首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current annual increment (wood volume) of stands of evergreen conifers on a research site in Sweden, was found to be significantly correlated with the maximum ratio of shoot to leaf silhouette area of shade‐acclimated shoots (R max). Neither the slope nor the intercept of the regression was significantly different from that published earlier relating maximum mean annual increment of British stands to R max . Moreover, a strong correlation between wood volumen increment and R max also occurs when data from four countries are combined. Wood density was not significantly correlated with R max. Harvest index for stand grown conifers more than 25 year old, was also not correlated with R max. Estimated net biomass production (excluding fine roots) was significantly correlated with R max (R 2 = 0.82, F = 17.7). These new analyses could not be used to disprove the hypothesis that variation in shade shoot structure of evergreen conifers has a measurable effect on maximum biomass production.  相似文献   

2.
Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x bar = 2.7) and PLA/SLA ranged between 2.0 and 3.7 (x bar = 2.2). These ratios were reflected in the ratios of net photosynthesis computed on the basis of the three measures of leaf area. The much smaller values for TLA/PLA compared with the values for TLA/SLA indicate that leaf orientation effects, or shading, or both, caused more variation in the interception of solar radiation than did variation in leaf geometry (i.e., cross-section). Silhouette leaf area of lodgepole pine, (Pinus contorta spp. latifolia) and subalpine fir (Abies lasiocarpa) shoots measured at the summer solstice varied almost 2-fold with diurnal changes in solar altitude and azimuth. Sun shoots of both species and shade shoots of lodgepole pine had the greatest SLA during the early morning and late afternoon. The midday decline in SLA was related to the relatively upright orientation of needles of subalpine fir sun shoots and the relatively upright orientation of both sun and shade shoots of lodgepole pine. Shade shoots of subalpine fir reached a maximum in SLA at midday and this was related to the near horizontal orientation both of the shoots and the needles on them.  相似文献   

3.
Leaf longevity determines the annual cost of replacing foliage biomass and influences water and nutrient budgets. Longevity is readily estimated in most evergreen species by annual bud scars along the shoot. However, some species with indeterminate growth do not show these annual markers, making estimation of longevity difficult. One of these species is the widespread and economically valuable western red cedar (Thuja plicata J. Donn ex D. Don), for which no dependable estimates of leaf longevity exist. In this study, we estimated leaf longevity for western red cedar by counting growth rings in shoots at the point of leaf abscission. Estimates were obtained on 26 dominant or codominant trees growing in natural stands in a montane forest in northern Idaho, USA. Leaf longevity averaged 8.9 (SE = 0.2) years, but it strongly increased with depth in the canopy (0.3 year m(-1); mean crown depth was 15 m), increasing from a mean of 6.8 years in the upper third of the canopy to 10.6 years in the lower third. The increase in longevity with depth in the crown is consistent with many reports showing that longevity increases in resource-limiting environments. Longevity did not vary significantly with altitude or solar insolation in these montane forests. Among stand-level variables, longevity was correlated only with leaf area index: it increased slightly in stands with high leaf area indices. This approach to longevity estimation may be useful for any species that produces annual rings but no obvious bud scars, including many Cupressaceae species.  相似文献   

4.
The spherical mean of the shoot silhouette-to-total leaf area ratio (STAR) and the shoot transmission coefficient (c) are two key structural parameters in radiative transfer models for calculating canopy photosynthesis and leaf area index. The standard optical method for estimating these parameters might introduce errors in the estimates for species with flexible shoots and needles by changing shoot inclination relative to its inclination in situ. We devised and tested two methods to address this problem. First, we modified the standard optical method by designing an apparatus that allows shoots to be photographed in their original orientation. Second, we developed a faster, model-based approach to replace photography and tested the results against the established approach. We used shoots of three pine species, Pinus echinata Mill. (needle length ~50 mm), P. taeda L. (~150 mm) and P. palustris Mill. (~300 mm). Values of the parameters simulated by the model were similar to those measured from the photographs. In our data, STAR varied about twofold among the pine species and was ~40% higher in shade shoots than in sun shoots of P. taeda. The transmission coefficient for P. taeda shade shoots was also ~40% higher than that of sun shoots of all three species. We tested the versatility of the model by employing it on shoots of two other pine species (P. strobus L. and P. thumbergiana Parl.) as well as on shoots of Tsuga canadensis L. Carr. and Picea pungens Engelm. Regardless of shoot characteristics, the model generated values of shoot structural parameters similar to those estimated with the optical method. Although species-specific and vertical gradients in parameter values are best for modeling radiative transfer in conifer canopies, our results suggest that, in the absence of adequate data, STAR can be approximated as 0.16 for a wide range of shoot structures. For applications requiring angle-dependent parameterization, our new model facilitates rapid generation of these radiative transfer parameters.  相似文献   

