首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Chu FH  Chao CH  Peng YC  Lin SS  Chen CC  Yeh SD 《Phytopathology》2001,91(9):856-863
ABSTRACT To clarify the serological relationship of Peanut chlorotic fan-spot virus (PCFV) with other tospoviruses, antisera were produced against the nucleocapsid (N) proteins of this virus and tospoviruses from four serogroups including Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), Groundnut ringspot virus (GRSV), and Watermelon silver mottle virus (WSMoV). In immunodiffusion tests, the antisera only reacted with their homologous antigens. Similar results were noticed in indirect enzyme-linked immunosorbent assay and immunoblot tests, with the exception that strong cross-reactions were observed in heterologous combinations between TSWV and GRSV. The results indicated that the N protein of PCFV is not serologically related to those of the tospoviruses from the four serogroups. To further characterize the virus, viral S double-stranded RNA was extracted from PCFV-infected Chenopodium quinoa and used for cDNA cloning and sequencing. The full-length viral strand of the S RNA was determined to be 2,833 nucleotides, with an inverted repeat at the 5' and 3' ends and two open reading frames in an ambisense arrangement. The 3'-terminal sequence (5'-AUUGCUCU-3') of the viral S RNA is identical to those of other tospoviruses, indicating that PCFV belongs to the genus Tospovirus. The N and the NSs proteins of PCFV share low amino acid identities (22.3 to 67.5% and 19.3 to 54.2%) with those of reported tospoviruses, respectively. The phylogenetic dendrogram of the N gene of PCFV compared with those of other tospoviruses indicates that PCFV is distinct from other tospoviruses. In hybridization analyses, an N gene cDNA probe of PCFV did not react with viral RNAs of TSWV, GRSV, INSV, and WSMoV, and vice versa. Thus, based on these results, we conclude that PCFV is a new tospovirus species.  相似文献   

2.
 应用DAS-ELISA和RT-PCR方法从褪绿和银色斑驳的西瓜叶片中检测到病毒分离物(WSMoV-YN),感病样品能与WSMoV/GBNV复合抗血清(Agdia)呈阳性反应。获得WSMoV N蛋白的多克隆抗体,抗体能与WSMoV血清组成员CaCV和TZSV反应,但不能与INSV、TSWV、HCRV和GYSV反应。为明确引起该病害的病毒种类,采用Tospovirus通用引物对样品的总RNA进行RT-PCR扩增,获得长度为3 554 nt的S RNA全序列,经Blastn比对分析与WSMoV中国台湾分离物同源性最高,为95.8%,其N和NSs蛋白氨基酸序列同源性分别为99%和97.6%。构建系统进化树发现,西瓜银灰斑驳病毒云南分离物(WSMoV-YN)与其他WSMoV聚为一支。确定引起云南西瓜病害的病毒为WSMoV。  相似文献   

3.
A putative virus-induced disease showing chlorotic spots on leaves of Phalaenopsis orchids was observed in central Taiwan. A virus culture, phalaenopsis isolate 7-2, was isolated from a diseased Phalaenopsis orchid and established in Chenopodium quinoa and Nicotiana benthamiana. The virus reacted with the monoclonal antibody (POTY) against the potyvirus group. Potyvirus-like long flexuous filament particles around 12–15 × 750–800 nm were observed in the crude sap and purified virus preparations, and pinwheel inclusion bodies were observed in the infected cells. The conserved region of the viral RNA was amplified using the degenerate primers for the potyviruses and sequence analysis of the virus isolate 7-2 showed 56.6–63.1% nucleotide and 44.8–65.1% amino acid identities with those of Bean yellow mosaic virus (BYMV), Beet mosaic virus (BtMV), Turnip mosaic virus (TuMV) and Bean common mosaic virus (BCMV). The coat protein (CP) gene of isolate 7-2 was amplified, sequenced and found to have 280 amino acids. A homology search in GenBank indicated that the virus is a potyvirus but no highly homologous sequence was found. The virus was designated as Phalaenopsis chlorotic spot virus (PhCSV) in early 2006. Subsequently, a potyvirus, named Basella rugose mosaic virus isolated from malabar spinach was reported in December 2006. It was found to share 96.8% amino acid identity with the CP of PhCSV. Back-inoculation with the isolated virus was conducted to confirm that PhCSV is the causal agent of chlorotic spot disease of Phalaenopsis orchids in Taiwan. This is the first report of a potyvirus causing a disease on Phalaenopsis orchids.  相似文献   

