首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This study determined isotopic fractionation of nitrate-nitrogen during denitrification in riparian aquifer sediments by sequential-column experiments at two different water flow rates. The purpose was to discuss the relationships of nitrogen isotopic enrichment factor of denitrification, denitrification rate, and infiltrating condition in sediment. Sandy sediment and groundwater were collected from floodplain in the middle reach of the Tama River where nitrogen isotopic enrichment factor for denitrification had been measured in a result of previous field observation. The denitrification rates and the isotopic enrichment factors of nitrate-nitrogen were estimated at 2.1 mgN dry-kg?1 day?1 and ?32.9‰ during the low water flow condition, and at 3.5 mgN dry-kg?1 day?1 and ?34.1‰ during the high water flow condition. The calculated water flow rates of the present column experiments were 300–400 times higher than that of the field observation. Because of the fast flow rate, nitrate was expected to continuously pass though active denitrifying sites in the small pore spaces of sediment, and nitrate supply to denitrifers by infiltration flow transport greatly exceeded the supply by diffusion. The observed denitrification rates was proportional to Peclet number as the ratio of solute nitrate transport to the diffusion, and apparent nitrogen isotopic enrichment factors during denitrification of our column experiments were lower than those obtained from the field observation. This study showed that denitrification rate and apparent nitrogen isotopic enrichment factor of denitrification in sediment depended on Peclet number.  相似文献   

2.
Biological processes can achieve nitrate removal from groundwater. The sulfur/limestone autotrophic denitrification by Thiobacillus denitrificans was evaluated with three laboratory-scale column reactors. The optimum sulfur/limestone ratio was determined to be 2:1 (mass/mass). Different hydraulic retention times were used during the column tests to examine nitrate removal efficiencies. Under an HRTs of 13 h, nitrate concentration of 60 mgNO3 --N L-1 was reduced to less than 5 mg NO3 --N L-1. On a higher HRT of 26 h the nitrate removal efficiency was close to 100% for all nitrate-nitrogen loading rates. Different initial nitrate-nitrogen concentrations (30, 60, and 90 mg NO3 --N L-1) were used in the study. Column tests showed that the nitrate-nitrogen loading rate in this study was between 50 to 100 g NO3 --N m-3 d-1 to obtain a removal efficiency of 80–100%. It was found that approximately 6 mg SO4 2- was produced for 1 mg NO3 --N removed. Nitrite-nitrogen in all cases was less than the maximum allowable concentration of 1 mg NO2 --N L-1. Effluent pH was stable in the range of 7 to 8; the effluent dissolved oxygen was less than 0.15 mg L-1 and the oxidation-reduction potential in all columns was in the range of –110 to –250 mV.  相似文献   

3.
Abstract. In response to the European Community Nitrate Directive (91/676) a catchment scale Geographical Information System (GIS) model of nitrate leaching has been developed to map nitrate vulnerability and predict average weekly fluxes of nitrate from agricultural land units to surface water. This paper presents a pilot study which investigated the spatial variability of soil nitrates in order to: (1) define an appropriate pixel size for modelling N leaching; (2) quantify the within-unit variability of soil nitrate concentrations for pasture and arable fields; and (3) assist in the design of an efficient sampling strategy for estimating mean nitrate concentrations. Soil samples, taken from two 800 m transects in early September 1994, were analysed for water soluble nitrate. The arable soils had a mean nitrate-nitrogen concentration of 0.693 μg/g (S.E. 0.054 μg/g) and the pasture soils had a higher mean nitrate-nitrogen concentration of 0.86 μg/g (S.E. 0.085 μg/g). Spatial variability was investigated using variograms. The pasture data had a weak spatial relationship, whereas the arable data exhibited a strong spatial relationship which fitted a spherical variogram model (r2 0.87), with a range of 40 m. A pixel size of 40 m is suggested for nitrate modelling within the GIS based on the arable variogram and an improved sampling strategy for model validation is suggested, involving bulking sub-samples over a 40 m grid for estimating mean nitrate concentrations in combined land use and soil units.  相似文献   

