首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The finite element method of structural analysis was used to model the dynamic behavior of three 20-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees subjected to applied loading. Detailed measurements of stem and branch geometry were made for each tree, enabling the first-order branches of each tree to be represented as individual cantilever beams attached to the stem. Three values for branch modulus of elasticity (E) were assumed: 4, 5 and 6 GPa. For two trees with relatively large crown masses (175 and 250 kg), significantly improved estimates of natural frequency were obtained when the branches were modeled as separate cantilever beams rather than as a series of discrete masses attached to the stem. Closest agreement with the results from field sway tests was found when branch E was 4 GPa. Oscillations of individual branches contributed to the damping of tree oscillations--a phenomenon known as structural damping--with the contribution increasing as branch E decreased. When branch E was 4 GPa, the phase difference between the oscillation of the stem and that of some branches was almost 180 degrees. We applied a series of forces separately to the stem and branches of each tree and determined the mechanical transfer function for each loading case. These transfer functions were similar to the theoretical transfer function for a damped harmonic oscillator, but showed a smaller tree response at higher loading frequencies, particularly when branch E was 4 GPa. Branch structural properties, particularly modulus of elasticity, appear to be important in defining overall tree behavior under applied loading.  相似文献   

2.
Vegetation control (VC) in forest plantations often increases growth of crop trees but can also affect biomass and nutrient partitioning to tree components. We examined above-ground biomass and macronutrients, leaf area and crown structure in 5-year old Douglas-fir (Pseudotsuga menziessi (Mirb.) Franco) growing with VC and with no vegetation control (NVC) in coastal Washington, United States of America. Trees in VC had larger stem, branch, foliage and total biomass than trees of equal stem diameter at 1.3 m above ground in NVC. The difference in component biomass between treatments was in the order: branch > foliage > stem. Trees in the VC regime did not differ in macronutrient concentration in stem, branch and foliage except for branch N which was greater in NVC than in VC. Differences in tree macronutrient stores between VC and NVC ranged from 2.2 times for Mg to 2.6 times for N and K. The relationship between stem diameter and leaf area was linear in both VC treatments. The relationship between stem diameter and foliage biomass was curvilinear for both VC treatments. Results of this study support the need for separated allometric equations to estimate biomass for young Douglas-fir growing in areas with and without VC.  相似文献   

3.
Snow damage on natural stands is an important problem concerning mountainous forest management.In the present research,the frequency and intensity of heavy snow damage on natural stands and the relationship of damages with characteristics of trees,stand and topography were studied in mountainous forests of northern Iran.A systematic sampling design was applied to the study area(140 ha),with 122 circular plots.The grid dimension was100 m and each plot area was 1000 m^2.The four types of snow damage to trees include:crown damage(8.6%),stem breakage(5.4%),uprooting(3.2%),and bending(1.4%).The frequency of crown damage grew with an increase inthe diameter at breast height(DBH),while the frequency of stem breakage,uprooting and bending decreased with an increase the DBH.The frequency of crown damage,stem breakage,and total damages was related to tree species(p<0.01).Not all tree species were equally susceptible to snow damage.The amount of damage grew with increasing elevation and slope angle and decreased with increasing soil depth.Young trees(DBH<25 cm)were more susceptible to snow damage than other trees.Snow damage decreased by as the trees in the stand became more mixed in age.The susceptibility of trees to snow damage increased by height and slenderness coefficient.With adequate silvicultural operation,snow damage can be reduced to a minimum level in these natural forests.  相似文献   

4.
5.
To estimate the wind force that causes windthrow damage to a tree, the drag coefficients of actual-sized trees were evaluated by a field test method. In this method, wind velocity and stem deflection were monitored simultaneously. The wind force acting on a tree crown was calculated from stem deflection; stem stiffness was evaluated by conducting tree-bending tests. The results of tests conducted on three poplar trees showed that drag coefficient decreased with an increase in wind velocity. Although the variation in the drag coefficient was large at low wind velocity because of the vibrating behavior of the stem subjected to variable wind force, the variation at wind velocities above 10 m/s was small. The average drag coefficient at a wind velocity of 30 m/s was estimated by the curve-fitting of a power function to the wind velocity-drag coefficient relationship to be 0.102, which was smaller than that of actual-sized conifers studied in previous wind tunnel experiments. The drag coefficients of these crown areas in the defoliation season were smaller than those measured in the leafy season.  相似文献   