4.
The rapid immunofilter paper assay (RIPA) was developed to detect Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV), and Tomato chlorotic spot virus (TCSV) using antisera against recombinant nucleocapsid (N) proteins of each tospovirus. The two-step RIPA was sensitive enough to detect each pecies specifically in only 30min. This technique is proposed as an excellent tool for routine Tospovirus diagnosis and field epidemiological studies.  相似文献   

5.
A serologically and cytologically distinct gloxinia tospovirus (HT-1) previously isolated from a gloxinia plant infected with Impatiens necrotic spot virus (INSV) when propagated in a high-temperature environment was characterized. Rabbit antisera produced for INSV and Tomato spotted wilt virus (TSWV) nucleocapsids (N) failed to react with HT-1 proteins in western blot analysis. The HT-1 antibodies reacted strongly with homologous antigen but failed to react with INSV and TSWV. However, the HT-1 antiserum reacted in ELISA with Watermelon silver mottle virus (WSMV) from Taiwan and in western blot analysis with the WSMV N protein. A reciprocal test showed that the antiserum prepared against the N protein of WSMV also reacted with the HT-1 N protein in both ELISA and western blot analysis. DNA probes derived from the N gene of HT-1 or WSMV hybridized to RNAs prepared from plants infected with either virus. Stronger signals were obtained with homologous than with heterologous reactions. Neither probe detected INSV or TSWV. The M and S RNAs of HT-1 were sequenced. The M RNA contains two open reading frames (ORF) ; one in the sense orientation encoding a nonstructural (NSm) protein of 308-amino-acids (aa) and the other in the ambisense orientation, a 1122-aa precursor of Gl and G2 glycoproteins. The S RNA also contains two ORFs ; one in the sense orientation encoding a nonstructural (NSs) protein of 439 aa and the other in the ambisense orientation, an N protein of 277 aa. HT-1 is distantly related to INSV and TSWV as shown by low nucleotide (40–52%) and amino acid (28–48%) similarities in the four ORF sequences. The HT-1 virus shares high nucleotide (76–81%) and amino acid (85–92%) similarities with WSMV and peanut bud necrosis virus (PBNV). Based on the serological properties and sequence data, we propose that HT-1 is a distinct species of serogroup IV in the genus Tospovirus. This is the first time that a tospovirus similar to those found in the Far East and in Southeast Asia has been identified in the US. Received 16 October 1999/ Accepted in revised form 20 December 1999  相似文献   

6.
A survey was conducted in order to record the ornamental plants that are hosts of tomato spotted wilt virus (TSWV) and impatiens necrotic spot virus (INSV) in Greece. Polyclonal antibodies prepared against the N protein of a Greek isolate of TSWV fromGerbera jamesonii (GR-34) were used. Leaf samples were taken from plants showing typical symptoms of tospovirus infection such as chlorotic and necrotic rings on the leaves and malformation and necrosis of the flowers. The samples were tested by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using polyclonal antibodies to the N proteins of TSWV and INSV (NL-07). ELIS A-positive samples were mechanically transmitted to plants ofPetunia hybrida, Nicotiana rustica andN. benthamiana to confirm infection. Although none of the samples was found infected with INSV, TSWV presence was recorded in 42 botanical species that belong to 40 genera in 27 families. Among them the speciesBeloperone guttata, Coleus barbatus, Impatiens petersiana andLilium auratum are reported for the first time as hosts of TSWV, whereasBegonia sp.,Catharanthus roseus Celosia cristata, Dianthus chinensis, Fuchsia hybrida andStephanotis floribunda are found as new hosts of the virus in Greece. Thrips collected from TSWV-infected plants were in most cases identified asFrankliniella occidentalis, except from plants ofDendranthema sp. andDianthus caryophyllus whereThrips tabaci individuals were also identified. Different percentages of transmitters were noticed when the thrips populations collected from TSWV-infected ornamental hosts were tested for transmission of TSWV.  相似文献   