4.
通过再生水灌溉田间试验,探讨了不同潜水埋深条件下(2 m、3 m、4 m),再生水灌溉对土壤中NO3--N、NH4 -N及地下水中NO3--N的影响。试验结果表明:再生水灌溉后,土壤中NO3--N含量均显著增加;不同潜水埋深再生水灌溉对土壤中NH4 -N含量影响不明显。灌水水平为900 m3·hm-2,不同潜水埋深(2 m、3 m、4 m)地下水NO3--N浓度分别增加34.67%、24.94%、20.88%,灌水水平为1 200 m3·hm-2不同潜水埋深地下水NO3--N浓度分别增加58.42%、38.98%、27.21%,潜水埋深越深地下水硝态氮浓度增加越小。表明潜水埋深越浅因淋溶和硝化作用产生的NO3--N造成浅层地下水污染的风险越大。  相似文献   

5.
Abstract

In this report, we propose a new method of evaluating the effect of nitrogen deposition on forest ecosystems, namely the spatial variation in nitrogen deposition enables to detect readily the effect of anthropogenic N deposition on biogeochemical processes in forest ecosystems. We analyzed the nitrogen deposition (throughfall fluxes) and stream water chemistry over five adjacent small catchments in which soil types (Hapludants) and vegetation composition (50 to 60 years old larch plantation) were fairly identical. Thirty-two throughfall collectors were set up in the five catchments (six to eight collectors in each catchment) and throughfall samples were collected after a rain event, while stream water samples were collected once or twice a month. The monitoring was carried out during a period of 6 months (2002 June to 2002 November). Throughfall dissolved inorganic nitrogen (DIN) fluxes were highly variable: the highest N input, 1.32 kg N ha?1 6 months?1, was sixty-six times higher than the lowest input, 0.02 kg N ha?1 6 months?1. The mean DIN inputs and the mean nitrate concentrations in streams showed a three-time variation across the five catchments. In addition, the DIN inputs showed a high correlation with the stream nitrate concentrations (r = 0.88).  相似文献   

6.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

7.
This paper presents an efficient and effective modeling approach to estimation of nitrogen retention in streams and rivers. The approach involves an extension of a newly developed longitudinal solute transport model, variable residence time (VART), by incorporating a first-order nitrogen reaction term. Parameters involved in the VART model are estimated using monthly mean flow and water quality data obtained through both field measurements and watershed modeling using the Hydrologic Simulation Program Fortran model. It is found that there is a strong correlation between nitrate-nitrogen removal rate and water temperature. In addition, low nitrate-nitrogen concentrations commonly occur when total organic carbon (TOC) and dissolved oxygen (DO) are also low, and high nitrogen concentrations correspond to high DO and TOC, indicating that denitrification is the primary biogeochemical process controlling nitrogen removal in natural rivers. The new approach is demonstrated through the computation of nitrogen removal in the Amite River, LA, USA. Functional relationships between the nitrate-nitrogen removal rate and water temperature are established for the Amite River. Monthly mean nitrate-nitrogen concentrations along the river are computed using the extended VART model, and computed nitrogen concentrations fit observed ones very well. The estimated annual nitrate-nitrogen removal in the Amite River is 27.4 tons or 15.5% of total nitrate-nitrogen transported annually through the Amite River.  相似文献   

8.
不同农业种植方式对土壤中硝态氮淋失的影响研究   总被引:4,自引:1,他引:3  
徐力刚  王晓龙  崔锐  张奇 《土壤》2012,44(2):225-231
农田氮素损失是造成农业非点源污染的主要原因之一,其中由于大量施用氮肥引起的土壤氮素淋溶损失又是农田氮素损失的重要途径。针对农业不同种植条件下氮素损失控制难题,本文通过田间试验研究集约化种植和常规种植两种土地利用方式下,土壤硝态氮迁移特征及动态变化规律,来评估不同农业种植方式对地下水污染的潜在风险。结果表明:集约化种植区施肥量和灌溉量较大,硝态氮的淋失浓度明显大于常规种植园,土壤硝态氮浓度随时间和空间变化也最为显著。集约化种植区的地下水污染程度远远大于常规种植区,集约化种植葡萄园地下水中的硝态氮含量平均值11.2mg/L,是常规种植区平均值1.35 mg/L的8倍,集约化种植区过量施肥增大了土壤硝态氮的淋失风险,对生态环境构成了潜在的污染威胁。研究结果可为农业集约化种植区防治农业非点源污染和优化田间管理措施提供科学依据。  相似文献   

