首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Persistence as affected by rate of application and moisture regimes and leaching of beta-cyfluthrin was studied in alluvial soil under laboratory conditions. The effects of rate of application and moisture regimes on persistence were studied by incubating fortified soil at 0.1, 1.0 and 10.0 mg kg(-1) under air-dry, field capacity and submerged moisture regimes. The initial deposits of 0.09, 1.11 and 10.1 mg kg(-1) dissipated with time and 78.4-100% loss was recorded at 90 days. The half-life values varied from 7.8 to 41.8 days. The rate of dissipation decreased as the rate of application increased under field capacity and submerged conditions. However, under air-dry conditions, the effect was less pronounced, and half-life values showed a reverse trend. Persistence of beta-cyfluthrin under different moisture regimes followed the trend: air-dry > field capacity > submerged. The trend could be attributed to the effect of moisture on number and type of microbes. Leaching was studied in a packed soil column under saturated flow conditions. beta-Cyfluthrin was found to be highly immobile in alluvial soil. No residues were detected in any leachate fraction under the experimental conditions. In column soil, residues were detected at 0-10 cm depth and the major amount (>99%) was recovered from 0-5 cm depth. Although beta-cyfluthrin showed moderate persistence in alluvial soil, the possibility of its leaching to ground water is negligible as a result of its immobility.  相似文献   

2.
3.
Seedlings of rice, early watergrass (thiobencarb-resistant and thiobencarb-susceptible biotypes, R and S, respectively), and late watergrass (thiobencarb-resistant and thiobencarb-susceptible biotypes, R and S, respectively) were hydroponically exposed to clomazone at concentrations ranging from 0.08 to 7.9 microM. Whole-plant growth (mg fresh wt) and beta-carotene concentrations (microg g(-1) fresh wt) were measured after a 7-day exposure period. For growth, the no observed effect concentrations (NOECs) were 7.9, 0.21, 0.21, 0.46 and 0.46 microM clomazone for rice, early watergrass (R), early watergrass (S), late watergrass (R) and late watergrass (S), respectively, while the concentrations causing 25% inhibition in response (IC25) were 5.6 (+/-1.6), 0.46 (+/-0.06), 0.42 (+/-0.08), 0.92 (+/-0.45) and 0.79 (+/-0.08) microM clomazone, respectively. Clomazone inhibits beta-carotene synthesis via inhibition of the non-mevalonate isoprenoid synthetic pathway. For assessment of clomazone effects, beta-carotene levels proved to be a more sensitive toxicological endpoint than growth. For rice, early watergrass (R), early watergrass (S), late watergrass (R) and late watergrass (S), the beta-carotene NOECs were 0.21, <0.08, <0.08, 0.08 and 0.46 microM clomazone respectively, while IC25 values were 0.42 (+/-0.26), 0.08 (+/-0.02), 0.08 (+/-0.02), 0.33 (+/-0.09) and 0.54 (+/-0.15) microM, respectively. No evidence was found that the thiobencarb-resistance mechanisms present in early and late watergrasses impart resistance to clomazone. Due to similar sensitivity between rice and late watergrass, use of clomazone in rice culture will require the use of a safening technique.  相似文献   

4.
The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.  相似文献   

5.
A moderately persistent herbicide, simazine, has been used globally and detected as a contaminant in soil and water. The authors have isolated a simazine-degrading bacterium from a simazine-degrading bacterial consortium that was enriched using charcoal as a microhabitat. The isolate, strain CDB21, was gram-negative, rod-shaped (0.5-0.6 microm x 1.0-1.2 microm) and motile by means of a single polar flagellum. Based on 16S rRNA sequence analysis, strain CDB21 was identified as a novel beta-proteobacterium exhibiting 100% sequence identity with the uncultured bacterium HOClCi25 (GenBank accession number AY328574). PCR using primers that were specific for the genes of the atrazine-degrading enzymes (atzABCDEF) of Pseudomonas sp. strain ADP showed that strain CDB21 also possessed the entire set of genes of these enzymes. Nucleotide sequences of the atzCDEF genes of strain CDB21 were 100% identical to those of Pseudomonas sp. strain ADP. Sequence identity of the atzA genes between these bacteria was 99.7%. The 398-nucleotide upstream fragment of the atzB gene of strain CDB21 was 100% identical to ORF30 of Pseudomonas sp. strain ADP, and the 1526-nucleotide downstream fragment showed 99.8% sequence similarity to the atzB gene of the pseudomonad.  相似文献   

6.
Late blight caused by Phytophthora infestans is one of the most devastating diseases of the potato crop. Resistance breeding and current fungicides are unable to control the rapidly evolving P. infestans and new control strategies are urgently needed. This study examined mechanisms of dl ‐β‐aminobutyric acid (BABA)‐induced resistance (IR) in the potato–P. infestans system. Leaves from two cultivars that differ in their degree of resistance, Bintje and Ovatio, were analysed after foliar treatment with BABA. Rapid activation of various defence responses and a significant reduction in P. infestans growth were observed in leaves treated with BABA. In the more resistant cultivar, Ovatio, the activation was both faster and stronger than in Bintje. Microscopic analysis of leaves treated with BABA revealed induction of small hypersensitive response (HR)‐like lesions surrounded by callose, as well as production of hydrogen peroxide (H2O2). Molecular and chemical analyses revealed soluble phenols such as arbutin and chlorogenic acid and activation of PR‐1. These results show a direct activation of defence responses in potato, rather than priming as reported for other plant species. They also show that the efficiency of BABA‐IR differs between cultivars, which highlights the importance of taking all aspects into consideration when establishing new methods for disease management.  相似文献   