7.
A new disorder exhibiting flower crinkle on Phalaenopsis orchids bearing white flowers has been observed in Taiwan, China and Japan for several years. This disorder decreased the flower longevity and was considered as a physiological syndrome. The objective of this study was to identify and characterize the real causal agent of this new Phalaenopsis disorder. Five plants of Phalaenopsis hybrids “V3” (Phal. Yukimai × Phal. Taisuco Kochdian) with flower crinkle symptoms were collected and tested by enzyme-linked immunosorbent assay with antisera against 18 viruses. The extract of leaves and flowers from one diseased plant (96-Ph-16) reacted positively only to antiserum against Odontoglossum ringspot virus (ORSV), while those from the other four plants (96-Ph-7, 96-Ph-17, 96-Ph-18 and 96-Ph-19) reacted positively to the antisera against ORSV and Cymbidium mosaic virus (CymMV). Five ORSV isolates, one each from flowers of those five diseased Phalaenopsis orchids, were established in Chenopodium quinoa. A CymMV culture was isolated from the flowers of one of the ORSV/CymMV mix-infected Phalaenopsis orchids (96-Ph-19). To determine the causal agent of the flower crinkle disease, healthy Phalaenopsis seedlings were singly or doubly inoculated with the isolated ORSV and/or CymMV. Results of back inoculation indicated that ORSV is the sole causal agent of the crinkle symptom on petals of Phalaenopsis orchid. The CP gene of the ORSV isolates from this study shared 97.3–100% nucleotide identity and 96.2–100% amino acid identity with those of 41 ORSV isolates available in GenBank. This is the first report demonstrating ORSV as the sole virus causing flower crinkle disease on Phalaenopsis orchids.  相似文献   

8.
Impatiens necrotic spot tospovirus (INSV) virions were purified using a procedure devised for tomato spotted wilt tospovirus (TSWV) from systemically infectedNicotiana benthamiana plants grown at 33 °C day/26 °C night and a photoperiod of 14 hours. With plants grown at 24/18 ° C purification was unsuccessful. In SDS-PAGE the protein pattern of INSV was similar to that reported for TSWV, except the appearance of a single G2 protein band. A polyclonal antiserum, prepared against virions, reacted in Western blots with INSV nucleoprotein and glycoproteins but only with TSWV glycoproteins. In DAS ELISA the antiserum reacted with both INSV and TSWV infected plant sap and, after absorption with TSWV, only with INSV. In TAS ELISA the antiserum trapped both INSV and TSWV nucleoproteins and glycoproteins as detected by specific monoclonal antibodies, and, after absorption with TSWV, only the homologous proteins. This appears to be the first report of the purification of INSV virions and the production of an antiserum reacting with both nucleoprotein and glycoprotein antigens.  相似文献   

9.
In 2009, chlorotic mottle and necrosis were observed on chrysanthemums (cv. Jimba) in Aomori Prefecture, Japan. A virus was isolated from the chrysanthemum plants by serial local-lesion transfer. The symptoms exhibited by the test plants, the particle morphology, the features of the protein and the potential for transmission by thrips were similar to those for Impatiens necrotic spot virus (INSV). The partial nucleotide sequences of the nucleocapsid protein gene and the 3′-untranslated sequence of the S RNA shared 99% identity with that of an INSV isolate. This report is the first of INSV infection of chrysanthemums in Japan.  相似文献   

10.
11.
Studies were carried out on a population ofThrips tabaci Lindeman (Thysanoptera: Thripi-dae) from Liguria to assess its sex-ratio and its ability to transmit four tospoviruses: tomato spotted wilt (TSWV), impatiens necrotic spot, tomato chlorotic spot and groundnut ringspot. The population was composed of females only (therefore thelytokous). The first instar larvae were allowed to acquire the virus for 48 h on infected leaves of datura, basil or pepper, and then reared on cucumber until emergence, which medially occurred 9.5 days after hatching. Transmission capacity was checked using two inoculation access periods (lAPs) of 48 h each on pepper leaf disks.T. tabaci was able to transmit TSWV isolate P105 with an efficiency of 16.7% and 4.4% in the first and second IAP, respectively, and TSWV isolate BR-01 with an efficiency of 2.0%. The onion thrips did not transmit the three other tospoviruses. During the IAPs, almost all adults fed on the leaf disks, producing evident silvery scars. The presence of tospovirus nucleocapsids in thrips was assayed by Triple Antibody Sandwich (TAS) and cocktail ELISA. Not all adults that had transmitted TSWV were positive in the tests, whereas some non-transmitter individuals proved positive. For each of the other tospoviruses, some thrips were positive in at least one test, although none was able to transmit the virus.  相似文献   

