共查询到20条相似文献,搜索用时 136 毫秒
1.
During the winter of 1990-1991, a meteorological tower was established at an 880-m elevation site within the spruce-fir zone on Mt. Moosilauke, New Hampshire, USA. Hourly means of air, needle and trunk temperatures, wind velocity, relative humidity and solar radiation were recorded. On a weekly basis, shoots that had elongated during the preceding growing season were collected from four red spruce (Picea rubens Sarg.) trees and their relative water contents (RWC) determined. Cuticular resistances of needles from these shoots were measured four times during the winter.Measured meteorological parameters were used in a previously developed model to simulate changes in red spruce shoot RWC during the winter. The modeled results were compared to measured shoot RWCs. The predictive power of the model was improved when it was modified to include measured values of cuticular resistance and needle and trunk temperatures. The new version of the model accurately predicted RWC from late December 1990 to the beginning of April 1991, after which spring recharge appeared to occur. We conclude that water lost from foliage was easily replaced by stored reserves and that uptake of water by the roots was not required to maintain an adequate foliar water content during the winter. 相似文献
2.
It has been proposed that pollutants predispose Picea rubens Sarg. growing in the high Appalachians to frost damage. The pattern of autumn hardening of P. rubens growing at Whiteface Mountain, NY, and Newfound Gap, NC, was monitored by detaching shoots at 1-3 weekly intervals, air freighting them to Scotland, and freeze-testing them. The temperatures that produced freezing injury from August 1986 to January 1987 were compared with minimum air temperatures recorded in those months at nearby meteorological stations over 22 previous years. There was only weak evidence that the onset or degree of frost hardening was inadequate to protect the trees from direct freezing injury (as opposed to winter desiccation). Historically, minimum air temperatures occasionally fell below the lethal temperature for a 10% kill (LT(10)), but they rarely fell below the LT(50). The trees hardened rapidly in the autumn (max. 2.2 degrees C day(-1)) to between -30 degrees C and -40 degrees C by January (LT(50)), including trees showing visible decline on Clingman's Dome, TN. Individual trees differed in hardiness by up to 10 degrees C. It is concluded that any pollutant-induced susceptibility to freezing injury is insufficient, on its own, to account for forest decline in the Appalachians. 相似文献
3.
《Scandinavian Journal of Forest Research》2012,27(1-4):289-304
Soil water characteristics were determined in 6 soil profiles along a Norway spruce forested sandy‐loamy till hillslope in Southern and Northern Sweden, respectively. The soil moisture class was mesic at both sites, i.e. having well drained soil water conditions. Two different Podzols; Leptic and Orthic, were developed at each site respectively. The vertical distribution of soil water retention capacity (SWRC) was similar in the different profiles at each site respectively. The SWRC of the mineral soil was significantly higher in the spodic B horizon compared to the other horizons. In concordance with the vertical distribution of SWRC, the largest amount of organic matter in the mineral soil, measured as ignition loss, was also found in the spodic B horizon. The significantly higher SWRC in the spodic B horizon, i.e. the ¡lluvial horizon, was suggested to depend on the accumulated organic‐sesquioxide material in this horizon. As SWRC reached maximum values in the spodic B horizon at all tensions applied, it was further suggested that soil formation in the studied profiles enhanced the formation of both micro‐ and macropores in the spodic B horizon. The variation of SWRC, at a certain level in the soil, was often larger within a profile than between the profiles at each site respectively. 相似文献
4.
