首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study was carried out on the susceptibility of primary bovine embryo kidney (PBEK) cell cultures, and that of AUBEK and MDBK cell lines to infectious bovine rhinotracheitis (IBR) and Parainfluenza-3 (PI-3) viruses.

The cytopathic effects induced by the two viruses were rather inconsistent, based on observations of unstained preparations. On the other hand, there was no significant difference between the susceptibility of the PBEK cultures and the cell line cultures to infection with either virus on the basis of the lesions detected in stained preparations, and of the growth curve patterns.

It is concluded that PBEK cell cultures are more sensitive for isolating IBR or PI-3 viruses than are the AUBEK and MDBK cell lines. However, the latter appear to be satisfactory for studies of these two viruses.  相似文献   


2.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

3.
Three experiments have been carried out to verify the effectiveness of an immunomodulator, Baypamun (Bayer AG) in limiting the spread of Bovine herpesvirus-1 (BHV-1), the causal agent of infectious bovine rhinotracheitis (IBR). In the first experiment, four calves infected with BHV-1 developed severe disease whereas four calves given Baypamun simultaneously with the virus had less severe disease. Four other calves in contact with the infected calves became severely ill but another four given Baypamun were only mildly affected. In the second experiment three calves infected with BHV-1, which reacted with typical disease, were allowed to remain in contact with six calves. All six calves were given Baypamun at various times following the exposure to BHV-1 infection and all showed a much reduced reaction with two treated for 4 days developing no clinical disease. Finally, in the third experiment one calf vaccinated one month before the start of the experiment did not develop any signs of disease when housed together with a calf experimentally infected with BHV-1. Of four other calves, vaccinated when the infected calf showed the first signs of disease, only the two given Baypamun in addition to the vaccine, were protected from clinical disease whereas the two given vaccine only developed classical signs of IBR. In the three experiments the virus shedding by the Baypamun-treated calves resulted to be significantly reduced.  相似文献   

4.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

5.
A non-cytopathic strain of BVDV-2 was isolated from a batch of live infectious bovine rhinotracheitis (IBR) vaccine, and inoculated intranasally into four 3-month-old calves. Severe signs of disease developed by days 4 and 6 in three of the calves, free of BVDV and antibodies to BVDV, that had been exposed to the virus. These calves survived the acute phase of the infection and progressively recovered. BVDV was consistently isolated, or the respective viral RNA was detected, in the buffy coats from blood samples collected starting from days 2 or 4 up to days 11 or 14 after the experimental infection. Viral RNA was also detected in sera from these infected calves until the presence in the serum of virus neutralizing antibodies was demonstrated. By contrast, the only calf having pre-existing neutralizing antibodies to BVDV at the start of the study was protected from the disease. No virus was detected at any time after experimental inoculation of this calf. Genomic characterization of the BVDV-2 isolated in cell cultures, or detected in sera from the experimentally infected animals, revealed 100% homology in the nucleotide sequence with the BVDV-2 detected as a contaminant of the live IBR virus vaccine. These findings provided evidence of the infective nature of the contaminant BVDV-2 and of its potential to generate disease outbreaks when inoculated into susceptible animals.  相似文献   

6.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

7.
The aim of this work was to investigate the susceptibility of calves infected with bovine viral diarrhea virus (BVDV) against secondary infections. For this purpose, the profile of cytokines implicated in the immune response of calves experimentally infected with a non-cytopathic strain of BVDV type-1 and challenged with bovine herpesvirus 1.1 (BHV-1.1) was evaluated in comparison with healthy animals challenged only with BHV-1.1. The immune response was measured by serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), acute phase proteins (haptoglobin, serum amyloid A and fibrinogen) and BVDV and BHV-1.1 specific antibodies. BVDV-infected calves displayed a great secretion of TNFα and reduced production of IL-10 following BHV-1 infection, leading to an exacerbation of the inflammatory response and to the development of more intense clinical symptoms and lesions than those observed in healthy animals BHV-1-inoculated. A Th1 immune response, based on IFNγ production and on the absence of significant changes in IL-4 production, was observed in both groups of BHV-1-infected calves. However, whereas the animals inoculated only with BHV-1 presented an IFNγ response from the start of the study and high expression of IL-12, the BVDV-infected calves showed a delay in the IFNγ production and low levels of IL-12. This alteration in the kinetic and magnitude of these cytokines, involved in cytotoxic mechanisms responsible for limiting the spread of secondary pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves.  相似文献   

