首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection. Mycothèque de l’Université catholique de Louvain of S. Cranenbrouck's affiliation is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).  相似文献   

2.
To study the behavior and mutation of Ralstonia solanacearum in Solanum toxicarium, which is resistant to bacterial wilt, S. toxicarium was grown in aseptic culture and inoculated with R. solanacearum. Although 60%–80% of the inoculated plants were wilting after 2 to 3 days, most wilted plants had recovered by 20 days after inoculation. The pathogen was reisolated from over 98% of inoculated plant stems, but the percentage of recovery decreased the closer the isolation sites were toward the upper stem sections. Three colony types, characterized as fluidal white, nonfluidal red, and a mixture of fluidal white and nonfluidal red, were reisolated from the stems. Nonfluidal red colonies were less virulent on tomato plants than fluidal white colonies.  相似文献   

3.
Trichoderma harzianum is an effective biocontrol agent against the devastating plant pathogen Rhizoctonia solani. Despite its wide application in agriculture, the mechanisms of biocontrol are not yet fully understood. Mycoparasitism and antibiosis are suggested, but may not be sole cause of disease reduction. In the present study, we investigated the role of oxidant-antioxidant metabolites in the root apoplast of sunflower challenged by R. solani in the presence/absence of T. harzianum NBRI-1055. Analysis of oxidative stress response revealed a reduction in hydroxyl radical concentration (OH; 3.6 times) at 9 days after pathogen inoculation (dapi), superoxide anion radical concentration (O2•−; 4.1 times) at 8 dapi and hydrogen peroxide concentration (H2O2; 2.7 times) levels at 7 dapi in plants treated with spent maize-cob formulation of T. harzianum NBRI-1055 (MCFT), as compared to pathogen-inoculated plants. The protection afforded by the biocontrol agent was associated with the accumulation of the ROS gene network: the catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and ascorbate peroxidase (APx), maximum activity of CAT (11.0 times) was observed at 8 dapi, SOD (7.0 times) at 7 dapi, GPx (5.4 times) and APx (8.1 times) at 7 dapi in MCFT-treated plants challenged with the pathogen. This was further supported by the inhibition of lipid and protein oxidation in Trichoderma-inoculated plants. MCFT stimulated the accumulation of secondary metabolites of phenolic nature that increased up to five-fold and also exhibited strong antioxidant activity at 8 dapi, eventually leading to the systemic accumulation of phytoalexins. These results suggest that T. harzianum–mediated biocontrol may be related to alleviating R. solani-induced oxidative stress.  相似文献   

4.
Trichoderma (T. asperellum-203, 44 and GH11; T. atroviride-IMI 206040 and T. harzianum-248) parasitism on Meloidogyne javanica life stages was examined in vitro. Conidium attachment and parasitism differed beween the fungi. Egg masses, their derived eggs and second-stage juveniles (J2) were parasitized by Trichoderma asperellum-203, 44, and T. atroviride following conidium attachment. Trichoderma asperellum-GH11 attached to the nematodes but exhibited reduced penetration, whereas growth of T. harzianum-248 attached to egg masses was inhibited. Only a few conidia of the different fungi were attached to eggs and J2s without gelatinous matrix; the eggs were penetrated and parasitized by few hyphae, while J2s were rarely parasitized by the fungi. The gelatinous matrix specifically induced J2 immobilization by T. asperellum-203, 44 and T. atroviride metabolites that immobilized the J2s. A constitutive-GFP-expressing T. asperellum-203 construct was used to visualize fungal penetration of the nematodes. Scanning electron microscopy revealed the formation of coiling and appressorium-like structures upon attachment and parasitism by T. asperellum-203 and T. atroviride. Gelatinous matrix agglutinated T. asperellum-203 and T. atroviride conidia, a process that was Ca2+-dependent. Conidium agglutination was inhibited by carbohydrates, including fucose, as was conidium attachment to the nematodes. All but T. harzianum could grow on the gelatinous matrix, which enhanced conidium germination. A biomimetic system based on gelatinous-matrix-coated nylon fibers demonstrated the role of the matrix in parasitism: T. asperellum-203 and T. atroviride conidia attached specifically to the gelatinous-matrix-coated fibers and parasitic growth patterns, such as coiling, branching and appressoria-like structures, were induced in both fungi, similarly to those observed during nematode parasitism. All Trichoderma isolates exhibited nematode biocontrol activity in pot experiments with tomato plants. Parasitic interactions were demonstrated in planta: females and egg masses dissected from tomato roots grown in T. asperellum-203-treated soil were examined and found to be parasitized by the fungus. This study demonstrates biocontrol activities of Trichoderma isolates and their parasitic capabilities on M. javanica, elucidating the importance of the gelatinous matrix in the fungal parasitism.  相似文献   