In many temperate evergreen plant species, reductions in turgor loss point of leaves (Psi(tlp)) and leaf osmotic potential at full turgor (pi(sat)) occur from late summer to winter. To test the hypothesis that this seasonal change in leaf water relations is driven by root temperature, we manipulated the temperature of the roots and shoots of Cryptomeria japonica D. Don seedlings separately. Whole-plant warming diminished the seasonal changes in shoot water relations observed in the control plants, whereas shoot warming did not. Compared with the controls, root warming diminished the change in Psi(tlp) but not in pi(sat), whereas cooling accelerated the seasonal changes in shoot water relations. These results indicate that: (1) temperature responses of roots are involved in the seasonal changes in Psi(tlp) from late summer to winter; and (2) root temperature is partly responsible for the simultaneous changes in pi(sat). Whole-plant cooling caused increased root hydraulic resistance, suggesting that seasonal changes in shoot water relations represent adaptive responses to increased root hydraulic resistance at low root temperatures. 相似文献
5.
研究祁连山林线区域青海云杉种群结构、年轮生长及林线位置对气候变化的响应。结果表明:在区域气候变暖的背景下,青海云杉林线种群1~30龄的幼龄个体数量最多,占总数的80.9%;100年来林线种群密度大约增加了23倍,但林线位置并没有发生明显变化;年轮分析得出,气候变暖导致近30年来林线树木径生长明显增加,青海云杉树木年轮指数与当年夏季、秋季以及上一年夏季平均气温显著正相关,与上一年秋季及当年6月份的平均气温呈极显著正相关。 相似文献
6.
To investigate morphological acclimation to differences in nutrient availability, we compared shoot and needle morphology of Picea glehnii (Friedr. Schmidt) M. T. Mast. and Picea jezoensis (Siebold & Zucc.) Carrière trees growing on nutrient-poor volcanic ash and nutrient-rich, brown forest soil. Trees of both species were shorter and had more open canopies when growing on volcanic ash than when growing on brown forest soil. Nutrient-poor conditions limited height growth less in P. glehnii than in P. jezoensis. In both species, trees growing on volcanic ash had shorter annual increments in the previous year and more needles per shoot length and, hence, a smaller shoot silhouette area (SSA) relative to needle dry mass (NDM) than trees growing on brown forest soil. Soil type had less effect on shoot projected needle area (PNA). Total needle area (TNA) of P. glehnii shoots was similar between soil types, whereas TNA of P. jezoensis was lower in trees growing on volcanic ash than in trees growing on brown forest soil. For both species, low SSA in response to nutrient-poor conditions resulted in low shoot SSA/PNA ratios, indicating high within-shoot self-shading. Shoot SSA/TNA of P. glehnii was lower in trees growing on volcanic ash than in trees growing on brown forest soil, indicating that needles were sun-acclimated. In contrast, shoot SSA/TNA of P. jezoensis was higher in trees growing on volcanic ash than in trees growing on brown forest soil. The contrasting response of TNA to low nutrient availability was associated with species-specific differences in needle morphology. Needles of P. glehnii growing on volcanic ash were slightly shorter, wider, thicker and heavier than those of trees growing on brown forest soil, indicating morphological acclimation to high irradiance. Needles of P. jezoensis growing on volcanic ash were shorter than those of trees growing on brown forest soil, but did not show morphological acclimation to high irradiance in width, thickness or mass. For both species, nutrient-poor conditions decreased maximum photosynthetic rate (Amax) per NDM. However, when expressed per PNA, the decrease in Amax was reduced, and when expressed per SSA, Amax was higher in trees growing on volcanic ash than in trees growing on brown forest soil. On volcanic ash, Amax per NDM was lower for P. glehnii than for P. jezoensis. However, morphological changes at the shoot and needle levels reversed this trend when Amax was expressed per SSA or per PNA. The species-specific differences in morphological response to differences in soil nutrient availability suggest that P. glehnii is more tolerant of nutrient-poor conditions, whereas P. jezoensis is better at exploiting nutrient-rich soils. 相似文献
7.