8.
Acidogenic diets were evaluated for their effects on lymphocyte proliferation in response to Staphylococcus aureus exotoxin B (SEB), and specific lymphocyte proliferation and serum-neutralizing antibody titers to four bovine respiratory viruses in vitro. Four Holstein steer calves, with an average weight of 213 +/- 42 kg, were fed a basal (control) diet consisting of 49% forage and 51% concentrate (DM basis), with 15% CP (on a DM basis). Three additional treatment diets were used: 1) the basal diet supplemented with 700 mL/d of butylene glycol (BG) to induce ketoacidosis by increasing blood beta-hydroxybutyate (BHBA); 2) the basal diet supplemented with 1.2 +/- 0.1 kg/d of anionic salts (AS; Soychor 16.7, West Central Soy, Ralston, IA) to induce a metabolic acidosis; and 3) the basal diet with all forage replaced by finely ground corn and soybean meal blended to provide 15% CP (HG), to induce lactic acidosis. The calves were fed each diet for 21 d in a 4 x 4 Latin square design. Blood samples were collected on d 18, 19, and 20 of each 21-d period and analyzed for pH; concentrations of BHBA; in vitro lymphocyte proliferation to SEB, bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), parainfluenza-3 (PI-3), and bovine herpesvirus-1 (BHV-1); and titers of serum-neutralizing antibodies against the four viruses. Following treatment, the average pH of the serum samples was 7.38 for calves fed the control diet, 7.37 for the BG treatment, and 7.36 for the HG treatment, and was decreased (P < 0.05) to 7.33 for the AS treatment. All acidogenic diets decreased lymphocyte response to SEB (P < 0.05). The lymphocyte proliferative response, however, of each virus showed a different pattern of interaction with the three acidogenic diets tested. The AS diet was associated with increased lymphocyte proliferative response to BVDV and BRSV (P < 0.01) and increased serum neutralization titers to BHV-1 (P < 0.05). In calves fed the BHBA-inducing diet (BG), an increase in lymphocyte proliferation to BRSV was observed (P < 0.05). A similar relationship to blood BHBA concentration was not observed with the lymphocyte proliferation to BVDV, PI-3, or BHV-1. Titers of serum-neutralizing antibody against PI3 (P < 0.05) and BHV-1 (P < 0.01) were negatively correlated with blood pH, and titers of serum neutralizing antibodies to BHV-1 were negatively correlated to elevated circulating concentrations of BHBA (P < 0.05).  相似文献   

9.
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval™4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n = 16), PI3V (n = 31), BVDV (n = 16), or BRSV (n = 20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for ≥2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10 TCID50 in control animals to 2.59 log10 TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n = 2/10 and 0/10, respectively) shedding the virus than control animals (n = 8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of ≥6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval™4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.  相似文献   

10.
Sera from healthy sheep were collected in January and March 1982 from flocks of sheep located in southwestern and southeastern Louisiana. These sera were tested for bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), parainfluenza-3 (PI-3) virus, and goat respiratory syncytial virus (GRSV) antibodies by microtitration virus-neutralization test. The sera were tested also for bovine leukemia virus (BLV) and bluetongue virus (BTV) antibodies by immunodiffusion tests. The number of flocks with seropositive sheep for each virus were: 2/8 (25%) for BVDV; 8/8 (100%) for PI-3 virus; 7/8 (87.5%) for GRSV; and 6/8 (75%) for BTV. Seropositive rates for each virus for the individual sheep tested were: 4/158 (2.5%) for BVDV; 117/158 (74.1%) for PI-3 virus; 77/158 (48.7%) for GRSV; and 21/158 (13.3%) for BTV. All sheep were seronegative for BHV-1 and BLV.  相似文献   

11.
The immune receptor-mediated functions of bovine alveolar macrophages (AM) inoculated in vitro with bovine herpesvirus-1 (BHV-1) or parainfluenza-3 (PI-3) virus were tested in the presence or absence of virus-specific antiserum or pulmonary lavage fluids collected from calves 6 days after inoculation with BHV-1 or PI-3 virus. The Fc and C3b phagocytic indices of noninoculated AM, collected from 6- to 16-week-old calves, ranged from 75 to 87 and 59 to 64, respectively, and the binding indices ranged from 5 to 8 and 22 to 28, respectively. Infection of AM with either BHV-1 or PI-3 virus had no significant effect on receptor-mediated phagocytosis or binding, with the exception of a significant (P less than 0.05) decrease, from 64 to 46, of the C3b phagocytic index of PI-3 virus-infected AM. The addition of lavage fluids, collected after BHV-1 or PI-3 virus infection, to AM infected with the respective virus caused a significant (P less than 0.05) decrease in phagocytic indices with values for the Fc and C3b indices in BHV-1-infected AM decreasing from 81 to 49 and from 47 to 8, respectively, and those for the PI-3 virus-infected AM from 79 to 51 and from 46 to 15, respectively. The binding indices of virus-infected AM increased with the addition of viral lavage fluids, but the only significant (P less than 0.05) increase was for C3b binding in PI-3 virus-infected cells, which increased from 33 to 56.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
An epizootic characterized by birth of calves severly ataxic and blind were encountered in 3 herds 7–8 months after outbreaks of bovine virus diarrhoea. Serological and virological investigations indicated introduction of bovine viral diarrhoea virus (BVDV) into previously virus-free herds, followed by transplacental virus infection of the fetuses of cows in the first trimester. Clinical, pathological, serological, and microbiological examinations were performed on 10 calves. Pathological findings included microcephaly and cerebellar hypoplasia, ocular malformations, and thymic hypoplasia. BVDV was isolated from tissue and blood of 7 calves, and 4 calves, 1 of which had not received colostrum, had virus-specific neutralizing antibodies.This is the first report on natural occurrence of congenital bovine infection with BVDV among Danish cattle herds resulting in abortion and birth of calves with severe debilitating congenital anomalies. It draws attention to the importance of this virus for bovines of all age groups.  相似文献   