9.
土壤氮气排放研究进展   总被引:3,自引:0,他引:3  
自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。  相似文献   

10.
Based on the fact that streamwater quality reflects landscape conditions, the objectives of this study were: to investigate nitrogen (N), carbon (C), and major ion concentrations in six streams crossing minimally disturbed Atlantic Forest areas, with similar geomorphological characteristics; to determine N and C fluxes in one of these pristine streams (Indaiá); and assess the impact of human activity on the biogeochemistry of two other streams in the same region, crossing urbanized areas. The distribution pattern of carbon and inorganic nitrogen dissolved forms, as well as the major ion and biogenic gas concentrations in the streamwater, was similar in pristine streams, indicating that the C and N dynamics were determined by influence of some factors, such as climate, atmospheric deposition, geology, soil type, and land covering, which were analogous in the forested watersheds. The urban streams were significantly different from the pristine streams, showing low dissolved oxygen concentrations, high respiration rates, and high concentrations of carbon dioxide, dissolved inorganic nitrogen, dissolved inorganic carbon, and major ion. These differences were attributed to anthropogenic impact on water quality, especially domestic sewage discharge. Additionally, in the Indaiá stream, it was possible to observe the importance of rainfall over temporal dynamics of dissolved carbon forms, and also, the obtained specific flux of dissolved inorganic nitrogen was relatively elevated (approximately 11 kg ha?1 year?1). These results reveal the influence of human activity over the biogeochemistry of coastal streams and also indicate the importance N export of Atlantic Forest to the ocean.  相似文献   

11.
The performance of the magnetic anion exchange resin, MIEX?, in the pretreatment of reclaimed water for managed aquifer recharge (MAR) was investigated. MIEX? can effectively remove aromatic organic substances with molecular weights above 10?kDa and between 1 and 5?kDa, which are always present recalcitrant during soil infiltration. The removal of organic substances is accompanied by the elimination of other undesirable components in MAR, such as nitrogen and phosphorus. The optimal process parameters are at resin doses of 5?C10?mL?L?1 and contact time of 10?C15?min, as determined via jar tests. The efficiency of the MAR pilot system was consistent throughout the long running time, during which the MIEX? treatment significantly contributed (30 to 60?%) to the removal of both organic and inorganic materials (i.e., dissolved organic carbon, ultraviolet absorbance at 254?nm, color, nitrate, ammonia, phosphorus, and sulfate). The quality of the MAR final effluent is lower than the groundwater standard for drinking sources (type III in GB/T 14848-93). Based on this study, MIEX? treatment is a suitable and efficient pretreatment method for the removal of extra dissolved organic matters and nitrates in reclaimed water for MAR.  相似文献   

12.
本文通过对华北平原典型再生水灌溉区(河北省石家庄洨河流域)的包气带土壤、地表水和地下水进行采样分析,对硝酸盐在多种环境介质中的来源与环境行为进行了研究,识别了再生水灌溉区地下水硝酸盐污染来源,明确了不同灌溉条件对包气带土壤中硝酸盐迁移的影响。在受到城市再生水严重影响的洨河流域,地下水中的硝酸盐浓度分布范围在4.0 mg·L?1到156.6 mg·L?1之间,已经形成了距离河道2 km、深度70 m的硝酸盐高值区域,经过计算硝酸盐的垂向扩散速率为每年1~2 m。硝酸盐与氯离子的相关性表明,城市再生水是再生水灌溉区包气带、地表水和地下水中硝酸盐的主要来源。利用Geoprobe获取利用不同灌溉水农田土壤剖面样品,研究再生水对厚包气带NO3?-N垂向分布影响,再生水灌溉区和地下水灌溉区中包气带土壤的NO3?-N的平均含量为137.0 mg·kg-1和107.7 mg·kg-1,最高含量523.2 mg·L?1和725.9 mg·L?1,分别出现1.20 m和0.85 m深度,分布规律有着明显的差别。包气带土壤硝酸盐与氯离子的相关性分析表明,再生水灌溉区土壤硝酸盐主要来源于城市再生水,而地下水灌溉区可能来源于农田氮肥。地下水年龄和硝酸盐之间关系表明,地下水中1975年以前补给的硝酸盐浓度低于1975年以后补给,地下水硝酸盐污染与包气带氮入渗的历史过程密切相关。在华北平原特殊的地质水文背景下,农田面源污染对地下水的影响有限,但再生水灌溉区地下水硝酸盐污染的风险较高。  相似文献   