5.
Sheath blight, caused by anastomosis group 1-IA of Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris (Frank) Donk), is one of the most destructive rice diseases worldwide. The pathogen is able to infect plants belonging to more than 27 families, including many economically important monocots and dicots such as rice, wheat, alfalfa, bean, peanut, soybean, cucumber, papaya, corn, potato, tomato and sugar beet. It is a soil borne necrotrophic fungus that survives in plant debris as sclerotia, which are small brown-to-black, rocklike reproductive structures. The sclerotia can survive in the soil for several years and infect rice plants at the water-plant interface in the flooded field by producing mycelia. Management of rice sheath blight requires an integrated approach based on the knowledge of each stage of the disease and cytomolecular aspects of rice defence responses against R. solani. This review summarizes current knowledge on molecular aspects of R. solani pathogenicity, genetic structure of the pathogen populations, and the rice-R. solani interaction with emphasis on cellular and molecular defence components such as signal transduction pathways, various plant hormones, host defence genes and production of defence-related proteins involved in basal and induced resistance in rice against sheath blight disease.  相似文献   

6.
A wilt disease of the model legume Lotus japonicus was observed in a greenhouse in Tokyo, Japan in May 2004. Roots of diseased plants were rotted and dark brown with lesions spreading to lower stems and leaves, resulting in rapid plant death. The causal agent was identified as Fusarium solani based on the morphology. Sequence analysis of rDNA supported the identification. Inoculation of roots of healthy plants with conidia reproduced characteristic disease symptoms, and F. solani was reisolated from lesions, satisfying Koch’s postulates. The isolate also caused chlorotic to necrotic lesions on leaves of healthy plants after wound-inoculation. Infection by F. solani of leaves of L. japonicus was confirmed histologically. Mycelia were observed in the intercellular spaces of parenchymatous tissues in the lesion area and the surrounding tissues. This is the first report of fungal disease on L. japonicus satisfying Koch’s postulates. We named it “Fusarium root rot of L. japonicus” as a new disease. The compatibility of L. japonicus and F. solani is expected to form a novel pathosystem for studying interactions between legumes and fungal pathogens. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB258993 and AB258994.  相似文献   