5.
Shoot architecture may significantly alter mean quantum flux on foliage and thus, photosynthetic productivity. There is currently only limited information about plastic alterations in shoot structure caused by within-canopy variation in mean integrated irradiance (Q(int)) in broad-leaved trees. We studied leaf and shoot structure, and nitrogen and carbon content in late-successional, widely distributed, temperate, broad-leaved Nothofagus taxa to determine the architectural controls on light harvesting and photosynthetic performance. Nothofagus fusca (Hook. f.) Oersted has larger leaves and less densely leaved shoots than the N. solandri varieties. Nothofagus solandri var. solandri (Hook. f.) Oersted is characterized by rounder leaves that potentially have a larger overlap than the ovate-triangular leaves of N. solandri var. cliffortioides (Hook. f.) Poole. Leaf dry mass (M(A)) and nitrogen content (N(A)) per unit area increased with increasing Q(int) in all species, demonstrating enhanced investment of photosynthetic biomass in high light. Although M(A) differed between species at a common irradiance, there was a uniform relationship between N(A) and Q(int) across species. Leaf carbon content per dry mass and leaf dry mass to fresh mass ratio also scaled positively with irradiance, suggesting greater structural investments in high light. In all species, shoots became more horizontal and flatter at lower Q(int), implying an enhanced use efficiency of direct irradiance in natural leaf positions. In contrast, irradiance effects on leaf aggregation varied among species. Across the data, leaf overlap or leaf area density was often greater at lower irradiances, possibly as a result of limited carbon availability for shoot axis extension growth. In N. fusca, leaves of which were more aggregated in high light, the shoot silhouette to total leaf area ratio (S(S)) declined strongly with increasing irradiance, demonstrating a lower light harvesting efficiency at high Q(int). This effect was only moderate in N. solandri var. cliffortioides and S(S) was independent of Q(int) in N. solandri var. solandri. Although the efficiency of light interception at high irradiances was lowest in N. fusca, this species had the greatest nitrogen content per unit shoot silhouette area (2N(A)/S(S)), indicating superior shoot-level photosynthetic potential. These data collectively demonstrate that shoot architecture significantly affects light interception and photosynthesis in broad-leaved trees, and that structural carbon limitations may constrain leaf light harvesting efficiency at low irradiance.  相似文献   

6.
We compared the range and variation in shoot silhouette area to projected leaf area ratio (SPAR) in fertilized and unfertilized (control) Norway spruce (Picea abies (L.) Karst.) trees. We measured SPAR for several view directions of 169 shoots at different depths in the crown of fertilized and control trees. There was an increase in SPAR with depth in the crown in both control and fertilized trees. In the fertilized trees, however, mean SPAR was larger overall, the increase with depth in the crown was steeper, and there was a larger variation in SPAR with inclination and rotation angle of the shoot (relative to the view direction). In particular, shoots in the lower crown of fertilized trees were rotationally asymmetrical ("flat") and had high values of the maximum ratio of shoot silhouette area to projected leaf area (SPAR(max)). Differences in SPAR between fertilized and control trees were explained by changes in shoot structure in response to fertilization and shading. Shoots of fertilized trees were larger and had more needle area than shoots of control trees. However, the ratio of needle area to shoot size was smaller in fertilized trees than in control trees, implying less within-shoot shading and, consequently, a larger SPAR. Also, the increase in SPAR with increased shading (depth in the crown) could be explained by a decrease in the ratio of needle area to shoot size. In addition, because fertilized trees had more needle area than control trees, the effect of shading at a given depth in the crown was more pronounced in fertilized trees than in control trees.  相似文献   