7.
BACKGROUND: Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second‐stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. RESULTS: The 96 h EC50 values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL?1, respectively, in an immersion bioassay. Benzaldehyde (9 µg mL?1) was the most toxic compound, followed by γ‐eudesmol (50 µg mL?1) and estragole (180 µg mL?1), based on 96 h EC50 values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans‐anethole/geraniol, trans‐anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. CONCLUSION: This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The essential oil of Hemizygia petiolata Ashby (Lamiaceae) contains high levels (>70%) of the sesquiterpene (E)-beta-farnesene, the alarm pheromone for many economically important aphid species. In order to test the suitability of H. petiolata oil as a source of (E)-beta-farnesene for use in new integrated aphid control strategies, behavioural responses of pest aphid species were studied in laboratory and field experiments. In alarm pheromone assays the peach-potato aphid, Myzus persicae Sulzer, and the pea aphid, Acyrthosiphon pisum (Harr), showed a lower level of response to the oil than expected given the high levels of (E)-beta-farnesene. It was shown that minor components in the oil, (+)-bicyclogermacrene and (-)-germacrene D, caused inhibition of the alarm response for M. persicae and A. pisum respectively. Nevertheless, in olfactometer studies the oil was directly repellent to A. pisum and the grain aphid, Sitobion avenae F. Sitobion avenae was not only repelled by (E)-beta-farnesene but also by (-)-germacrene D. Furthermore, although it was not directly repellent to M. persicae, the oil interfered with its attraction to host plant stimuli. In field plot experiments, numbers of A. pisum were significantly reduced in plots treated with a slow release formulation of the oil, when compared with control plots.  相似文献   

9.
10.
Variously substituted benzyl derivatives of chloronicotinyl insecticides were synthesized with a wide range of substituents including halogens, NO2, CN, CF3 and small alkyl and alkoxy groups at the ortho, meta and para positions, as well as multiple‐substituted benzyl analogues. Their binding activity to the α‐bungarotoxin binding site in housefly (Musca domestica) head membrane preparations was measured. Among the compounds tested, the activity of the meta‐CN derivative was the highest, being 20–100 times higher than those of imidacloprid, acetamiprid and nitenpyram. The synergized insecticidal activity against houseflies was also measured for selected compounds with the metabolic inhibitor, NIA16388 (propargyl propyl phenylphosphonate). For the nitromethylene analogues, including both benzyl and pyridylmethyl analogues, higher binding activity usually resulted in higher insecticidal activity. © 2000 Society of Chemical Industry  相似文献   

11.
Fifteen 5-substituted 1-(6-chloro-3-pyridylmethyl)-2-nitromethylene-1,3- diazacyclohexanes and three other related compounds having a five- or seven-membered ring were synthesized and their biological activities were measured in vivo and in vitro. The insecticidal (in vivo) activity was evaluated against houseflies Musca domestica L under synergistic conditions with propargyl propyl phenyl phosphonate and piperonyl butoxide. The binding activity of each compound to nicotinic acetylcholine receptor in vitro was measured using [125I] alpha-bungarotoxin. The insecticidal activities of the unsubstituted diazacyclohexane analogues were slightly higher than those of the imidazolidine analogues, but the enlargement of ring size to diazacycloheptane lowered the activity. Substitution of 1,3-diazacyclohexane or imidazolidine rings was not generally favourable for the activity, but the unsubstituted 1,3-diazacyclohexane analogue showed the highest binding activity. Ring substitutions and ring enlargement decreased the activity 100-30,000-fold.  相似文献   

12.
13.
The compatible interaction of pepper stems with Phytophthora capsici showed more rapid and severe disease development than did the incompatible interaction, although pathogen penetration styles of host cells in compatible and incompatible interactions were similar to each other. Treatment with -β-amino- n -butyric acid (BABA) protected the pepper plants against P. capsici infection. Reduced hyphal growth and sporangial formation were found after P. capsici infection in BABA-induced resistant and incompatible reactions. One of the most noticeable ultrastructural features of the BABA-induced resistant reaction was the formation of electron-dense wall appositions. The thick and dense wall appositions that encased the haustoria restricted haustorial development, thus leading to limitation of further pathogen penetration into inner plant tissues. A main host response in the incompatible interaction was the occlusion of cortical cells with an amorphous material. Plugging of the intercellular spaces in the cortical cells with electron opaque material was frequently observed in the incompatible interaction, but not in the compatible interaction. Another common feature of the BABA-induced resistant and incompatible reactions was degeneration of mitochondrial structure within penetrating hyphal cytoplasm. The mitochondrial structure in the BABA-induced resistant or incompatible reactions had no distinct double membrane layer and well-shaped cristae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号