13.
Bovine respiratory disease complex is a very important health problem around the world. Present study describes serological distribution of bovine major respiratory viruses in non -vaccinated cattle population of Marmara region in north-western Turkey. Neutralising antibodies specific to bovine viral diarrhoea virus (BVDV), bovine herpesvirus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (PI-3), bovine adenovirus serotype 1 (BAV-1) and serotype 3 (BAV-3) were investigated. Among 584 serum samples collected from 39 establishments in 7 provinces, 41.4% were positive for BVDV, 17.1% for BHV-1, 73.0% for BRSV, 43.0% for PI-3, 89.5% for BAV-1 and 92.3% for BAV-3. There were significant differences observed between seroprevalence rates detected in neighbouring provinces. Serological prevalence of BVDV, BHV-1 and BRSV were extremely higher in large capacity dairy farms than of small capacity farms (p < 0.0001). This study demonstrates that herd capacity is a very important risk factor for respiratory viruses and, on the other hand bovine adenoviruses and BRSV are the common reason of respiratory diseases in the region.  相似文献   

14.
Serum samples were collected from early weaned fall calves shortly after the onset of respiratory tract disease. Antibody titers to infectious bovine rhinotracheitis (IBR) virus, parainfluenza type 3 (PI-3) virus, bovine viral diarrhea (BVD) virus, bovine adenovirus type 3 (BAV-3), and bovine respiratory syncytial virus (BRSV) were determined on paired (acute and convalescent) serums. Seroconversion rate (a fourfold or greater rise in antibody titer) for IBR virus was 4.3%, PI-3 virus--16.3%, BVD virus--9.6%, and BAV-3--2.2%. Seroconversion for BRSV was 45.4%. An increased rate of seroconversion for IBR, PI-3, and BVD viruses and BAV-3 was observed in the presence of BRSV seroconversion. These results suggest that BRSV may facilitate infection by other viruses. Results of virus isolation procedures from these calves were negative.  相似文献   

15.
A study was carried out to determine whether bovid herpesvirus-2 (BHV-2) is able to induce a recurrent infection in experimentally infected calves. Twelve calves infected with the virus were treated with dexamethasone (DMS) beginning 69 days after the infection, ie, several weeks after the animals had recovered from the disease and were negative for BHV-2. The stress induced by DMS treatment failed to reactivate the clinical condition or to induce shedding of BHV-2. However, treatment with DMS reactivated a latent infectious bovine rhinotracheitis (IBR) virus infection in all calves previously inoculated with BHV-2, and also in 2 noninoculated controls. The reactivation of IBR virus occurred without any clinical evidence of the disease, but the virus was isolated from nasal and pharyngeal swabbings and from the organs. A proliferative ganglionitis of the trigeminal ganglion was also observed. Because of the interference by IBR virus, this study did not resolve the question as to whether BHV-2 can induce a recurrent infection.  相似文献   

16.
Four calves were infected with noncytopathic (NCP) New York-1 strain of bovine viral diarrhea virus (BVDV). During the observation period of one month the calves remained clinically normal but the virus was repeatedly recovered from their pharyngeal swabbings and blood. Thirty days following infection the four calves were vaccinated, together with two uninfected calves, with a modified-live vaccine containing cytopathic (CP) BVDV, infectious bovine rhinotracheitis virus and parainfluenza-3 virus. No detrimental effects were observed after vaccination. Forty-three days after vaccination the calves were challenged by exposure either with the CP TVM-2 strain or the NCP New York-1 strain of BVDV. The vaccinated calves remained healthy throughout the 60-day observation period.  相似文献   

