-1990s to determine the longevity of the effects of a single prescribed fire on hardwood regeneration. The initial study was conducted in three oak shelterwood stands in central Virginia, USA. In 1994, each stand was divided into four treatments (spring, summer, and winter burns and a control) and the hardwood regeneration was inventoried before the fires. During the burns, fire intensity was measured and categorized in each regeneration sampling plot. Second-year postfire data showed marked differences in species mortality rates, depending on season-of-burn and fire intensity: oak and hickory (Carya spp.) regeneration dominated areas burned by medium- to high-intensity fire during the spring and summer while yellow-poplar (Liriodendron tulipifera) and red maple (Acer rubrum) seedlings dominated unburned areas and all areas treated with low-intensity fire regardless of season-of-burn. The treatments were re-inventoried in 2006 and 2007 to determine whether these fire effects were still present. The new data show that the species distributions by season-of-burn and fire intensity found in 1996 still existed 11 years after the treatments. The fact that fire effects in oak shelterwood stands can last at least a decade has important management implications for resource professionals interested in sustaining oak forests in the eastern United States.  相似文献   

    11.
  • ? Fine-scale spatial and temporal establishment patterns of direct-seeded oaks on abandoned agricultural land have been little studied despite their potential importance for long-term stand structure.
  • ? Here we periodically monitored seedling emergence and early growth of bur oak (Quercus macrocarpa Michx.) and red oak (Q. rubra L.) on an abandoned pasture, and tested the effects of herbaceous competition, rodents, and soil physicochemical properties.
  • ? Herbaceous competition slightly decreased diameter growth, but rodents had little impact on establishment. Red oak seedlings emerged earlier than bur oak and in a greater proportion (92% vs. 56%). Seedling emergence and early growth of both species showed significant spatial structures that were partly explained by variation in soil physicochemical properties. Bur oak was more responsive to microenvironmental heterogeneity than red oak, yet much of the variation in emergence and growth of both species remained unexplained.
  • ? This suggests that other factors, such as acorn size or genetic variability, may exert equal or greater control than microenvironmental heterogeneity over seedling emergence and early growth of these two oak species on abandoned pastureland.
  •   相似文献   

    12.
    Many plants emit isoprene, a hydrocarbon that has important influences on atmospheric chemistry. Pathogens may affect isoprene fluxes, both through damage to plant tissue and by changing the abundance of isoprene-emitting species. Live oaks (Quercus fusiformis (Small) Sarg. and Q. virginiana Mill) are major emitters of isoprene in the southern United States, and oak populations in Texas are being dramatically reduced by oak wilt, a widespread fungal vascular disease. We investigated the effects of oak wilt on isoprene emissions from live oak leaves (Q. fusiformis) in the field, as a first step in exploring the physiological effects of oak wilt on isoprene production and the implications of these effects for larger-scale isoprene fluxes. Isoprene emission rates per unit dry leaf mass were 44% lower for actively symptomatic leaves than for leaves on healthy trees (P = 0.033). Isoprene fluxes were significantly negatively correlated with rankings of disease activity in the host tree (fluxes in leaves on healthy trees > healthy leaves on survivor trees > healthy leaves on the same branch as symptomatic leaves > symptomatic leaves; isoprene per unit dry mass: Spearman's rho = -0.781, P = 0.001; isoprene per unit leaf area: Spearman's rho = -0.652, P = 0.008). Photosynthesis and stomatal conductance were reduced by 57 and 63%, respectively, in symptomatic relative to healthy leaves (P < 0.05); these reductions were proportionally greater than the reductions in isoprene emissions. Low isoprene emission rates in symptomatic leaves are most simply explained by physiological constraints on isoprene production, such as water stress as a result of xylem blockage, rather than direct effects of the oak wilt fungus on isoprene synthesis. The effects of oak wilt on leaf-level isoprene emission rates are probably less important for regional isoprene fluxes than the reduction in oak leaf area across landscapes.  相似文献   