《Forest Ecology and Management》1997,97(1):53-62
Daily dynamics of the shoot water potential (ψ) in Norway spruce [Picea abies (L.) Karst.] depending on soil water availability and atmospheric evaporative demand was studied on originally freely-grown trees and suppressed trees exposed to full sunlight after clear-cutting. The base water potential (ψb) was significantly correlated (R2 = 0.73) with the available soil water storage (Wtr) at a depth of 20–40 cm. ψb was relatively constant at high soil water status and decreased sharply if Wtr dropped below 14 mm. Among the atmospheric factors observed, the vapour pressure deficit (VPD) proved to be the most relevant variable in predicting diurnal changes in ψ. The leaf water status was more sensitive to VPD at sufficient soil water storage. With soil drying, the daily amplitude of ψ diminished, testifying to the more efficient stomatal control under soil drought. For predicting the daily course of ψ from VPD and ψb (taken as a measure of the soil water availability) an empirical model was derived, which described 78–80% of the total variatin in the shoot water potential. In contrast to values of ψb, the daily values of ψ differed significantly (P < 0.05) between the trees with different life histories. The newly exposed trees demonstrated substantially lower values of ψ with increasing atmospheric evaporative demand at the same soil water availability. Dynamic water stress is considered one of the main causes of the continuing growth retardation in suppressed spruce trees after their release from overstorey. 相似文献
8.
We investigated seasonal patterns of water relations in current-year leaves of three evergreen broad-leaved trees (Ilex pedunculosa Miq., Ligustrum japonicum Thunb., and Eurya japonica Thunb.) with delayed greening in a warm-temperate forest in Japan. We used the pressure-volume method to: (1) assess the extent to which seasonal variation in leaf water relations is attributable to leaf development processes in delayed greening leaves versus seasonal variation in environmental variables; and (2) investigate variation in leaf water relations during the transition from the sapling to the adult tree stage. Leaf mass per unit leaf area was generally lowest just after completion of leaf expansion in May (late spring), and increased gradually throughout the year. Osmotic potential at full turgor (Psi(o) (ft)) and leaf water potential at the turgor loss point (Psi(w) (tlp)) were highest in May, and lowest in midwinter in all species. In response to decreasing air temperature, Psi(o) (ft) dropped at the rate of 0.037 MPa degrees C(-1). Dry-mass-based water content of leaves and the symplastic water fraction of total leaf water content gradually decreased throughout the year in all species. These results indicate that reductions in the symplastic water fraction during leaf development contributed to the passive concentration of solutes in cells and the resulting drop in winter Psi(o) (ft). The ratio of solutes to water volume increased in winter in current-year leaves of L. japonicum and E. japonica, indicating that osmotic adjustment (active accumulation of solutes) also contributed to the drop in winter in Psi(o) (ft). Bulk modulus of elasticity in cell walls fluctuated seasonally, but no general trend was found across species. Over the growing season, Psi(o) (ft) and Psi(w) (tlp) were lower in adult trees than in saplings especially in the case of I. pedunculosa, suggesting that adult-tree leaves are more drought and cold tolerant than sapling leaves. The ontogenetic increase in the stress resistance of I. pedunculosa may be related to its characteristic life form because I. pedunculosa grows taller than the other species studied. 相似文献
9.