12.
During a survey in 2019, sweet pepper plants (GXTJ) showing symptoms of ring spots and chlorotic on leaves and fruits were collected in Wuming district of Guangxi province. Serological tests by DAS-ELISA demonstrated that the GXTJ was reacted positively against to antisera of watermelon silver mottle virus (WSMoV), but negatively against to antisera of the tomato spotted wilt virus (TSWV), cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Total RNA was extracted and 2 pairs specific primers were designed to amplify the WSMoV N gene sequence by RT-PCR. Two expected fragments (769 bp and 654 bp) were obtained from GXTJ, The results of sequence analysis showed that the sequence of N gene was 828 nt and sharing 100% identity with WSMoV isolates from Taiwan (X78556, U78734). Base on the phylogenetic analysis, the N gene sequence of WSMoV-GXTJ was grouped in the same clades as WSMoV isolates from Taiwan. These results indicate that the virus isolate from sweet pepper in Guangxi is an isolate of WSMoV.  相似文献   

13.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

14.
15.
Brevipalpus-transmitted viruses (BTV) cause chlorotic, necrotic and/or ringspot lesions in leaves and stems of orchids, citrus, coffee and several other plant species. There are two different types of BTVs, the nuclear and the cytoplasmic, based on maturation locale in the cell and particle morphology. The orchid fleck virus (OFV) is a BTV that infects orchids. Its short rodlike particles are 32–40 nm in diameter, 100–150 nm in length. OFV is found in the nucleus and is associated with intranuclear electronlucent viroplasms. In 1999, transmission electron microscopy analysis revealed a distinct type of virus causing orchid fleck symptoms. The bacilliform particles, 70–80 nm in diameter and 110–120 nm in length, induced electron-dense viroplasm inclusions in infected cells and resembled the cytoplasmic type associated with BTV, such as the citrus leprosis virus C. Our objective in the present study was to verify whether the cytoplasmic type virus found in orchids could be amplified using primers for other cytoplasmic BTVs, such as CiLV-C and Solanum violaefolium ringspot virus (SvRSV). Additionally, we aimed to differentiate the two BTVs found in orchids: the nuclear and the cytoplasmic types of OFV using microscopy and molecular and serological tools. This virus was not amplified by the CiLV-C and SvRSV primers, and neither the molecular nor the serological tools available to the OFV diagnosis reacted with it, demonstrating that they are definitely different viruses.  相似文献   

16.
广东番茄上检测到Tospovirus病毒   总被引:1,自引:0,他引:1  
 Some tomato samples possibly infected by tospovirus in Guangdong were detected with indirect ELISA and RT-PCR. The results showed that the virus infected tomato did not react with the antiserum of Tomato spotted wilt virus (TSWV), but about 500 bp fragment of RT-PCR shared 83%-84% nucleotide identities with N gene of those reported tospoviruses. The phylogenetic tree of the N gene fragment compared with those of other tospoviruses indicated that the virus infected tomato was belonged to Tospovirus.  相似文献   