    13.
    Oak decline and related mortality have periodically plagued upland oak–hickory forests, particularly oak species in the red oak group, across the Ozark Highlands of Missouri, Arkansas and Oklahoma since the late 1970s. Advanced tree age and periodic drought, as well as Armillaria root fungi and oak borer attack are believed to contribute to oak decline and mortality. Declining trees first show foliage wilt and browning, followed by progressive branch dieback in the middle and/or upper crown. Many trees eventually die if severe crown dieback continues. In 2002, more than 4000 living oak trees ≥11 cm dbh in the relatively undisturbed mature oak forests of the Missouri Ozark Forest Ecosystem Project (MOFEP) were randomly selected and inventoried for tree species, dbh, crown class, crown width, crown dieback condition (healthy: <5% crown dieback, slight: >5–33%, moderate: 33–66%, and severe: >66%) and number of emergence holes created by oak borers on the lower 2.4 m of the tree bole. The same trees were remeasured in 2006 to determine their status (live or dead). In 2002, about 10% of the red oak trees showed moderate or severe crown dieback; this was twice the percentage observed for white oak species. Over 70% of trees in the red oak group had evidence of oak borer damage compared to 35% of trees in the white oak group. There was significant positive correlation between crown dieback and the number of borer emergence holes (p < 0.01). Logistic regression showed oak mortality was mainly related to crown width and dieback, and failed to detect any significant link with the number of oak borer emergence holes. Declining red oak group trees had higher mortality (3 or 4 times) than white oaks. The odds ratios of mortality of slightly, moderately, and severely declining trees versus healthy trees were, respectively, 2.0, 6.5, and 29.7 for black oak; 1.8, 3.8, and 8.3 for scarlet oak; and 2.6, 6.5 and 7.1 for white oaks.  相似文献   

    14.
    Pecan (Carya illinoiensis) and white oak (Quercus alba) produce multiple products and wildlife values, but their phenological responses to N fertilization have not been well characterized. We compared tree growth at planting and for six consecutive growing seasons during establishment (2003–2008, Test 1), and determined if phenology of budburst, leaf area index (LAI), quantum yield of photosystem II (Fv/Fm), radial growth, and total chlorophyll concentration (a, b) responded to poultry litter fertilization supplying 0, 50, and 100 kg ha?1 N (2010–2012, Test 2) in a mixed-species orchard on an upland site near Booneville, Arkansas. Species did not differ significantly in height in Test 1. Budburst was 9 days earlier for white oak than pecan in 2010. Budburst for both species could be predicted by accumulating chilling and forcing units throughout the dormant season. Maximum predicted radial growth was comparable for pecan (2.19 mm) and white oak (2.26 mm), and peaked 28 days earlier for white oak (3 June) than pecan (1 July). White oak LAI generally exceeded that of pecan during the growing season. Senescence began about 27 October regardless of species, and was better characterized by decreasing Fv/Fm or total chlorophyll concentration than LAI. Phenology was generally not responsive to N fertilization, perhaps because of adequate soil and foliar N. The study provides additional information on growth responses of these high-valued species to supplemental fertilization on an upland site.  相似文献   

    15.
    The aim of this research was to study the changes in net photosynthesis and stomatal conductance values in 3‐year‐old cork oak and holm oak seedlings growing in natural conditions and inoculated with Apiognomonia quercina, Biscogniauxia mediterranea, Botryosphaeria corticola and Pleurophoma cava. Throughout the 4‐month experimental period, the evolution of visual external symptoms and the values of physiological variables were periodically recorded. All pathogens caused stem lesions around the infection point; however, the lesions caused by B. corticola were longer in both oak species. On cork oak seedlings, all pathogens induced a significant and gradual reduction in net photosynthesis and stomatal conductance values, whereas other physiological disturbances were induced only by B. corticola infections on holm oak seedlings.  相似文献   