We compared shoot and needle morphology and photosynthesis in Picea glehnii (Friedr. Schmidt) M.T. Mast. and Picea jezoensis (Sieb. et Zucc.) Carr. trees planted on immature volcanic ash and well-developed brown forest soils to investigate whether species differences in morphological and physiological plasticity affected tree growth on different soil types. Height growth of P. glehnii was reduced by about 10% on volcanic ash compared with forest soil, whereas that of P. jezoensis was reduced by more than 60%. Needle morphology of P. glehnii was unaffected by soil type. In contrast, needles of P. jezoensis trees growing on volcanic ash were shorter, narrower and thicker, with less dry mass and area, than those of trees growing on forest soil, and specific needle area was lower, indicating lower foliar light-interception efficiency. In both species, changes in needle morphology with increasing irradiance were similar in trees growing on both soil types, indicating that plasticity of needle morphology was unaffected by soil type. In both species, shoot mass and shoot silhouette area were lower and needle mass per unit shoot mass was higher in trees growing on volcanic ash than in trees growing on forest soil. Trees of both species had more needles per unit shoot length, lower shoot silhouette to projected needle area ratios and lower shoot silhouette areas per unit shoot mass (SAM) on volcanic ash than on forest soil, indicating lower shoot-level light-interception efficiency. For P. glehnii, the response of shoot morphology to increasing irradiance was similar on both soil types, with the exception of SAM, which showed lower plasticity in trees growing on volcanic ash. In contrast, shoot-level morphological plasticity of P. jezoensis was reduced in trees growing on volcanic ash. Light-saturated maximum photosynthetic rate (P(max)) of P. glehnii was unaffected by soil type, whereas mass-based P(max) of P. jezoensis was lower in trees growing on volcanic ash than in trees growing on forest soil. In P. jezoensis trees growing on forest soil, area-based P(max) increased with increasing irradiance, but this response was not observed in trees growing on volcanic ash. As a result, area-based P(max) at the top of the canopy was 39 to 54% lower in trees growing on volcanic ash than in trees growing on forest soil. Our results indicate that constraints on morphological acclimation to high irradiances may contribute to reduced height growth of P. jezoensis on volcanic ash. 相似文献
10.
D. Craven D. DentD. Braden M.S. Ashton G.P. BerlynJ.S. Hall 《Forest Ecology and Management》2011,261(10):1643-1653
Relative to closed-canopy tropical forests, tree seedlings planted in open grown areas are exposed to higher light intensity, air temperatures, vapor pressure deficit, and greater seasonal fluxes of plant available water than mature tropical forests. The species-specific adaptive capacity to respond to variable precipitation and seasonality in open grown conditions, therefore, is likely to affect species performance in large-scale reforestation efforts. In the present study, we compared the photosynthetic characteristics of eight tropical tree species within and between seasons at two study sites with contrasting dry season intensities. All species except Pseudosamanea guachapele reduced leaf physiological function between the wet and dry seasons. The contrasting severity of seasonal drought stress at the study sites constrained growth rates and photosynthetic characteristics differently. Variation of photosynthetic characteristics at the species level was high, particularly in the dry season. Faster growing species at the less seasonal site, Terminalia amazonia, Inga punctata, Colubrina glandulosa, and Acacia mangium, exhibited a greater adaptive capacity than the other species to down-regulate leaf photosynthesis between seasons. As the dry season was more severe at the more seasonal site, most species strongly reduced physiological function regardless of relative growth rates, except two species (Tectona grandis and P. guachapele) with widespread distributions and relatively high drought tolerance. Our results underscore the need to consider seasonal drought tolerance when selecting tree species for specific reforestation sites. 相似文献
11.
Andrew Merchant Stefan K. Arndt Douglas M. Rowell Sabine Posch Andrew Callister Michael Tausz Mark A. Adams 《Annals of Forest Science》2010,67(1):104-104
12.
Seasonal Changes in the Frost Hardiness of Provenances of Picea sitchensis in Scotland 总被引:6,自引:0,他引:6
Changes in the natural level of frost hardiness of shoots offour provenances of Picea sitchensis were monitored over twogrowing seasons by detaching shoots from 7 to 10-year-old treesgrowing in a nursery in Scotland, and subjecting them to freezingtemperatures under conditions which simulated night frosts. Six seasonal phases of frost hardiness were identified (Fig.3).
- During each autumn, killing temperatures (the level of hardiness)decreased from 5°C to below 20°C, beginningseveral weeks after shoot elongation ceased. Alaskan provenanceshardened in September, apparently in response to shorteningday lengths alone, whereas an Oregon provenance did not hardenuntil November, after repeated frosts. Queen Charlotte Islandsprovenances were intermediate.
- From November to March allprovenances were hardy to below 20°C,which is adequateto prevent direct freezing injury at mostplantation sites.