6.
We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.  相似文献   

7.
Chen Z  Kolb TE  Clancy KM 《Tree physiology》2001,21(16):1159-1169
We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.  相似文献   

8.
Sample tree material was reanalyzed in order to study the relationships between horizontal crown projected area and components of above-ground biomass in Norway spruce (Picea abies (L.) Karst.) trees growing in even-aged stands. The needle mass of dominant trees increased linearly with the increase in crown projected area, but in co-dominant and dominanted trees the increase in needle mass levelled off toward larger crown projected areas. The branch mass of dominant and co-dominant trees accumulated faster than linearly with increasing crown projected area, whereas in dominated trees an approximately linear relationship existed between these two variables. The increase in needle and branch mass per unit increase in crown projected area was highest in dominant trees and decreased to co-dominant and dominated trees, i.e. with tree position in the canopy. The stem mass accumulated obviously faster than linearly and similarly in all tree classes with the increase in crown projected area. The narrow crown shape indicated a high density of all components of above-ground biomass per unit of crown projected area.  相似文献   

9.
Static parameters of the windthrow process were measured bywinching over ten Sitka spruce trees growing on a windthrow-susceptiblesite in the Scottish Borders. The critical wind speeds to causeuprooting were calculated using measured wind profiles and assumingstatic loading of the crown. Values obtained greatly exceededthe wind speeds recorded during a gale which caused damage.The ranking of stabilities of the ten samples was: Suppressedtrees >gt; sturdy dominants >gt; slender dominants. Recalculationusing measured damping ratios, and assuming that the gust frequencycoincided with the tree frequency to cause resonance, reducedthe values to within the range of the maximum recorded gust. Displacements of three sample trees, estimated from accelerometerdata, were compared with simultaneous wind speed recordings.Perfect resonance was not observed but large oscillations builtup over a period of 2–3 cycles. Estimates of the dynamicload factors varied from 0.5–5. The larger gusts tendedto be associated with the smaller factors. Increasing the dynamicload factor from 1 (equivalent to a static load) to 2 reducedthe critical wind speed by approximately 40 per cent. The influence of sway direction and canopy contact on the dampingratio of the three accelerometer trees was investigated. Theresults suggest that canopy contact comprises a greater portionof the damping ratio of small trees than that of dominants.  相似文献   

10.
We examined the respiration rate of root segments, which had a constant length in relation to their diameter, from three small and two large 26-year-old Chamaecyparis obtusa (Siebold & Zucc.) Endl. trees. The dependence of respiration rate on segment diameter was described by a power function with an exponent of about 1.5, except for the smallest sample tree, for which the exponent was 1.74. Unlike stem segments, root segments of similar diameter showed similar rates of respiration regardless of the tree from which the root segments had been taken. On the basis of the power function, we propose a new equation to estimate the total root respiration rate of a tree. The relationship between root respiration rate per tree and root weight can be expressed by a power function with an exponent of 1.11. The ratio of the specific respiration rate of stems to that of roots was 0.7 for the three smaller trees, and 1.1 to 1.3 for the two larger trees. In November, the stand respiration rate of roots was estimated to be 0.36 kg CO(2) ha(-1) h(-1) for a root biomass (dry weight) of 28 Mg ha(-1).  相似文献   