7.
We investigated the sapling leaf display in the shade among trees of various leaf lifespans co-occurring under the canopy of a warm-temperate conifer plantation. We measured leaf-area ratio (aLAR) and morphological traits of saplings of evergreen broadleaved tree species and a deciduous tree species. Although we found large interspecific and intraspecific differences in aLAR even among saplings of similar size in the homogeneous light environment, we did not find a consistent trend in aLAR with leaf lifespan among the species. While deciduous trees annually produced a large leaf area, some evergreen broadleaved trees retained their leaves across years and had aLAR values as high as those of deciduous trees. Among leaf-level, shoot-level, and individual-level morphological traits, aLAR was positively correlated with current-year shoots mass per aboveground biomass in deciduous trees, and with the area of old leaves per aboveground mass in evergreen broadleaved trees. Thus, tree-to-tree variation in the degrees of annual shoot production and the accumulation of old leaves were responsible for the interspecific and intraspecific variations in aLAR.  相似文献   

8.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

9.
Hemmerlein MT  Smith WK 《Tree physiology》1994,14(10):1139-1148
Sunlight interception efficiency was compared at the leaf, shoot, branch and crown levels for Picea engelmannii (Parry) and Abies lasiocarpa ((Hook.) Nutt.), dominant tree species of the central Rocky Mountains, USA. The ratio of silhouette to total leaf area (STAR) was used to quantify the efficiency of direct-beam sunlight interception at each structural scale. Total mean reductions in STAR from the leaf to the crown level were 0.39 to 0.06 in P. engelmannii and 0.46 to 0.02 in A. lasiocarpa. These reductions in STAR occurred for both species as structural scale increased due to a more upright leaf inclination, increased leaf twisting and curvature, or greater mutual shading among plant structures. A steeper leaf inclination between the leaf and shoot level accounted for 26 +/- 19% (95% C.I.) of the total leaf-to-crown STAR reduction; mutual shading among leaves on shoots caused a 14 +/- 7% reduction, whereas leaf curvature and twisting accounted for 22 +/- 3% for a total reduction of 62 +/- 8%. The STAR varied slightly from the shoot to the branch level (+/- 7%) except for a 26% reduction in shade shoots of A. lasiocarpa as a result of increased mutual shading among leaves at lateral nodes. Another substantial reduction in STAR occurred from the branch to the crown level (35 +/- 3% of total) as a result of shading of one branch layer by another within the crown. Thus, light interception efficiency decreased as structural scale increased in both species, especially from the leaf to the shoot level and from the branch to the crown level.  相似文献   

10.
The utility of site index as a predictor variable in models for complex, mixed species stands is limited because the site index concept is not well suited for these stand types. Additionally, there is no standard protocol of estimating site index for uneven-aged mixed species stands, which is evident in permanent sample plot (PSP) and co-operative (COOP) data sets available from the Province of Ontario, Canada. Under such circumstances, an alternative to site index in a basal area increment model was explored, using a combination of climate and Forest Ecosystem Classification (FEC) variables from the Ontario boreal region. Among the four candidate climate variables chosen, mean annual temperature (MAT) explained the most variability in basal area increment for the four selected tree species – trembling aspen (Populus tremuloides Michx.), balsam fir (Abies balsamea (L.) Mill.), jack pine (Pinus banksiana Lamb.), and black spruce (Picea mariana (Mill.) B.S.P.). Our results indicated that a combination of the climate variable, MAT, and FEC explained a substantially higher proportion of variation in the basal area increment than site index alone. Thus, climate and FEC variables are superior substitutes in the basal area increment model even when error-free site index values are possible to obtain.  相似文献   