13.
(pp. 9–16)

Nitrate is a major form of uptake and storage of nitrogen for upland plants. However, nitrate is harmful to human health · ingestion of a large quantity can lead to cancer or methemoglobinemia. The effectiveness of drip fertigation for reducing nitrate in spinach was investigated in this study. Fertilizer application can be controlled effectively by drip fertigation. Field experiments were conducted in September 2002 and June 2003 at the National Agricultural Research Center for Hokkaido Region. Two spinach cultivars were grown in each cultivation in a plastic greenhouse, and the plants were treated with 4, 8 or 12 g N m?2 of fertilizer applied by drip fertigation, and with 8, 12 or 16 g N m?2 of fertilizer applied as basal application. The nitrogen was applied at the rate of 0.15 g m?2 per day for the first 15 days, and 0.25 g m?2 for the following 23 days in 8 g N m?2 treatment of drip fertigation.

The rate of growth and nitrogen absorption of spinach in the early growth stages was very slow, but they increased quickly from around day 23 after sowing. The amount of nitrogen absorbed by spinach was close to the amount applied in 8 g N m?2 treatment. This treatment resulted in spinach with a low nitrate concentration without reduction in yield. Although the same results were obtained by treatment with 8 g N m?2 of fertilizer by basal application, there was a tendency for nitrate concentration to fall further with drip fertigation. The rate of nitrate-nitrogen to total-nitrogen rose sharply when the total-nitrogen concentration was higher than 42 g kg?1 DW in leaf blade and 18 g kg?1 DW in leaf petiole. The total-nitrogen concentration was lowered a little and for that reason the rate of nitrate-nitrogen to total-nitrogen was lower in spinach treated with 8 g N m?2 of drip fertigation than in spinach treated with 8 g N m?2 of basal application. Thus, drip fertigation was considered to reduce nitrate more stably.  相似文献   

14.
The experiments were focused on the question whether the plasmalemma ATPase activity (proton pump) has an influence on the efflux of major inorganic ion species. Efflux from roots of intact Trifolium pratense, Hordeum vulgare, Glycine max, and Zea mays was examined into a solution containing 100 μM CaCl2 and 500 μM NH4+ as sulfate in the control solution and 100 μM CaCl2 and 500 μM NH4+ as vanadate in the test solution. Vanadate being an inhibitor of the plasmalemma ATPase depressed significantly the H+ secretion of roots into the outer solution but had no major impact on the efflux of cation species. In the presence of vanadate significantly higher amounts of sulfate, phosphate, and nitrate were released into the outer solution by roots of soya and maize as compared with the control treatment (no vanadate). In the absence of vanadate, virtually no nitrate was released by all species examined whereas in the vanadate treatment significant amounts of NO3? were released. Vanadate inhibited the uptake of Cl? in barley and maize and increased the uptake of Ca2+ in soya. It is concluded that the plasmalemma ATPase activity plays a major rule in the “ionic stat” of cells in providing protons to the apoplast for the reabsorption of sulfate, phosphate, and particularly nitrate which have leaked out of the cytosol.  相似文献   

15.
We studied the influence of spent mushroom substrate (SMS) land application on water resources. Four study sites, including mushroom farms with low or high density land applications of SMS, and two controls, an alfalfa field and a woodland, were instrumented with soilwater lysimeters and groundwater monitoring wells. Water samples were collected during the dormant season (winter) and growing season (spring). Samples were analyzed for a number of water quality parameters, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), ammonia, chloride, nitrate, nitrite, phosphate, sulfate, aluminum, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, silicon, sodium, and zinc. Additional analyses were performed for pesticides commonly used in the cultivation of alfalfa or corn, or for insect control, including methomyl, dimethoate, hexazinone, atrazine, diuron and permethrin.