7.
This work was undertaken to determine the effects ofTrichoderma spp. combined with label and sublabel rates of metam sodium on survival ofRhizoctonia solani in soil. Soils were infested with wheat bran preparations ofTrichoderma hamatum Tri-4,T. harzianum Th-58,T. virens Gl-3, andT. viride Ts-1-R3. Soil was also infested with sterile beet seeds that were colonized withR. solani. Beet seeds were later recovered, plated onto water agar plus antibiotics, and the growth ofR. solani was recorded. Preliminary experiments showed thatT. hamatum andT. virens reduced survival and saprophytic activity ofR. solani when the biocontrol fungi were incorporated into soil at 1.5% (w:w) or greater. Based on these data, biocontrol fungi in subsequent experiments were incorporated into soil at 2%. Metam sodium at label rate killed all biocontrol fungi andR. solani. At 1:2 and 1:5 dilutions, metam sodium reduced survival ofR. solani and allTrichoderma spp. When biocontrol fungi plus the label rate of metam sodium and 1:5, 1:10, 1:50 or 1:100 dilutions of the label rate were tested together, there were no interactions between any biocontrol agent and the fumigant with respect to colony diameter, reflecting that allTrichoderma isolates tested reacted similarly to increasing concentrations of metam sodium. At the label rate of metam sodium, allTrichoderma spp. significantly reduced colony diameter, but not growth rate, ofR. solani from beet seed. For the levels of metam sodium tested in combination withTrichoderma, it does not appear feasible to use a reduced rate of metam sodium to controlR. solani. However, the combination ofTrichoderma with metam sodium does reduce growth ofR. solani in comparison with that provided by metam sodium at the label rate. http://www.phytoparasitica.org posting Feb. 11, 2004.  相似文献   

8.
The survival of Xanthomonas axonopodis pv. vignicola, incitant of cowpea bacterial blight and pustule, in residues of infested cowpea leaves was studied in the field in the forest savanna transition zone of South Benin and under variable controlled conditions. The pathogen survived for up to 60 days when placed on the soil surface, and up to 45 days buried at depths of 10 and 20 cm. In the glasshouse, bacteria survived in residue mixed with soil for at least 2 months in dry soil and less than 2 months in moist soil. The pathogen survived at least 30 days in the field after spray-inoculation on the weed species Euphorbia heterophylla, Digitaria horizontalis and Synedrella nodiflora; 20 days on Panicum subalbidum; 10 days on Euphorbia hirta; and 5 days on Talinum triangulare. After leaf-infiltration under glasshouse conditions, the pathogen was detected after 90 days in D. horizontalis; 75 days in T. triangulare, P. subalbidum and S. nodiflora; 60 days in E. hirta, and 30 days in E. heterophylla. Among 12 legume species tested as alternative hosts of X. axonopodis pv. vignicola, only Sphenostylis stenocarpa (African yam bean) showed typical symptoms of cowpea bacterial blight in a glasshouse experiment following artificial inoculation. This is the first time this legume species has been identified as a potential host of X. axonopodis pv.vignicola. Crop residue and weeds are likely sources of primary inoculum when planting two consecutive cowpea crops per year and they probably play a role in dissemination of the pathogen during the cropping season. The alternate host may form a bridge for primary inoculum between cropping seasons.  相似文献   

9.
Since 2003, Torenia fournieri plants grown for experimental purposes were repeatedly infected by powdery mildew in a laboratory in Hungary. Based on morphological characteristics, the pathogen belonged to the mitosporic genus Oidium subgen. Reticuloidium, the anamorph stage of Golovinomyces. The rDNA ITS sequence was identical to that of two other powdery mildew fungi, infecting Arabidopsis and Veronica, respectively, in different parts of the world. According to a previous phylogenetic analysis of ITS and 28S rDNA sequences, those two powdery mildews belong to a recently evolved group of Golovinomyces characterized by multiple host range expansions during their evolution. Both the ITS sequence and the morphological data indicate that the powdery mildew anamorph infecting Torenia also belongs to this group. It is likely that the powdery mildew infections of the experimental T. fournieri plants, native to south-east Asia, were the result of a very recent host range expansion of a polyphagous Golovinomyces because (i) T. fournieri is absent from our region, except as an experimental plant grown in the laboratory, (ii) the powdery mildew fungus infecting this exotic plant belongs to a group of Golovinomyces where host range expansion is a frequent evolutionary scenario, (iii) cross-inoculation tests showed that this pathogen is also able to infect other plant species, notably A. thaliana and tobacco, and (iv) no Golovinomyces species are known to infect T. fournieri anywhere in the world. Although host range expansion has often been proposed as a common evolutionary process in the Erysiphales, and also in other biotrophic plant pathogens, this has not been clearly demonstrated in any case studies so far. To our knowledge, this is the first convincing case of a host range expansion event in the Erysiphales.  相似文献   