11.
Ecosystem process models are often used to predict carbon flux on a landscape or on a global scale. Such models must be aggregate and canopies are often treated as a uniform unit of foliage. Parameters that are known to vary within the canopy, e.g., nitrogen content and leaf mass per area, are often estimated by a mean value for the canopy. Estimating appropriate means is complicated, especially in mixed-species stands and in complex terrain. We analyzed sources of variation in specific parameters with the goal of testing various simplifying assumptions. The measurements came from mixed-species forests in the northern Rocky Mountains. We found that, for three important parameters (nitrogen concentration and content, and leaf mass per area), a sample taken near the vertical center of the crown provided a good estimate of the mean values for the crown. Altitude (700-1700 m), solar insolation (4200-5400 MJ m(-2) year(-1)) and leaf area index (1-11) had negligible effects on the parameters; only species differences were consistently detected. The correlation between mass-based photosynthetic rates and mass-based nitrogen concentrations was much weaker than the correlation between area-based photosynthetic rates and area-based nitrogen concentration. Comparison of photosynthesis-nitrogen relationships for a wide variety of conifer species and sites revealed a broad general trend that can be used in models. These results suggest important potential simplifications in model parameterization, most notably that canopy means can be estimated with ease, that complex terrain is a minor source of variation in these parameters and that use of one photosynthesis-nitrogen relationship for conifer species does not result in large errors. Species-to-species variation, however, was large and needs to be accounted for when parameterizing process models.  相似文献   

12.
Stem growth, developmental patterns and canopy relations were measured in a chronosequence of intensively managed loblolly pine stands. The study was located on two distinct sites in the lower coastal plain of Georgia, USA and contained a factorial arrangement of complete control of interspecific competition (W) and annual nitrogen fertilization (F). The W treatment increased growth rate for several years, while the F treatments led to sustained growth increases. The combination of the W and F treatments resulted in more than 180 Mg ha−1 stem biomass production at age 15 which is more than double the production of control treatment. Stem biomass production is continuing to increase through age 15 as indicated by the current annual increment in stem biomass continuing to exceed the mean annual increment in stem biomass. The F treatment decreased wood quality by decreasing whole tree latewood specific gravity from 0.565 to 0.535 and by lengthening the transition from juvenile to mature wood from 4 to 5 years. Increased rates of stem growth in response to cultural treatments were largely mediated by increased leaf area, with strong functional relationships between leaf area index and current annual increment. However, growth efficiency (stem production per unit of leaf area) decreased with stand age. These results indicate that nutrient amendments are necessary for sustaining high rates of stand development on relatively nutrient poor lower coastal plain soils.  相似文献   

13.
To document the spatial and temporal variation of environmental signals inducing seed germination in temperate forests, we measured temporal patterns of environmental signals and seed germination of six pioneer tree species in unthinned and thinned stands of conifer forests (Cryptomeria japonica plantations) and in the understory and gaps of hardwood forests in Japan. We also conducted germination experiment in laboratory for the six pioneer species to test the effects of red:far-red (R:FR) light ratio and temperature fluctuations on the seed germination. In conifer forests, the photosynthetic photon flux density (PPFD), the R:FR ratio, and the amplitude of temperature fluctuations in thinned stands were 2, 1.5, and 3 times higher, respectively, than those of unthinned stands. The PPFD and R:FR ratios just above forest floor also increased after the removal of thick litter accumulation. As a result, higher seed germination was observed in thinned compared to unthinned stands for three photoblastic species, whereas little differences were observed for three non-photoblastic species. These findings suggest that thinning, which frequently reduces litter accumulation, can substantially affect the regeneration of pioneer species and the resultant species diversity in conifer plantations. None of the measured environmental signals changed seasonally in unthinned stands of conifer forests, but they all changed remarkably in the understory of the hardwood forests. In this system, all signals were high and nearly identical to those in the gaps in early spring prior to canopy closure. Thus, the percent germination of the three photoblastic species was enhanced by high R:FR ratios and/or large temperature fluctuations even beneath the canopy and was nearly equal to that in the thinned conifer stands where the environmental conditions were nearly identical to those in the gaps. However, all of the environmental signals decreased with the expansion of canopy leaves and reached minimums at canopy closure. Even in the thinned stands and the gaps, the PPFD and magnitude of temperature fluctuations decreased over time due to shading by growing herbs and/or emerging canopy leaves. In these temporally changing environments, the germination of all photoblastic species ceased simultaneously. This study clearly demonstrated that the environmental signals inducing seed germination of photoblastic pioneer species spatially and temporally change in temperate forests, particularly in deciduous hardwood forests. Furthermore, these signals, PPFD, R:FR ratio, and the amplitude of temperature fluctuations, appear to play a very important role in tree regeneration and subsequent species diversity.  相似文献   