17.
Chu FH  Yeh SD 《Phytopathology》1998,88(4):351-358
ABSTRACT Double-stranded genomic RNAs (dsRNAs) extracted from Chenopodium quinoa infected with watermelon silver mottle virus (WSMV) were similar to those of tomato spotted wilt virus (TSWV, serogroup I) and impatiens necrotic spot virus (INSV, serogroup III), except that the S dsRNA of WSMV is 0.75 and 0.6 kbp longer than those of TSWV and INSV, respectively. The complete nucleotide sequence of the genomic M RNA of WSMV was determined from cDNA clones generated from separated M dsRNA. The M RNA is 4,880 nucleotides in length with two open reading frames (ORFs) in an ambisense organization. The M RNA-encoded nonstructural (NSm) ORF located on the viral strand encodes a protein of 312 amino acids (35 kDa), and the G1/G2 ORF located on the viral complementary strand encodes a protein of 1,121 amino acids (127.6 kDa). The RNA probe corresponding to the NSm or G1/G2 ORF of WSMV failed to hybridize with the M dsRNAs of TSWV and INSV. Comparison of M and S RNAs of WSMV, TSWV, INSV, and peanut bud necrosis virus (PBNV, serogroup IV) revealed a consensus sequence of eight nucleotides of 5'-AGAGCAAU...-3' at their 5' ends and 5'-...AUUGCUCU-3' at their 3' ends. The low overall nucleotide identities (56.4 to 56.9%) of the M RNA and the low amino acid identities of the NSm and G1/G2 proteins (30.5 to 40.9%) with those of TSWV and INSV indicate that WSMV belongs to the Tospovirus genus but is phylogenetically distinct from viruses in serogroups I and III. The M RNA of WSMV shares a nucleotide identity of 79.6% with that of PBNV, and the two viruses share 83.4 and 88.7% amino acid identities for their NSm and G1/G2 proteins, respectively. It is concluded that they are two related but distinct species of serogroup IV. In addition to the viral or viral complementary full-length M RNA, two putative RNA messages for the NSm gene and the G1/G2 gene, 1.0 and 3.4 kb, respectively, were detected from the total RNA extracted from WSMV-infected tissue of Nicotiana benthamiana. The 1.0- and 3.4-kb RNAs were also detected in the viral RNAs extracted from purified nucleocapsids, suggesting that the putative messages of the M RNA of WSMV can also be encapsidated by the nucleocapsid protein.  相似文献   

18.
Virus interactions between Tomato spotted wilt virus (TSWV) and Potato virus X (PVX) containing the nucleocapsid protein (N) gene sequences were examined to evaluate the capacity of the N gene sequences from TSWV to promote RNA-mediated cross-protection. Plants simultaneously inoculated with TSWV and PVX containing the 3 96bp of the N gene were highly resistant to TSWV infection, whereas no such resistance was observed in plants inoculated with TSWV and PVX containing the 5 96bp. These results suggest that the 3 portion of the N gene has a higher capacity for promoting RNA-mediated cross-protection of TSWV.  相似文献   

19.
Antisera against important orchid viruses, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV), were separately produced using bacterially expressed recombinant capsid proteins (CP), instead of purified virus particles, as immunogens. These antisera were then designated as home-made CymMV CP antiserum (HM-Cy) and home-made ORSV CP antiserum (HM-OR). The high specificity of HM-Cy and HM-OR were confirmed by immunoblot. Their detection limits were determined using indirect-enzyme-linked immunosorbent assay (I-ELISA). Both HM-Cy and HM-OR showed low background reactivity to healthy plants and thus displayed a high S/H ratio (sample OD405/healthy control OD405) in tested orchids. The data indicated that our antisera were efficient and accurate in determination of negative and positive results in ELISA test as commercial antibodies. Therefore, these home-made antisera of CymMV and ORSV are suitable for the certification programme of orchids due to their low cost and high specificity. HM-Cy and HM-OR were further used for a field survey to study the incidence of CymMV and ORSV. The results showed that CymMV is more prevalent than ORSV in Taiwan.  相似文献   

20.
 正番茄斑萎病毒属病毒(orthotospoviruses)是严重危害云南蔬菜等重要农业经济作物的病毒病原之一。采用血清学检测、小RNA深度测序以及RT-PCR验证相结合的方法,从云南省昆明市晋宁区的主要作物寄主(番茄、辣椒、油麦菜)、重要中间寄主(鬼针草)和传毒介体(蓟马)中鉴定到TSWV、TZSV、PCSV和INSV 4种病毒,其中TSWV为该地区的主要优势病毒,而PCSV则是首次报道侵染鬼针草。通过对云南番茄斑萎病毒病害重病区作物寄主、中间寄主及蓟马三者进行病毒种类分析研究,明确TSWV为引起云南省昆明市晋宁区作物的主要病毒,TZSV、PCSV和INSV零星发生于不同寄主中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号