- In March-April, several weeks before bud-burst, old shootsdehardenedto killing temperatures of about 10°Cin responseto warm temperatures, and southerly provenancesdid so beforenortherly ones.
- During bud-burst the newly-emergingshoots were hardy to only3°C to 5°C untilthey were about 3.5 cmlong. All provenances burst bud at thesame time and were equallyfrost susceptible at this time.
- DuringMay-July the elongating shoots fluctuated in hardinessbetween5°C and 10°C apparently in responsetofluctuating ambient temperatures.
- In August 1980 there wasa period of late summer dehardeningto killing temperaturesof about 3°C.
13.
In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health. 相似文献
14.
Soil surface CO(2) flux (F(s)) is the dominant respiratory flux in many temperate forest ecosystems. Snowpacks increase this dominance by insulating the soil against the low temperature to which aboveground components are exposed. However, measurement of F(s) in winter may be impeded by snow cover. Likewise, developing annual F(s) models is complicated by seasonal variation in root and microbial metabolism. We compared three methods of measuring sub-snow F(s): (1) dynamic chamber measurements at the upper snowpack surface (F(snow)), (2) dynamic chamber measurements at the soil surface via snowpits (F(soil)), and (3) static estimates based on measured concentrations of carbon dioxide ([CO(2)]) and conductance properties of the snowpack (F(diffusional)). Methods were compared at a mid-elevation forest in northeastern Washington, a mid-elevation forest in northern Idaho, and a high-elevation forest and neighboring meadow in Wyoming. The methods that minimized snowpack disturbance, F(diffusional) and F(snow), yielded similar estimates of F(s). In contrast, F(soil) yielded rates two to three times higher than F(snow) at the forested sites, and seven times higher at the subalpine meadow. The ratio F(soil)/F(snow) increased with increasing snow depth when compared across all sites. Snow removal appears to induce elevated soil flux as a result of lateral CO(2) diffusion into the pit. We chose F(snow) as our preferred method and used it to estimate annual CO(2) fluxes. The snowpack was present for 36% of the year at this site, during which time 132 g C m(-2), or 17% of the annual flux, occurred. We conclude that snowpack CO(2) flux is quantitatively important in annual carbon budgets for these forests and that the static and dynamic methods yield similar and reasonable estimates of the flux, as long as snowpack disturbance is minimized. 相似文献
15.
对大兴安岭地区分布的云杉 ,进行了植被类型及特性的阐述 ,为云杉林可持续经营及对云杉种群的扩大 ,提出了相应建议 相似文献
16.
大兴安岭云杉林分类型和土壤类型的初步研究 总被引:1,自引:0,他引:1
亓华生 《内蒙古林业调查设计》2004,27(3):29-32,59
文章通过30块样地的植被和土壤调查,根据植被类型和土壤理化性状,对大兴安岭云杉林分类型和土壤类型进行比较详细的划分,并提出了相应的经营管理和生态保护措施。 相似文献
17.
From January 1999 to May 2001, we investigated seasonal variations in the photosynthetic capacity of Taiwan spruce (Picea morrisonicola Hay.) growing in the subalpine region of subtropical Taiwan (23 degrees 29' N, 120 degrees 53' E, 2600 m a.s.l.). Photosynthetic capacity (near light-saturated net photosynthetic rate, Pnsat, chlorophyll fluorescence (Fv/Fm) and soluble protein concentration of needles all increased from mid or late spring to early winter. Even when minimum air temperature of the measuring day dropped to near 0 degrees C, Pnsat remained at about 20% of the highest value observed in winter. There was a curvilinear relationship between Fv/Fm and the minimum or mean air temperature of the measuring day. The increase in Fv/Fm with temperature was slowed when the daily mean air temperature was above 7 degrees C, or the minimum air temperature was above 3 degrees C; however, when air temperatures dropped below these values, Fv/Fm varied sharply. Seasonal variations in Pnsat paralleled those in Fv/Fm and needle soluble protein concentration. In early or mid spring when air temperature and Fv/Fm increased, Pnsat and soluble protein concentration remained low. Multiple regression analysis showed that seasonal variations in Pnsat were affected by Fv/Fm, air temperature and needle soluble protein concentration, and the multiple regression equation could be used to estimate Pnsat in different seasons. We conclude that the decrease in photosynthetic capacity of Taiwan spruce in winter and its subsequent recovery in spring were mainly caused by photoinhibition and its reversal, and changes in needle soluble protein concentration. Another possible explanation for the delayed recovery of photosynthetic capacity in spring may be associated with the slow increase in needle soluble protein concentration. 相似文献
18.