17.
Calves, 90 to 130 days old, were inoculated with bovine herpesvirus-1 (BHV-1) or parainfluenza-3 (PI-3) virus. Pulmonary lavage specimens obtained from calves before virus inoculation contained 98% alveolar macrophages (AM) and 1% neutrophils. Six days after inoculation, the mean percentage of neutrophils in lavage specimens had significantly increased to 7.9 +/- 6.0% in BHV-1-inoculated calves and to 18.3 +/- 9.9% in PI-3 virus-inoculated calves, reflecting viral-induced pulmonary inflammation that was confirmed histologically. Approximately 75% of AM obtained before virus inoculation had Fc surface receptors, and 60% had C3b receptors. Six days after inoculation, the percentage of AM with Fc and C3b receptors was significantly reduced to 69.7 +/- 8.6% and 27.1 +/- 19.8%, respectively, in BHV-1-inoculated calves and to 67.8 +/- 15.4% and 38.8 +/- 23.2%, respectively, in PI-3 virus-inoculated calves. Alveolar macrophages obtained after virus inoculation were significantly impaired in their ability to phagocytize opsonized Staphylococcus epidermidis, but were able to kill ingested bacteria. Alveolar macrophage dysfunctions caused by BHV-1 or PI-3 respiratory infection did not differ appreciably.  相似文献   

18.
Sera from healthy goats were collected during October 1979 through October 1980. These sera were tested for bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus (BVDV), parainfluenza-3 (PI-3) virus, bovine adenoviruses (BAV) -3 and -7, and goat respiratory syncytial virus (GRSV) antibodies by microtitration virus-neutralization test. The number of herds with seropositive goats for each virus were: 5/38 (13.2%) for BHV-1; 9/38 (23.7%) for BVDV; 8/38 (21.1%) for PI-3 virus; 1/38 (2.6%) for BAV-3; 15/38 (39.5%) for BAV-7; and 26/34 (76.5%) for GRSV. Seropositive rates for each virus for the individual goats tested were: 6/502 (1.2%) for BHV-1; 9/498 (1.8%) for BVDV; 49/458 (10.75) for PI-3 virus; 1/487 (0.025) for BAV-3; 40/448 (8.9%) for BAV-7; and 166/332 (50.0%) for GRSV.  相似文献   

19.
In this study, viral pathogens associated with nine outbreaks of naturally occurring dairy calf pneumonia in Mashhad area of Khorasan Razavi province from September 2008 to May 2009 were assessed. Five diseased calves from each farm were chosen for examination. Acute and convalescent serum samples were taken from calves with signs of respiratory disease. Sera were analyzed for antibodies to bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PI-3V), and bovine adenovirus-3 (BAV-3) by indirect ELISA kits. Among 42 serum samples collected at sample 1, seroprevalence values for viruses BHV-1, BVDV, BRSV, PI-3V, and BAV-3 were 61.9% (26), 57.1% (24), 64.2% (27), 90% (38), and 61.9% (26), respectively. Seroconversion to BVDV, BRSV, PI-3V, and BAV-3 occurred in 11.9% (5), 16.6% (7), 26.1% (11), and 21.4% (9) of animals, and 52.3% (22) had generated antibodies against one or more viral infections at sample 2. In addition, no significant relationship between seroprevalence of BHV-1, BVDV, BRSV, PI-3V, and BAV-3 and dairy herd size was observed (P > 0.05). According to serological findings, BHV-1, BVDV, BRSV, PI-3V, and BAV-3 are common pathogens of the dairy calf pneumonia in dairy herds in Mashhad area of Khorasan Razavi province, Iran.  相似文献   

20.
This presentation summarizes the results of a study on the pathogenesis of bovine viral diarrhea (BVDV) infection. The cytopathic (CP) strain TVM-2 of BVDV induced in calves an overt clinical disease which is usually recorded as the acute primary BVDV infection observed under natural conditions. In contrast the non-cytopathic (NCP) strain New York-1 of BVDV did not cause any significant signs of disease. However, when the calves were immunosuppressed by treatment with dexamethasone (DMS) the biotype of BVDV involved did not seem to be as important as it appeared to be in an immunologically normal animal. This was shown in this study by the NCP BVDV which caused a fatal disease in calves treated with DMS. A mixed infection given to calves by injecting them with both CP and NCP BVDV, did not result in any particularly serious disease. So, the potential immunosuppressive activity of BVDV itself for the host has not been proven under the experimental procedures used in this experiment. Finally, a modified-live CP BVDV vaccine was unable to cause clinical disease when injected into calves that had been infected previously with strain New York-1 of BVDV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号