All agricultural sites had elevated salt concentrations relative to the woodland site. The mushroom farm where SMS was applied in high concentrations had salt concentrations in the soilwater that were 10 to 100 times higher than the other agricultural sites. Of particular note were ammonium, nitrate, chloride, sulfate, calcium, magnesium, sodium, and potassium. Each of these were also elevated in the groundwater. The high salt concentrations were reflected in measurements of electrical conductivity. DOC and DON concentrations were also elevated in the soilwater and groundwater. Groundwater from each agricultural site, including the agricultural control, exceeded the primary drinking water standard for nitrate.

No pesticide residues were detected in well or lysimeter water collected at either site amended with SMS. Water samples collected from the woodland and at the alfalfa field not receiving SMS contained part per trillion quantities of a few pesticides.  相似文献   

16.
Rai  U. N.  Gupta  Meetu  Tripathi  R. D.  Chandra  P. 《Water, air, and soil pollution》1998,106(1-2):171-177
The study was conducted to evaluate the suitability of nitrate reductase activity and the level of some metabolites as an in vivo test system for cadmium toxicity in submerged macrophyte Hydrilla verticillata. Cadmium (Cd) concentrations ranging from 0.01-80 μM affected nitrate reductase activity in a differential way. It had stimulatory effect up to 1.0 μM Cd, while higher concentrations inhibited the enzyme activity significantly. The protein synthesis inhibitor cycloheximide inhibited Cd-stimulated nitrate reductase activity during in vivo and in vitro assays. However, the effect of Cd on NR activity under in vitro assay was more pronounced. Although low Cd exposures had no effect, higher metal exposures augmented nitrate uptake. This Cd-induced NO3 - uptake did not result in recovery of inhibited enzyme activity in vivo. It appears that nitrate reductase activity is more sensitive to Cd toxicity than the eventual products of nitrate assimilation such as total organic nitrogen and soluble proteins. There was a differential response of chlorophyll levels to Cd; lower concentrations enhanced the pigment level while higher ones reduced it. Cadmium exposure always enhanced the levels of carotenoids. Results showed that nitrate reductase activity could serve as an useful bioassay for Cd contamination using H. verticillata.  相似文献   

17.
A study on the factors influencing nitrogen removal in waste water stabilization ponds was undertaken in an eight-pond series in Werribee, Australia. Nitrogen species including Kjeldahl nitrogen, total ammonia nitrogen, nitrite and nitrate were monitored monthly from March 1993 to January 1994. At the same time, pH, temperature, chlorophylla content and dissolved oxygen were also recorded. Highest nitrogen removal occurred during the period with highest levels of chlorophylla content and dissolved oxygen, but the rate of nitrogen removal was not related to temperature and pH. Enhanced photosynthetic activities resulting from an increased phytoplankton abundance due to prolonged detention time caused an increase in dissolved oxygen, and created an optimum condition for nitrification to occur. In this process, ammonia was oxidized to nitrite and nitrate which were subsequently reduced to elemental nitrogen. Apart from nitrification-denitrification which was the major nitrogen removal pathway in the study system, algal uptake of ammonium, nitrate and nitrite as nutrient sources also contributed to the nitrogen removal. The role of phytoplankton and zooplankton in the treatment process in waste stabilization ponds was discussed.  相似文献   