14.
We measured the seasonal and temperature responses of leaf photosynthesis and respiration of two co-occurring native New Zealand tree species with contrasting leaf phenology: winter-deciduous fuchsia (Fuchsia excorticata J. R. Forst & G. Forst) and annual evergreen wineberry (Aristotelia serrata J. R. Forst & G. Forst). There was no difference in the amount of nitrogen per unit leaf area (Narea, range 40-160 mmol m-2, P = 0.18) or specific leaf area (S, range 8-27 m2 kg-1, P = 0.87) in summer leaves of wineberry or fuchsia. The amount of nitrogen per unit leaf area and S varied significantly with height of leaves in the canopy for both species (r2 range 0.61-0.87). Parameters describing the maximum rates of rubisco carboxylation (Vcmax) and electron transport (Jmax) were related significantly to Narea, and were 60% higher on average in spring and summer leaves than in autumn and winter leaves for both species. The seasonal effect remained significant (P < 0.001) when Narea was included in a regression model, indicating that seasonal changes were not only due to changes in Narea. Values for Vcmax and Jmax were 30% lower in wineberry leaves than in fuchsia leaves on average, although the difference ranged from 15% in summer leaves to 39% in autumn leaves. Activation energies describing the temperature dependence of Vcmax and Jmax in wineberry were 111 and 114% of corresponding values for fuchsia (Ea (Vcmax) = 39.1 kJ mol-1, Ea (Jmax) = 32.9 kJ mol-1). Respiration at night was the same (P = 0.34) at 10 degrees C for both species (R10 = 0.7 micromol m-2 s-1), although activation energies (E0) were higher in wineberry than in fuchsia (47.4 and 32.9 kJ mol-1 K-1, respectively). These results show that rates of photosynthesis are higher in winter-deciduous fuchsia than in annual evergreen wineberry.  相似文献   

15.
辽宁省东部山区自然条件优越,雨量充足,土壤肥沃,适宜落叶松生长发育。日本落叶松在辽宁省占人工林总面积15%,蓄积量占20.9%。为提高经营水平,掌握林木生长与林分密度之间数量关系,在吸收国内外编制密度控制图理论和方法的基础上,编制了日本落叶松林分密度控制图,以期达到科学营林的目的。  相似文献   

16.
We investigated effects of nutrient availability on shoot structure and light-interception efficiency based on data from control (C) and irrigated + fertilized (IL) trees of Norway spruce (Picea abies (L.) Karst.). The sampling of 1-year-old shoots was designed to cover the variation in canopy exposure within the live crown zone, where current-year shoots were still found. Canopy openness was used as a measure of light availability at the shoot's position. Openness values for the sample shoots ranged from 0.02 to 0.77 on the IL plot, and from 0.10 to 0.96 on the C plot. Among needle dimensions, needle width increased most with canopy openness. At fixed canopy openness, needle width was larger, and the ratio of needle thickness to width was smaller in IL trees than in C trees. Specific needle area (SNA) and the ratio of shoot silhouette area to total needle area (STAR) decreased with canopy openness, so that the combined effect was a threefold decrease in the ratio of shoot silhouette area to unit dry mass (SMR = STAR x SNA) along the studied range of openness values. This means that the light-interception efficiency of shoots per unit needle dry mass was three times higher for the most shaded shoots than for sun shoots. A test of the effect of fertilization on the relationships of SNA, STAR and SMR indicated statistically significant differences in both slope and intercept for SNA and STAR, and in the intercept for SMR. However, the differences partly cancelled each other so that, at medium values of canopy openness, differences between treatments in predicted SNA, STAR and SMR were small. At 0.5 canopy openness, predicted STAR of IL shoots was 6.1% larger than STAR of C shoots, but SMR of IL shoots was 10% smaller than that of C shoots. The results suggest that light-interception efficiency per unit needle area or mass of the shoots is not greatly affected by fertilization.  相似文献   