Maier-Maercker U 《Tree physiology》1998,18(4):211-222
Four experiments on the simulation of a persistent drought period were carried out with cloned Picea abies (L.) Karst. trees: two in the field under varying weather conditions and two in a climate chamber under variously manipulated humidity conditions. Patterns of diurnal dynamics in gas exchange rates and water potential were monitored and analyzed. The first phase of the drought was characterized by relatively high daily maxima for photosynthesis and transpiration. With decreasing humidity during the day, the values dropped steeply, and the declines were larger and occurred earlier on each passing day of the drought period. When soil water potential was lower than -2000 hPa, maximum stomatal aperture was greatly reduced despite a humid atmosphere. Under these conditions, rates of photosynthesis and transpiration decreased less steeply from the daily maxima and differences between maxima and minima were small. In the field, the daily sums of transpiration and photosynthesis were more dependent on atmospheric conditions than on soil water potential. In the growth chamber experiments, the daily sums of transpiration and photosynthesis decreased continuously as the soil dried, at first steeply until a soil water potential of -2000 hPa was reached, then slowly. Predawn water potential values fluctuated under field conditions, but tended to decrease with time, whereas needle osmotic potential increased slightly. Because relative humidities did not reach 100% in the growth chamber, predawn water potentials of plants in the growth chamber were never higher than -1.0 MPa although the soil was saturated. In the experiment with a high average air humidity during the daily stress period, relatively high predawn water potentials were maintained until lower soil water potentials of -8000 hPa were reached. Results were used to assess the importance of evaporative demand versus soil drying on stomatal responses within the context of current concepts of plant water relations. The observed trends in diurnal dynamics can be explained solely by the interdependency of leaf conductance and water potential. Stomata react directly to the ratio of water supply to demand. The central role of peristomatal transpiration in this system is emphasized. 相似文献
19.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values. 相似文献
20.
为了给苹果园土壤水分管理提供依据,以‘长富2’苹果为试材,选取粘壤土平地、粘壤土梯田、壤土平地、壤土梯田、沙土平地、沙土梯田、上层壤土、下层尾矿砂平地7种不同立地、土壤类型苹果园,研究其对土壤含水量及苹果新梢生长的影响。结果表明:不同时期粘壤土平地的土壤含水量均极显著高于沙土平地、沙土梯田、上层壤土下层尾矿砂平地的土壤含水量,沙土平地、沙土梯田的土壤含水量均极显著低于其他立地、土壤类型。各立地、土壤类型长、中、短新梢均只有一次生长,迅速生长期基本一致,在4月初到5月底;除沙土平地和沙土梯田类型外,其他5种立地、土壤类型徒长新梢均出现了二次生长,第1次迅速生长期与其他新梢一致,第2次生长期在7月至8月。不同立地、土壤类型土壤含水量与苹果各类新梢长度均呈正相关,达到显著相关水平的时期多出现在新梢生长高峰期,其中,4月22日至5月13日,壤土梯田、沙土平地的土壤含水量与长梢长度的相关系数分别为0.968、0.966,5月14日至5月31日,壤土梯田的土壤含水量与徒长新梢长度的相关系数为0.986,壤土平地的土壤含水量与长梢长度的相关系数为0.980。 相似文献