18.
Zinc (Zn) is a plant nutrient; however, at elevated levels it rapidly becomes phytotoxic. In order to obtain insight into the physiological background of its toxicity, the impact of elevated Zn2+ concentrations (1 to 10 μM) in the root environment on physiological functioning of Chinese cabbage was studied. Exposure of Chinese cabbage (Brassica pekinensis) to elevated Zn2+ concentrations (≥ 5 μM) in the root environment resulted in leaf chlorosis and decreased biomass production. The Zn concentrations of the root and shoot increased with the Zn2+ concentration up to 68‐fold and 14‐fold, respectively, at 10 μM compared to the control. The concentrations of the other mineral nutrients of the shoot were hardly affected by elevated Zn2+ exposure, although in the root both the Cu and Fe concentrations were increased at ≥ 5 µM, whereas the Mn concentration was decreased and the Ca concentration strongly decreased at 10 µM Zn2+. The uptake and metabolism of sulfur and nitrogen were differentially affected at ≥ 5 µM Zn2+. Zn2+ exposure resulted in an increase of sulfate uptake and the activity of the sulfate transporters in the root, and in enhanced total sulfur concentration of the shoot, which could be ascribed partially to an accumulation of sulfate. Moreover, Zn2+ exposure resulted in an up to 6.5‐fold increase in water‐soluble non‐protein thiol (and cysteine) concentration of the root. However, nitrate uptake by the root and the nitrate and total nitrogen concentrations of the shoot were decreased upon Zn2+ exposure, demonstrating the absence of a mutual regulation of the uptake and metabolism of sulfur and nitrogen at toxic Zn levels. Evidently, elevated Zn2+ concentrations in the root environment did not only disturb the uptake, distribution and assimilation of sulfate, it also affected the uptake and metabolism of nitrate in Chinese cabbage.  相似文献   

19.
A monitoring study was carried out in an alluvial fan area in Tsukui, Central Japan during the study period of 1999–2003, in order to explain selenium (Se) behaviors in ecosystem combined with air, soil and groundwater. Monthly Se concentrations in open bulk precipitation (rainfall+aerosol, gaseous deposition and etc.), soil solution (collected by porous ceramic-cup) and groundwater ranged from 0.1 to 1.4 μg L?1 (volume-weighted average: 0.34 μg L?1), 0.21 to 1.0 μg L?1 (0.48 μg L?1) and 1.6 to 2.4 μg L?1 (2.2 μg L?1), respectively. Se concentration in open bulk precipitation was negatively correlated with the rainfall amount. Se concentration in soil solution significantly increased with DOC concentration in soil solution. Besides, despite atmospheric Se input and rainfall to the grassland study area, Se concentration in soil solution and groundwater received no significant effect from the rainfall amount, pH, Se, DOC, SO4 2?, NO3 ? and EC in rainfall. Even though Se concentrations in groundwater were significantly correlated with soil solution volume, Se, DOC and NO3 ? and groundwater level, the result of multiple regression analyses (MRA) indicated that the groundwater Se was negatively influenced by groundwater level, which depended on groundwater recharge. Se was transported into the groundwater through the groundwater recharge that largely increased in this alluvial fan study area after heavy rain.  相似文献   

20.
Nitrogen is one of the two most important elements in the metabolism of aquatic ecosystems. At low concentrations it can limit primary productivity and when present at very high concentrations it can participate in the eutrophication process of these environments. The mechanism of nitrogen transport in sediments is almost unknown, nevertheless it is of vital importance for establishing mass balances in aquatic systems. In the study presented here, we assessed the nitrogen flux in sediments of the central part of tropical Lake Maracaibo, Venezuela, in particular with regard to dissolved oxygen concentrations. Experiments were performed under laboratoryconditions in a batch system, and at varying dissolved oxygenregimes (aerobic and anaerobic). Every two days, during 3 months,overlying water samples were taken to analyze nitrite, nitrate,ammonium and Kjeldahl total nitrogen. Average release rates oftotal nitrogen were 0.86 in aerobic, and 1.06 mmol N m-2 d-1 in anaerobic systems corresponding to 41.7% of total N input to the lake. The behavior of nitrogen was strongly influenced by nitrate concentrations under aerobic conditions, and by organic nitrogen under anaerobic conditions during the course of the experiment. A major trend for the release of organic nitrogen during anaerobic conditions, and of nitrate, during aerobic conditions, was observed. Also fluxes of NO3 -, NH4 +, organic N and Total N across the sediment-water interface were measured. In anaerobic conditions, which are predominant in the hypolimnetic cone of LakeMaracaibo, denitrification was estimated to be 0.02 mmol N m-2 d-1, which corresponds to 1.89% of the total N released from sediments.This is to our knowledge the first study of nitrogen fluxes insediments from Lake Maracaibo. The laboratory data presented herereflects conditions in the lake when major nutrients accumulation occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号