    16.
    Mathematical programming is one quantitative technique that can be used for strategic and tactical natural resources planning. It has been extensively used both at private and public forest planning levels. Nevertheless, most applications concentrate on modelling of systems involving timber harvesting. This paper focuses on cork oak (Quercus suber L.) forest management. It summarizes the methodology to follow in order to generate information needed for modelling purposes. It formulates a cork oak forest management problem using a linear programming model. A case study is used to illustrate the procedure used. The results of the research on a modelling approach to cork oak forest management for an area extending over 5272 ha in the Portuguese submediterranean ecological region are presented. Extensions to this study are identified.  相似文献   

    17.
    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) in southeast Sweden. At ages of about 200–300 years, 50% of the trees had hollows. Among trees <100 years old, less than 1% had hollows, while all >400-year-old trees had hollows. Hollows formed at earlier ages in fast-growing trees than in slow-growing trees, which may be because hollows are formed when big branches shed, and branches are thicker on fast-growing trees in comparison to slow-growing trees of the same age. The simulation model was evaluated by predicting the frequency of presence of hollows in relation to tree size in seven oak stands in the study area. The evaluation suggested that future studies should focus on tree mortality at different conditions. Tree ring methods on individual trees are useful in studies on development of hollow trees as they allow analysis of the variability in time for hollow formation among trees.  相似文献   

    18.
    The physiological responses to water deficits of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) were studied under Mediterranean mountain climate. Minimum leaf water potentials were ?3.2 MPa for oak and ?2.1 MPa for pine, with higher predawn values for pubescent oak. Relative sap flow declined in both species when vapour pressure deficit (D) went above ca. 1.2 kPa, but stomatal control was stronger for pine during the 2003 summer drought. P. sylvestris plant hydraulic conductance on a half-total leaf area basis (k L,s?1) was 1.2–2.6 times higher than the values shown by Q. pubescens, and it showed a considerably steeper decrease during summer. Leaf-level gas exchange was positively related to k L,s?1 in both species. Scots pine was more vulnerable to xylem embolism and closed stomata to prevent substantial conductivity losses. The results of this study confirm that pubescent oak is more resistant to extreme drought events.  相似文献   

    19.
    We used morphological analysis to assess species composition of natural regenerations and progeny plantations established from two mixed oak stands in Jamy and Legnica, Poland. Despite equal proportions of pedunculate (Quercus robur) and sessile oak (Quercus petrea) in seed stands, the species composition differed strikingly. In all progeny populations, pedunculate oak dominated, reaching 89.5% and 96.6% in Legnica and Jamy, respectively. However, sessile oak predominated in natural regenerations. Morphological studies indicated a varied number of phenotypically intermediate or mosaic individuals. Among artificial populations, the highest number of putative hybrids was observed in Legnica (average 2.5%) and the lowest in Jamy (average 0.2%). Hybrids in natural regeneration were 1% in Legnica and 8% in Jamy. The disproportionate species composition could result from either unintentional indirect acorn selection during collection or selection in nursery practice. We discuss the role of ecophysiological differences between species in biased species representation in progeny populations.  相似文献   

    20.
    This paper presents results of research aiming at the development of tools that may enhance cork oak (Quercus suber L.) forest management planning. Specifically, it proposes an hierarchical approach that encompasses the spatial classification of a cork oak forest and the temporal scheduling of cork harvests. The use of both geographical information systems and operations research techniques is addressed. Emphasis is on the achievement of cork even flow objectives. Results from an application to a case study in the Charneca Pliocénica of Ribatejo in southern Portugal encompassing a cork oak forest extending over 4.8 thousand ha are discussed. They suggest that the proposed approach is capable of effective spatial classification of cork oak management units. They further suggest that it may be used to select optimal cork even flow scheduling strategies. Results also show that the proposed approach may lead to a substantial increase in net present value when compared to traditional approaches to cork oak forest management planning.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号