17.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

18.
以山东乡土针叶树种油松和黑松作对比,研究了从美国引种的12年生美国白松的物候期及新梢、针叶的生长特性。以Logistic方程拟合3种针叶树新梢和针叶的生长,并用数学分析的方法确定各树种新梢和针叶的速生期和速生点。测定了3个针叶树种的径、高年生长量。结果表明,美国白松在山东能够正常生长发育,生长期比油松和黑松短,但生长迅速,年生长量比较大,是一个值得引进并扩大栽培的速生针叶树种  相似文献   

19.
Gower ST  Reich PB  Son Y 《Tree physiology》1993,12(4):327-345
Canopy dynamics and aboveground net primary production (ANPP) were studied in replicated monospecific and dual-species plantations comprised of species with different leaf longevities. In the monospecific plantations, leaf longevity averaged 5, 6, 36, 46 and 66 months for Quercus rubra L., Larix decidua Miller, Pinus strobus L., Pinus resinosa Ait. and Picea abies (L.) Karst., respectively. Specific leaf area, maximum net photosynthesis per unit mass (A/mass), leaf N per unit mass (N(leaf)/mass) and maximum net photosynthesis on a leaf N basis (A/N(leaf)) were inversely correlated to leaf longevity (r(2) = 0.92-0.97, 0.91, 0.88 and 0.80, respectively). Maximum net photosynthesis per unit area (A/area) was not correlated to leaf longevity, whereas leaf N per unit area (N(leaf)/area) was positively correlated to leaf longevity (r(2) = 0.95). For a similar-diameter conifer, species with long-lived foliage supported a greater foliage mass than species with short-lived foliage; however, Quercus rubra did not follow this pattern. At the stand level, total foliage mass ranged from 3.3 to 30.5 Mg ha(-1) and was positively correlated (r(2) = 0.97) to leaf longevity. Leaf area index (LAI) was also positively correlated (r(2) = 0.82) to leaf longevity. Production efficiency (ANPP/LAI) was inversely related to leaf longevity and positively related to A/mass. Aboveground biomass and net primary production differed significantly (P < 0.05) among the five species but were not correlated to leaf longevity, total foliage mass or leaf area. In monospecific plantations, stem NPP for Larix decidua was 17% greater than for Pinus strobus and 14% less than for Picea abies, but in mixed-species plantations stem NPP for Larix decidua was 62 and 85% greater than for Pinus strobus and Picea abies, respectively. Similar aboveground net primary production rates can be attained by tree species with different leaf longevities because of trade-offs resulting from different structural and physiological leaf and canopy characteristics that are correlated to each other and to leaf longevity.  相似文献   

20.
As forests age, their structure and productivity change, yet in some cases, annual rates of water loss remain unchanged. To identify mechanisms that might explain such observations, and to determine if widely different age classes of forests differ functionally, we examined young (Y, approximately 25 years), mature (M, approximately 90 years) and old (O, approximately 250 years) ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) stands growing in a drought-prone region of central Oregon. Although the stands differed in tree leaf area index (LAIT) (Y = 0.9, M = 2.8, O = 2.1), cumulative tree transpiration measured by sap flow did not differ substantially during the growing season (100-112 mm). Yet when water was readily available, transpiration per unit leaf area of the youngest trees was about three times that of M trees and five times that of O trees. These patterns resulted from a nearly sixfold difference in leaf specific conductance (KL) between the youngest and oldest trees. At the time of maximum transpiration in the Y stand in May-June, gross carbon uptake (gross ecosystem production, GEP) was similar for Y and O stands despite an almost twofold difference in stand leaf area index (LAIS). However, the higher rate of water use by Y trees was not sustainable in the drought-prone environment, and between spring and late summer, KL of Y trees declined fivefold compared with a nearly twofold decline for M trees and a < 30% reduction in O trees. Because the Y stand contained a significant shrub understory and more exposed soil, there was no appreciable difference in mean daily latent energy fluxes between the Y stand and the older stands as measured by the eddy-covariance technique. These patterns resulted in 60 to 85% higher seasonal GEP and 55 to 65% higher water-use efficiency at the M and O stands compared with the Y stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号