11.
Mountain ash (Eucalyptus regnans F.J. Muell.) forest catchments exhibit a strong relationship between stand age and runoff, attributed inter alia to differences in tree water use. However, the tree water use component of the mountain ash forest water balance is poorly quantified. We have used the sap flow technique to obtain estimates of daily water use in large mountain ash trees. First, the sap flow technique was validated by means of an in situ cut tree experiment. Close agreement was obtained between the sap flow estimate of water use and the actual uptake of water by the tree from a reservoir. Second, we compared the variability in sap velocity between a symmetric and an asymmetric tree by using multiple sap flow loggers. In the symmetric tree, velocity was fairly uniform throughout the xylem during the day, indicating that accurate sap flow estimates can be obtained with a minimal number of sampling points. However, large variations in sap velocity were observed in the asymmetric tree, indicating that much larger sampling sizes are required in asymmetric stems for an accurate determination of mean sap velocity. Finally, we compared two procedures for scaling individual tree sap flow estimates to the stand level based on stem diameter and leaf area index measurements. The first procedure was based on a regression between stem diameter and tree water use, developed on a small sample of trees and applied to a stand-level census of stem diameter values. Inputs to the second procedure were tree water use and leaf area of a single tree and the leaf area index of the stand. The two procedures yielded similar results; however, the first procedure was more robust but it required more sampling effort than the second procedure.  相似文献   

12.
We studied the effect of tree architecture on xylem anatomy in three Betula pendula Roth., three Picea abies (L.) H. Karst. and three Pinus sylvestris (L.) trees (mean age 35 years). First, the analysis of conduit anatomy in different tree parts showed that conduits tapered and their frequency increased from roots (≥ 2 mm) to stem, from stem to branches and further to leaf petioles in B. pendula. Conduit anatomy in lateral and main roots, as well as lateral and main branches, significantly differed from each other in all the studied species. The increase in conduit diameter and decrease in frequency from the pith to the bark were clear aboveground, but variable patterns were observed belowground. In the leaf petioles of B. pendula, conduit diameter increased and conduit frequency decreased with increasing individual leaf area. Second, the results concerning the scaling of conduit diameter were compared with the predictions of the general vascular scaling model (WBE model) and Murray's law. The scaling parameter values at the tree level corresponded with the predictions of the WBE model in all the studied trees except for one tree of both conifer species. However, the scaling parameter values changed from one tree compartment to another rather than remaining uniform inside a tree, as assumed by the WBE model. The assumptions of the WBE model of a constant conductivity ratio, constant tapering and an unchanged total number of conduits were not fulfilled. When the conductivity ratio and relative tapering were plotted together, the results aboveground corresponded quite well with Murray's law: the conductivity ratio increased when relative tapering decreased. Our results support the theory that trees adjust both their macro- and microstructure to maximize their water transport efficiency, but also to prevent embolism and ensure mechanical safety.  相似文献   

13.
Root competition between conspecific neighbours has been notoriously difficult to determine in intact ecosystems. Here we applied microsatellite markers to genotype beech trees (Fagus sylvatica, L.) and roots in subplots in an undisturbed, old-growth monospecific forest (Hainich, Germany). Roots were quantified and assigned to individuals. As a measure for territoriality, we determined root segregation. The hypothesis was tested that intraspecific root diversity was higher in the geometric centre of a triangle formed by beech trees than at positions closer to the stem of a tree. Space exploration measured as presence of an individual was correlated with stem diameter but not soil occupation. Fine root biomass, intraspecific Shannon diversity, effective numbers of genotypes and Evenness were stable and unrelated to the distance of the target tree. We conclude that beech shows no indication for territoriality or asymmetric competition in the presence of conspecific neighbours.  相似文献   

14.
Desirable root architecture for trees differs between sequential and simultaneous agroforestry systems. In sequential systems extensive tree root development may enhance nutrient capture and transfer to subsequent crops via organic pools. In simultaneous systems tree root development in the crop root zone leads to competition for resources.Fractal branching models provide relationships between proximal root diameter, close to the tree stem, and total root length or surface area. The main assumption is that a root branching proportionality factor is independent of root diameter. This was tested in a survey of 18 multipurpose trees growing on an acid soil in Lampung (Indonesia). The assumption appeared valid for all trees tested, for stems as well as roots. The proportionality factor showed a larger variability in roots than in stems and the effects of this variabilily should be further investigated. A simple index of tree root shallowness is proposed as indicator of tree root competitiveness, based on superficial roots and stem diameter.Pruning trees is a major way to benefit from tree products and at the same time reduce above-ground competition between trees and crops. It may have negative effects, however, on root distribution and enhance below-ground competition. In an experiment with five tree species, a lower height of stem pruning led to a larger number of superficial roots of smaller diameter, but had no effect on shoot:root ratios or the relative importance of the tap root.  相似文献   