10.
Selective media without pentachloronitrobenzene were developed for quantitative assays of Fusarium oxysporum in soils. Media Fo-G1 and Fo-G2 were effective for naturally infested soils, Fo-W1 and Fo-W2 for wild-type isolates in soils containing a nitrate-nonutilizing (nit) mutant, and Fo-N1 and Fo-N2 for nit mutants. Selective media were made using ammonium citrate dibasic, l-sorbose, econazole nitrate, 25% iminoctadine triacetate solution and 50% tolclofos-methyl wettable powder for soil dilutions of 100-fold or more (Fo-G1, FoW1 and Fo-N1) and 10-fold (Fo-G2, Fo-W2 and Fo-N2). Potassium chlorate was added to Fo-N1 and Fo-N2. The efficacy for selectively isolating F. oxysporum was confirmed using six soils naturally infested with one of six formae speciales of F. oxysporum and with soil dilutions containing conidia of wild-type strains or nit mutants from the six formae speciales. On Fo-G1 and Fo-G2, most colonies of F. oxysporum were compact and round with purplish or reddish pigment in the reverse. Cylindrocarpon sp. formed colonies as large as those of F. oxysporum but were distinguishable by their colony morphology. Other contaminants such as F. solani, F. moniliforme, and Trichoderma were suppressed by medium ingredients and colonies of F. oxysporum. On Fo-W1 and Fo-W2, colony morphology of F. oxysporum and contaminants corresponded to that on Fo-G1 and Fo-G2, although F. oxysporum failed to produce the pigment. On Fo-N1 and Fo-N2, nit mutants formed clear colonies from 100- and 10-fold soil dilutions, respectively, and contaminants seldom formed large colonies.  相似文献   

11.
Fusarium oxysporum f. sp. lentis is the most important pathogen of lentil plants, and most areas under lentil cultivation are reported to have a fusarium wilt disease background. The plants are infected in the seedling stage and later stages of their development. Fusarium wilt disease, which has appeared at high incidence rates during recent years, has caused sharp drops in the yield, especially in Moghan, in the northwest of Iran. Forty-five isolates of the pathogen were collected from different regions of the country with two isolates from ICARDA in the summer of 2008 and identified using Nelson’s key. The pathogenicity of the collected isolates was studied on a sensitive line (ILL 4605) under greenhouse conditions and significant differences in pathogenicity were found among them. The most pathogenic isolates from three provinces, East Azerbaijan (EA 30), Ardebil (Ar 3) and Khorasan (Kh 45), were selected and used in screening of 55 developed lines under greenhouse and field conditions. In the greenhouse, test plants were inoculated by immersing root tips in spore suspension and sowing seeds in pre-infested pot soil. Field tests were carried out in a naturally highly infested farm. At all stages, the plant response to the disease was based on the percentage of dead plants. Cluster analyses of the greenhouse and field data led to the selection of three lines (81S15, FLIP2007-42 L and FLIP2009-18 L) that were resistant under greenhouse and field conditions.  相似文献   

12.
Dravya, a commercially developed aqueous seaweed extract, was evaluated for its effect on the expression of symptoms of bacterial blight caused byXanthomonas campestris pv.malvacearum (E.F. Smith) Dye in cotton. Seed soaking with Dravya (1:500) followed by foliar spray thrice at intervals of 10 days (10, 20, 30 days after sowing) resulted in a reduction in blight incidence on plants by 66%, 70% and 74% as determined 40, 60 and 80 days, respectively, after sowing. Induction of systemic resistance was associated with increases in plant height, total number of bolls formed, boll weight, stem girth, chlorophyll content, total phenols and peroxidase activity, which intimates that Dravya could be used as an ecofriendly potential input in the integrated management of bacterial-blight of cotton.  相似文献   