15.
Most umbrella pine (Pinus pinea L.) stands are managed as agroforestry systems, whose main production is fruit, due to the edible and highly nutritious kernels, and are frequently associated to natural or seeded pastures and grazing. The stands have low density, in order to enhance crown growth and fruit production. Nevertheless, cone production, both with regard to number and weight, varies greatly between stands, trees and years. In this study were selected three agroforestry systems, representative of umbrella pine stands whose main production is fruit, and one stand representative of the timber production system, where fruit is the secondary production. It was evaluated the variability in cone production as a function of the tree’s diameter at breast height and crown diameter and the individual tree’s competition status. The results indicate that stands managed in agroforestry systems with lower competition and individuals with larger diameter at breast height and crown diameter tend to produce more and heavier cones per tree. The first two principal components of the principal component analysis explain 84 % of the variance in cone production, trees’ dimensions and competition index. Tree competition status has a negative impact on production per tree.  相似文献   

16.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

17.
We studied the relationships among 5-year radial (diameter and basal area) growth of red oak (genus Quercus, subgenus Erythrobalanus) crop trees and predictor variables representing individual tree vigor, distance-dependant competition measures, and distance-independent competition measures. The red oaks we examined are representative of the commercially and ecologically important oak species of the bottomland hardwood forests of the southeastern US. The crown class score, a quantitative measure of crown class and tree vigor, performed best in accounting for the variability in tree diameter growth. Plot-level variables failed to account for a significant proportion of the variability in tree radial growth. The basal area of the first-order neighbors that were taller than the crop trees and located within 2.4 times the mean overstory crown radius had the highest negative correlation with crop tree 5-year radial growth. Red oaks were a major part of these competitors and likely exerted the greatest competitive pressure. However, crop tree radial growth was positively associated with the basal area of the red oaks which were indirect (second order) neighbors and which were taller than the crop trees. It is possible that indirect neighbors do not compete with the crop trees, but they likely compete with the direct competitors of the crop trees, thus having an indirect positive influence on crop tree growth. Such reasoning is consistent with previously observed spatial dependence up to four times the mean overstory crown radius. The findings may have implications for thinning hardwoods stands and crop tree management in that foresters need to take into account (1) oak intra-genus competition, (2) the negative competitive effect of direct neighbors, and (3) the potentially positive effect of the indirect neighbors, the competitors’ competitors.  相似文献   

18.
Twenty-year-old overstocked naturally regenerated yellow birch (Betula alleghaniensis Britton) were thinned near Thessalon, Ontario. Treatments consisted of either a control, or the removal of all competing trees at 1, 2, 3, or 4 m around the boles of the crop trees. The size of the openings created around the crop tree crowns was found to be more strongly correlated to diameter, clear bole length, and crown increment than the removal of competing trees using fixed distance from the stem. Crop trees responded well to thinning. Five-year diameter increment and crown diameter growth were positively correlated to size of the opening created around the crop tree crown. However, the relationship between height growth and size of canopy opening was weak. Clear bole length was found to be negatively correlated to the size of canopy opening. Few epicormic sprouts developed on the stems when all competing trees were removed at 1, 2, or 3 m around the crop tree boles. However, release at 4 m greatly increased the number and size of epicormic sprouts. Providing about a 15-m2 opening around the crop tree crown, corresponding to approximately a 3-m removal of competing trees around the bole, provided a good balance between diameter increment and stem quality maintenance.  相似文献   

19.
The aim of the study was to develop methods for estimating the taper curves for trees tallied in a forest inventory. The average stem form in a stand was described by the principal components of the stand effects in the stem dimensions measured in the polar coordinate system. Measurements of diameter at breast height, diameter at a height of 6 meters, and height taken from trees on the sample tree plots were used for determining the first four principal components. Regression models were derived to predict the principal components from the site and growing stock variables. These models were used to estimate the taper curves of the tallied trees. Use of the principal components estimated by the regression models gave less reliable results than use of the principal component estimates based on measurement of the height of one randomly chosen tree on the sample plot. The best result was found with combined use of the principal component estimates and one height measurement per sample plot.  相似文献   

20.
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomass functions (BFs) and biomass expansion factors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号