13.
 The root endophytic fungus Heteroconium chaetospira isolate OGR-3 was tested for its ability to induce systemic resistance in Chinese cabbage against bacterial leaf spot caused by Pseudomonas syringae pv. maculicola and Alternaria leaf spot caused by Alternaria brassicae of the foliar diseases. Chinese cabbage seedlings planted in soil infested with an isolate of H. chaetospira were incubated in a growth chamber for 32 days. The first to fourth true leaves of the seedlings were challenge-inoculated with P. syringae pv. maculicola or A. brassicae. Chinese cabbage planted in soil infested with H. chaetospira showed significant decreases in the number of lesions of bacterial leaf spot or Alternaria leaf spot when compared to the control plants not treated with H. chaetospira. The results indicated that colonization of roots by H. chaetospira could induce systemic resistance in Chinese cabbage and reduce the incidence of bacterial leaf spot and Alternaria leaf spot. Received: April 24, 2002 / Accepted: August 9, 2002  相似文献   

14.
 Four isolates of hypovirulent binucleate Rhizoctonia (HBNR) were evaluated for their ability to control Fusarium wilt of spinach (FWS) caused by Fusarium oxysporum f. sp. spinaciae (FOS). Fourteen-day-old spinach seedlings grown in paper pots with HBNR-amended soil (1% w/w ground barley grain inoculum) were transferred to artificially pathogen-infested soil. Treatments with HBNR isolates significantly (P = 0.05) reduced disease and discoloration severity by 56%–100% and 52%–100%, respectively. The numbers of colony-forming units of FOS per gram fresh weight in petioles or roots were reduced significantly (P = 0.01) in the plants treated with HBNR. HBNR isolates were well reisolated from the roots inside paper pots where they were inoculated, whereas inconsistent colonization of HBNR was recorded from the roots outside paper pots where only pathogen was inoculated. Root extracts from HBNR-treated and pathogen-challenged plants significantly inhibited germination and germling length of FOS. The fresh weight of spinach leaves in the HBNR-treated plants increased significantly (P = 0.01), as much as 53%–63%, over the untreated and pathogen-challenged plants. This is the first report of biocontrol of FWS by HBNR. Received: July 18, 2002 / Accepted: October 22, 2002 Acknowledgments We are grateful to Dr. Komada for providing nonpathogenic Fusarium F13. The senior author (A.M.) thanks the Ministry of Education, Culture, Sports, Science, and Technology (Monbukagakusho) Japan, for financial assistance.  相似文献   

15.
Xanthomonas axonopodis pv. phaseoli and its variant fuscans are the causal agents of common bacterial blight of bean. Production of seeds is recommended in arid climates with the use of pathogen-free seeds. However, contamination of seeds still occurs in these seed production areas. To verify if low contamination levels of sown seeds could explain these field contaminations, we used seeds that were naturally contaminated with CFBP4834-R, a rifamycin-resistant X. axonopodis pv. phaseoli fuscous strain, to contaminate field plots at different rates. We also inoculated seeds to verify some parameters of plant colonization and seed transmission. In growth chambers, seedling contamination was always successful from seeds contaminated with CFBP4834-R having population sizes greater than 1 × 103 CFU seed−1 and were not successful below 1 × 102 CFU seed−1. In the greenhouse, the efficiency of contamination of seeds was not significantly different between contaminated plants that had a low or a high CFBP4834-R population size and reached between 40% and 52% whatever the origin of the inoculum (aerial or seed-borne). In field experiments, under low relative humidity, plots with 0.1–0.003% contamination rates or plots sown with seeds that were inoculated with low CFBP4834-R population sizes (1 × 102 and 1 × 104 CFU seed−1) led to an asymptomatic colonization of bean during the entire growing season with low CFBP4834-R population sizes. Seeds were contaminated both in primary and secondary foci. The contamination of seeds without symptom expression during the growing season represents a risk for eventual disease outbreaks.  相似文献   

16.
In summer 2010, stems and corms of Amorphophallus konjac with soft rot were collected in Hubei Province, China. Plants were inoculated with the isolated bacterium and developed the same symptoms, and the reisolated pathogen was identified as Enterobacter sp., based on morphology, pathogenicity and 16S rDNA sequence analysis.  相似文献   

17.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

18.
Since most plants possess resistance mechanisms which can be induced upon pre-treatment with a variety of chemical compounds, the use of β-aminobutyric acid (BABA) as a defence inducer without reported toxic effect on the environment was studied. The aim of this work was to analyse the effectiveness of BABA to induce resistance against Phytophthora infestans and Fusarium solani in potato cultivars differing in their level of resistance to late blight. The behaviour of some components of biochemical mechanisms by which BABA increases resistance against P. infestans, as well as the effect of BABA on the activity of a potential pathogenic factor of F. solani, were studied. Plants with four applications of BABA throughout the crop cycle produced tubers more resistant to P. infestans and F. solani than non-treated plants. In addition, tuber slices from treated plants, inoculated with P. infestans, showed an increase in phenol and phytoalexin content. The aspartyl protease StAP1 accumulation was also higher in tubers obtained from treated plants and inoculated with P. infestans. This result was observed only in the more resistant potato cv. Pampeana, early after infection. In the potato–F. solani interaction, infected tubers coming from BABA-treated plants showed minor fungal proteolytic activity than infected, non-treated ones. For potato cvs Pampeana and Bintje, the BABA treatment improved the yield of harvested tubers. The number of tubers per plant and total weight of harvested tubers was greater for those obtained from treated plants with two early or four applications of BABA. The results show that the BABA treatment increases the resistance of potatoes but the degree of increase depends on the original level of resistance present in each cultivar.  相似文献   

19.
In this work, a bioformulation containing Trichoderma harzianum strain ITEM 3636, an effective biocontrol agent against the peanut pathogen Fusarium solani, was evaluated for control of peanut smut, an emergent disease caused by Thecaphora frezii. The performance of the bioformulation was evaluated during seasons 2014/2015 and 2015/2016 in experimental fields with history of peanut smut. Inoculation with T. harzianum ITEM 3636 significantly reduced the severity of peanut smut during both seasons by 17% and 25%, respectively. This is the first report where a consistent decrease of peanut smut symptoms is achieved in field experiments using a potential biological control agent. The identity of the causal agent of peanut smut was confirmed by sequencing the D1/D2 DNA region. T. harzianum ITEM 3636 caused significant increases in grain weight/plant in both years. Peanut smut and brown root rot are diseases that cause severe economic losses. Both causal agents may be present in the soil and, depending on environmental factors, cause disease. The T. harzianun ITEM 3636 bioformulation has high potential for controlling both diseases. Thus, the application of a single bioformulation could protect the health of peanut plants against two high impact pathogens.  相似文献   

20.
The aim of this study was to assess the biocontrol capacity of rev157, a non-pathogenic mutant of a pathogenic strain of Fusarium oxysporum f. sp. melonis (Fom24). Inoculated in association with the virulent parental strain, the mutant rev157 did not protect the host plant (muskmelon) against infection by Fom24. Applied on flax, a non-host plant, the mutant rev157 was not able to protect it against its specific pathogen F. oxysporum f. sp. lini. On the contrary the parental strain Fom24 did protect flax as well as a soil-borne biocontrol strain (Fo47). Since the mutant rev157 was affected neither in its growth in vitro nor in its capacity to penetrate into the roots, it can be speculated that the mutation has affected traits responsible for interactions within the plant. In F. oxysporum the pair of strains Fom24/rev157 is a good candidate to identify genes involved in the biocontrol capacity of F. oxysporum and to test the hypothesis of a link between capacity to induce the disease and capacity to induce resistance in the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号